1
|
Nziza N, Jung W, Mendu M, Chen T, Julg B, Graham B, Ramilo O, Mejias A, Alter G. Longitudinal humoral analysis in RSV-infected infants identifies pre-existing RSV strain-specific G and evolving cross-reactive F antibodies. Immunity 2024; 57:1681-1695.e4. [PMID: 38876099 DOI: 10.1016/j.immuni.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Respiratory syncytial virus (RSV) is among the most common causes of lower respiratory tract infection (LRTI) and hospitalization in infants. However, the mechanisms of immune control in infants remain incompletely understood. Antibody profiling against attachment (G) and fusion (F) proteins in children less than 2 years of age, with mild (outpatients) or severe (inpatients) RSV disease, indicated substantial age-dependent differences in RSV-specific immunity. Maternal antibodies were detectable for the first 3 months of life, followed by a long window of immune vulnerability between 3 and 6 months and a rapid evolution of FcγR-recruiting immunity after 6 months of age. Acutely ill hospitalized children exhibited lower G-specific antibodies compared with healthy controls. With disease resolution, RSV-infected infants generated broad functional RSV strain-specific G-responses and evolved cross-reactive F-responses, with minimal maternal imprinting. These data suggest an age-independent RSV G-specific functional humoral correlate of protection, and the evolution of RSV F-specific functional immunity with disease resolution.
Collapse
Affiliation(s)
- Nadège Nziza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maanasa Mendu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Harvard University, Cambridge, MA, USA
| | - Tina Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Barney Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Asuncion Mejias
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
4
|
O'Connor D. The omics strategy: the use of systems vaccinology to characterise immune responses to childhood immunisation. Expert Rev Vaccines 2022; 21:1205-1214. [PMID: 35786291 DOI: 10.1080/14760584.2022.2093193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccines have had a transformative impact on child health. Despite this impact the immunological processes involved in protective responses are not entirely understood and vaccine development has been largely empirical. Recent technological advances offer the opportunity to reveal the immunology underlying vaccine response at an unprecedented resolution. These data could revolutionise the way vaccines are developed and tested and further augment their role in securing the health of children around the world. AREAS COVERED Systems level information and the tools are now being deployed by vaccinologists at all stages of the vaccine development pathway; however, this review will specifically describe some of the key findings that have be gleaned from multi-omics datasets collected in the context of childhood immunisation. EXPERT OPINION Despite the success of vaccines there remains hard-to-target pathogens, refractory to current vaccination strategies. Moreover, zoonotic diseases with pandemic potential are a threat to global health, as recently illustrated by COVID-19. Systems vaccinology holds a great deal of promise in revealing a greater understanding of vaccine responses and consequently modernising vaccinology. However, there is a need for future studies -particularly in vulnerable populations that are targets for vaccination programmes - if this potential is to be fulfilled.
Collapse
Affiliation(s)
- Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|