1
|
Mahant AM, Gualdron TJ, Herold BC. Novel Mouse Model of Recurrent Sublethal Herpes Simplex Virus Infection Recapitulates Human Antibody Responses to Primary and Chronic Infection. Vaccines (Basel) 2024; 12:1127. [PMID: 39460294 PMCID: PMC11511495 DOI: 10.3390/vaccines12101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Herpes simplex virus (HSV) vaccine development has been impeded by the absence of predictive preclinical models and defined correlates of immune protection. Prior candidates elicited neutralizing responses greater than natural infection but no antibody-dependent cellular cytotoxicity (ADCC) and failed to protect in clinical trials. Primary HSV infection also elicits only neutralizing responses, but ADCC and an expanded antigenic repertoire emerge over time. This evolution may contribute to the decreased frequency and severity of recurrences. To test this notion, we developed a recurrent HSV infection mouse model and evaluated changes in humoral immunity with repeated challenges. Methods: Mice were repeatedly infected intranasally with clinical isolates of HSV-1 or HSV-2 for four months. HSV binding IgG, neutralizing (with or without complement) and ADCC-mediating antibodies were quantified prior to each round of infection. Viral targets were assessed by western blotting. Pooled immune serum (750 μg IgG per mouse) was passively transferred into naïve wild-type or Hvem knockout mice 24 h prior to lethal skin challenge. Results: Repeated exposure to HSV-1 or HSV-2 induced an increase in total HSV-binding IgG but did not boost neutralizing titers. In contrast, ADCC-mediating responses increased significantly from the first to the fourth viral exposure (p < 0.01). The increase was associated with an expanded antigenic repertoire. Passive transfer of fourth round immune serum provided significant protection whereas first round serum failed to protect (p < 0.01). However, protection was lost when serum was transferred into Hvem knockout mice, which are impaired in mediating ADCC killing. Conclusion: This novel model recapitulates clinical responses, highlights the importance of ADCC in protecting against recurrent infection, and provides a strategy for evaluating therapeutic vaccines.
Collapse
Affiliation(s)
- Aakash Mahant Mahant
- Departments of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (T.J.G.)
| | - Tania Jaimes Gualdron
- Departments of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (T.J.G.)
| | - Betsy C. Herold
- Departments of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (T.J.G.)
- Departments of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Liljeqvist JÅ, Önnheim K, Tunbäck P, Eriksson K, Görander S, Bäckström M, Bergström T. Human Antibodies against Herpes Simplex Virus 2 Glycoprotein G Do Not Neutralize but Mediate Antibody-Dependent Cellular Cytotoxicity. Antibodies (Basel) 2024; 13:40. [PMID: 38804308 PMCID: PMC11130973 DOI: 10.3390/antib13020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a sexually transmitted infection affecting 491 million individuals globally. Consequently, there is a great need for both prophylactic and therapeutic vaccines. Unfortunately, several vaccine clinical trials, primarily employing the glycoprotein D of HSV-2 (gD-2), have failed. The immune protection conferred by human anti-HSV-2 antibodies in genital infection and disease remains elusive. It is well-known that gD-2 elicits cross-reactive neutralizing antibodies, i.e., anti-gD-2 antibodies recognize gD in HSV-1 (gD-1). In contrast, anti-glycoprotein G in HSV-2 (mgG-2) antibodies are exclusively type-specific for HSV-2. In this study, truncated versions of gD-2 and mgG-2 were recombinantly produced in mammalian cells and used for the purification of anti-gD-2 and anti-mgG-2 antibodies from the serum of five HSV-2-infected subjects, creating a pool of purified antibodies. These antibody pools were utilized as standards together with purified mgG-2 and gD-2 antigens in ELISA to quantitatively estimate and compare the levels of cross-reactive anti-gD-1 and anti-gD-2 antibodies, as well as anti-mgG-2 antibodies in sera from HSV-1+2-, HSV-2-, and HSV-1-infected subjects. The median concentration of anti-mgG-2 antibodies was five times lower in HSV-1+2-infected subjects as compared with cross-reactive anti-gD-1 and anti-gD-2 antibodies, and three times lower in HSV-2 infected subjects as compared with anti-gD-2 antibodies. The pool of purified anti-gD-2 antibodies presented neutralization activity at low concentrations, while the pool of purified anti-mgG-2 antibodies did not. Instead, these anti-mgG-2 antibodies mediated antibody-dependent cellular cytotoxicity (ADCC) by human granulocytes, monocytes, and NK-cells, but displayed no complement-dependent cytotoxicity. These findings indicate that antibodies to mgG-2 in HSV-2-infected subjects are present at low concentrations but mediate the killing of infected cells via ADCC rather than by neutralizing free viral particles. We, and others, speculate that Fc-receptor mediated antibody functions such as ADCC following HSV-2 vaccination may serve as a better marker of protection correlate instead of neutralizing activity. In an mgG-2 therapeutic vaccine, our findings of low levels of anti-mgG-2 antibodies in HSV-2-infected subjects may suggest an opportunity to enhance the immune responses against mgG-2. In a prophylactic HSV-2 mgG-2 vaccine, a possible interference in cross-reactive immune responses in already infected HSV-1 subjects can be circumvented.
Collapse
Affiliation(s)
- Jan-Åke Liljeqvist
- Department of Infectious Diseases, Institute of Biomedicine, 413 90 Gothenburg, Sweden; (K.Ö.); (S.G.); (T.B.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | - Karin Önnheim
- Department of Infectious Diseases, Institute of Biomedicine, 413 90 Gothenburg, Sweden; (K.Ö.); (S.G.); (T.B.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | - Petra Tunbäck
- Department of Dermatology and Venereology, Institute of Clinical Sciences, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden;
| | - Staffan Görander
- Department of Infectious Diseases, Institute of Biomedicine, 413 90 Gothenburg, Sweden; (K.Ö.); (S.G.); (T.B.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression Core Facility, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden;
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, 413 90 Gothenburg, Sweden; (K.Ö.); (S.G.); (T.B.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| |
Collapse
|
3
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Effector functions are required for broad and potent protection of neonatal mice with antibodies targeting HSV glycoprotein D. Cell Rep Med 2024; 5:101417. [PMID: 38350452 PMCID: PMC10897633 DOI: 10.1016/j.xcrm.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Multiple failed herpes simplex virus (HSV) vaccine candidates induce robust neutralizing antibody (Ab) responses in clinical trials, raising the hypothesis that Fc-domain-dependent effector functions may be critical for protection. While neonatal HSV (nHSV) infection results in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, supporting the hypothesis that Ab-based therapeutics could protect neonates from HSV. We therefore investigated the mechanisms of monoclonal Ab (mAb)-mediated protection in a mouse model of nHSV infection. For a panel of glycoprotein D (gD)-specific mAbs, neutralization and effector functions contributed to nHSV-1 protection. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types consistent with vaccine trial results. Effector functions are therefore crucial for protection by these gD-specific mAbs, informing effective Ab and vaccine design and demonstrating the potential of polyfunctional Abs as therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
4
|
Mahant AM, Trejo FE, Aguilan JT, Sidoli S, Permar SR, Herold BC. Antibody attributes, Fc receptor expression, gestation and maternal SARS-CoV-2 infection modulate HSV IgG placental transfer. iScience 2023; 26:107648. [PMID: 37670782 PMCID: PMC10475509 DOI: 10.1016/j.isci.2023.107648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is associated with protection against neonatal herpes. We hypothesized that placental transfer of ADCC-mediating herpes simplex virus (HSV) immunoglobulin G (IgG) is influenced by antigenic target, function, glycans, gestational age, and maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Maternal and cord blood were collected from HSV-seropositive (HSV+) mothers pre-COVID and HSV+/SARS-CoV-2+ mothers during the pandemic. Transfer of HSV neutralizing IgG was significantly lower in preterm versus term dyads (transfer ratio [TR] 0.84 vs. 2.44) whereas the TR of ADCC-mediating IgG was <1.0 in both term and preterm pre-COVID dyads. Anti-glycoprotein D IgG, which had only neutralizing activity, and anti-glycoprotein B (gB) IgG, which displayed neutralizing and ADCC activity, exhibited different relative affinities for the neonatal Fc receptor (FcRn) and expressed different glycans. The transfer of ADCC-mediating IgG increased significantly in term SARS-CoV-2+ dyads. This was associated with greater placental colocalization of FcRn with FcγRIIIa. These findings have implications for strategies to prevent neonatal herpes.
Collapse
Affiliation(s)
- Aakash Mahant Mahant
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fatima Estrada Trejo
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jennifer T. Aguilan
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simone Sidoli
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weil Cornell Medicine, New York, NY 10021, USA
| | - Betsy C. Herold
- Departments of Microbiology and Immunology, Obstetrics-Gynecology and Women’s Health, and Biochemistry Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Fukui A, Maruzuru Y, Ohno S, Nobe M, Iwata S, Takeshima K, Koyanagi N, Kato A, Kitazume S, Yamaguchi Y, Kawaguchi Y. Dual impacts of a glycan shield on the envelope glycoprotein B of HSV-1: evasion from human antibodies in vivo and neurovirulence. mBio 2023; 14:e0099223. [PMID: 37366623 PMCID: PMC10470582 DOI: 10.1128/mbio.00992-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Identification of the mechanisms of viral evasion from human antibodies is crucial both for understanding viral pathogenesis and for designing effective vaccines. Here we show in cell cultures that an N-glycan shield on the herpes simplex virus 1 (HSV-1) envelope glycoprotein B (gB) mediated evasion from neutralization and antibody-dependent cellular cytotoxicity due to pooled γ-globulins derived from human blood. We also demonstrated that the presence of human γ-globulins in mice and immunity to HSV-1 induced by viral infection in mice significantly reduced replication in their eyes of a mutant virus lacking the glycosylation site but had little effect on the replication of its repaired virus. These results suggest that an N-glycan shield on a specific site of HSV-1 envelope gB mediated evasion from human antibodies in vivo and from HSV-1 immunity induced by viral infection in vivo. Notably, we also found that an N-glycan shield on a specific site of HSV-1 gB was significant for HSV-1 neurovirulence and replication in the central nervous system of naïve mice. Thus, we have identified a critical N-glycan shield on HSV-1 gB that has dual impacts, namely evasion from human antibodies in vivo and viral neurovirulence. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latent and recurrent infections in humans. To produce recurrent infections that contribute to transmission of the virus to new human host(s), the virus must be able to evade the antibodies persisting in latently infected individuals. Here, we show that an N-glycan shield on the specific site of the envelope glycoprotein B (gB) of HSV-1 mediates evasion from pooled γ-globulins derived from human blood both in cell cultures and mice. Notably, the N-glycan shield on the specific site of gB was also significant for HSV-1 neurovirulence in naïve mice. Considering the clinical features of HSV-1 infection, these results suggest that the glycan shield not only facilitates recurrent HSV-1 infections in latently infected humans by evading antibodies but is also important for HSV-1 pathogenesis during the initial infection.
Collapse
Affiliation(s)
- Ayano Fukui
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Moeka Nobe
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuji Iwata
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kosuke Takeshima
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan
| |
Collapse
|
6
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Antibody effector functions are required for broad and potent protection of neonates from herpes simplex virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555423. [PMID: 37693377 PMCID: PMC10491243 DOI: 10.1101/2023.08.29.555423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The failure of multiple herpes simplex virus (HSV) vaccine candidates that induce neutralizing antibody responses raises the hypothesis that other activities, such as Fc domain-dependent effector functions, may be critical for protection. While neonatal HSV (nHSV) infection result in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, suggesting the potential efficacy of antibody-based therapeutics to protect neonates. We therefore investigated the mechanisms of monoclonal antibody (mAb)-mediated protection in a mouse model of nHSV infection. Both neutralization and effector functions contributed to robust protection against nHSV-1. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types that is consistent with vaccine trial results. Together, these results emphasize that effector functions are crucial for optimal mAb-mediated protection, informing effective Ab and vaccine design, and demonstrating the potential of polyfunctional Abs as potent therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D. Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M. Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R. Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Lead Contact
| |
Collapse
|
7
|
Mahant AM, Gromisch MS, Kravets L, Burn Aschner C, Herold BC. Greater Durability and Protection against Herpes Simplex Viral Disease following Immunization of Mice with Single-Cycle ΔgD-2 Compared to an Adjuvanted Glycoprotein D Protein Vaccine. Vaccines (Basel) 2023; 11:1362. [PMID: 37631930 PMCID: PMC10458853 DOI: 10.3390/vaccines11081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Herpes simplex viruses (HSV) cause chronic infections with significant morbidity. Prior vaccines, designed to generate neutralizing antibodies (nAbs) targeting glycoprotein D (gD), failed to provide durable protection. We adopted a different strategy and evaluated a single-cycle virus deleted in gD (ΔgD-2). ΔgD-2elicits antibodies that primarily mediate antibody-dependent cell mediated cytolysis (ADCC) and provides complete protection against clinical isolates of HSV in multiple lethal mouse models. To assess durability, we vaccinated mice (2 doses administered intramuscularly) with ΔgD-2, adjuvanted recombinant gD-2 (rgD-2/Alum-MPL), or uninfected cells as a control, and quantified antibody responses over one year. Mice (n = 5/group) were lethally challenged at 2, 4, 6, 8, and 10-months post-boost. ΔgD-2-vaccinated mice elicited a durable ADCC-mediating response, which provided complete protection against challenge at all timepoints. In contrast, rgD-2/Alum-MPL elicited only nAbs, which declined significantly within 6 months, provided only partial protection at early timepoints, and no protection after 6 months. Serum sampling after viral challenge showed that infection elicited low levels of ADCC-mediating antibodies in rgD-2/Alum-MPL-vaccinated mice and boosted the nAb response, but only after 6 months. Conversely, infection significantly and consistently boosted both the ADCC and nAbs responses in ΔgD-2-vaccinated mice. Results recapitulate clinical trial outcomes with gD vaccines, highlight the importance of ADCC, and predict that ΔgD-2 will elicit durable responses in humans.
Collapse
Affiliation(s)
- Aakash Mahant Mahant
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (M.S.G.); (L.K.); (C.B.A.)
| | - Matthew S. Gromisch
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (M.S.G.); (L.K.); (C.B.A.)
| | - Leah Kravets
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (M.S.G.); (L.K.); (C.B.A.)
| | - Clare Burn Aschner
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (M.S.G.); (L.K.); (C.B.A.)
| | - Betsy C. Herold
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (M.S.G.); (L.K.); (C.B.A.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Estrada F, Mahant AM, Guerguis S, Sy S, Lu C, Reznik SE, Herold BC. Prolonged Preterm Rupture of Membranes Associated with Neonatal Disseminated Herpes Simplex Virus Type 1 at Birth: Is There a Role for Preemptive Test and Treat Strategies in High-Risk Populations? J Pediatric Infect Dis Soc 2023; 12:246-247. [PMID: 37001048 PMCID: PMC10146922 DOI: 10.1093/jpids/piac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Fatima Estrada
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aakash Mahant Mahant
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sandra Guerguis
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sharlene Sy
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chuanyong Lu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sandra E Reznik
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C Herold
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
10
|
Kuraoka M, Aschner CB, Windsor IW, Mahant AM, Garforth SJ, Kong SL, Achkar JM, Almo SC, Kelsoe G, Herold BC. A non-neutralizing glycoprotein B monoclonal antibody protects against herpes simplex virus disease in mice. J Clin Invest 2023; 133:161968. [PMID: 36454639 PMCID: PMC9888390 DOI: 10.1172/jci161968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
There is an unmet need for monoclonal antibodies (mAbs) for prevention or as adjunctive treatment of herpes simplex virus (HSV) disease. Most vaccine and mAb efforts focus on neutralizing antibodies, but for HSV this strategy has proven ineffective. Preclinical studies with a candidate HSV vaccine strain, ΔgD-2, demonstrated that non-neutralizing antibodies that activate Fcγ receptors (FcγRs) to mediate antibody-dependent cellular cytotoxicity (ADCC) provide active and passive protection against HSV-1 and HSV-2. We hypothesized that this vaccine provides a tool to identify and characterize protective mAbs. We isolated HSV-specific mAbs from germinal center and memory B cells and bone marrow plasmacytes of ΔgD-2-vaccinated mice and evaluated these mAbs for binding, neutralizing, and FcγR-activating activity and for protective efficacy in mice. The most potent protective mAb, BMPC-23, was not neutralizing but activated murine FcγRIV, a biomarker of ADCC. The cryo-electron microscopic structure of the Fab-glycoprotein B (gB) assembly identified domain IV of gB as the epitope. A single dose of BMPC-23 administered 24 hours before or after viral challenge provided significant protection when configured as mouse IgG2c and protected mice expressing human FcγRIII when engineered as a human IgG1. These results highlight the importance of FcR-activating antibodies in protecting against HSV.
Collapse
Affiliation(s)
- Masayuki Kuraoka
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Clare Burn Aschner
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Ian W. Windsor
- Department of Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aakash Mahant Mahant
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Susan Luozheng Kong
- Department of Laboratory of Molecular Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline M. Achkar
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, New York, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Surgery and,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Betsy C. Herold
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, New York, New York, USA.,Department of Pediatrics Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Wan M, Yang X, Sun J, Ding X, Chen Z, Su W, Cai L, Hou A, Sun B, Gao F, Jiang C, Zhou Y. An Adenovirus-Based Recombinant Herpes Simplex Virus 2 (HSV-2) Therapeutic Vaccine Is Highly Protective against Acute and Recurrent HSV-2 Disease in a Guinea Pig Model. Viruses 2023; 15:219. [PMID: 36680259 PMCID: PMC9861952 DOI: 10.3390/v15010219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Genital herpes (GH) has become one of the most common sexually transmitted diseases worldwide, and it is spreading rapidly in developing countries. Approximately 90% of GH cases are caused by HSV-2. Therapeutic HSV-2 vaccines are intended for people already infected with HSV-2 with the goal of reducing clinical recurrences and recurrent virus shedding. In our previous work, we evaluated recombinant adenovirus-based vaccines, including rAd-gD2ΔUL25, rAd-ΔUL25, and rAd-gD2, for their potency as prophylactic vaccines. In this study, we evaluated these three vaccines as therapeutic vaccines against acute and recurrent diseases in intravaginal challenged guinea pigs. Compared with the control groups, the recombinant vaccine rAd-gD2ΔUL25 induced a higher titer of the binding antibody, and rAd-gD2 + rAd-ΔUL25 induced a higher titer of the neutralizing antibody. Both rAd-gD2ΔUL25 and rAd-gD2 + rAd-ΔUL25 vaccines significantly enhanced the survival rate by 50% compared to rAd-gD2 and reduced viral replication in the genital tract and recurrent genital skin disease. Our findings provide a new perspective for HSV-2 therapeutic vaccine research and provide a new technique to curtail the increasing spread of HSV-2.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhijun Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Bradfute S, Mertz G. Immune responses to herpes simplex virus infection: implications for vaccine development. J Infect Dis 2022; 226:1485-1488. [PMID: 35801557 DOI: 10.1093/infdis/jiac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Steven Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 1 University of New Mexico, MSC10 5550, Albuquerque, NM 87131
| | - Gregory Mertz
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 1 University of New Mexico, MSC10 5550, Albuquerque, NM 87131
| |
Collapse
|