1
|
Al-Ibraheem A, Zimmermann R, Abdlkadir AS, Herrmann K. Radiotheranostics Global Market and Future Developments. Semin Nucl Med 2024; 54:622-633. [PMID: 38485583 DOI: 10.1053/j.semnuclmed.2024.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 08/05/2024]
Abstract
Radiotheranostics, a combination of diagnostic and therapeutic approaches, was first utilized in cancer management using radiopharmaceuticals to both image and selectively treat specific cancer subtypes nearly a century ago. Radiotheranostic strategies rooted in nuclear medicine have revolutionized the treatment landscape for individuals diagnosed with prostate cancer and neuroendocrine tumors in the past 10 years. In specific contexts, these approaches have emerged as the prevailing standard, yielding numerous positive results. The field of radiotheranostics shows great potential for future clinical applications. This article aims to examine the key factors that will contribute to the success of radiotheranostics in the future, as well as the current challenges and potential strategies to overcome them, with insight into the global radiotheranostic market.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan; Division of Nuclear Medicine/Department of Radiology and Nuclear Medicine, University of Jordan, Amman, 11942, Jordan.
| | - Richard Zimmermann
- Chrysalium Consulting, Lalaye, France; MEDraysintell, Louvain-la-Neuve, Oncidium Foundation, Mont-Saint-Guibert, Belgium; Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan
| | - Ahmed S Abdlkadir
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; National Center for Tumor Diseases (NCT), NCT West, Germany
| |
Collapse
|
2
|
Wright WF, Kandiah S, Brady R, Shulkin BL, Palestro CJ, Jain SK. Nuclear Medicine Imaging Tools in Fever of Unknown Origin: Time for a Revisit and Appropriate Use Criteria. Clin Infect Dis 2024; 78:1148-1153. [PMID: 38441140 PMCID: PMC11093677 DOI: 10.1093/cid/ciae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Fever of unknown origin (FUO) is a clinical conundrum for patients and clinicians alike, and imaging studies are often performed as part of the diagnostic workup of these patients. Recently, the Society of Nuclear Medicine and Molecular Imaging convened and approved a guideline on the use of nuclear medicine tools for FUO. The guidelines support the use of 2-18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) in adults and children with FUO. 18F-FDG PET/CT allows detection and localization of foci of hypermetabolic lesions with high sensitivity because of the 18F-FDG uptake in glycolytically active cells that may represent inflammation, infection, or neoplasia. Clinicians should consider and insurers should cover 18F-FDG PET/CT when evaluating patients with FUO, particularly when other clinical clues and preliminary studies are unrevealing.
Collapse
Affiliation(s)
- William F Wright
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheetal Kandiah
- Department of Medicine, Division of Infectious Diseases, Emory University Hospital, Atlanta, Georgia, USA
| | - Rebecca Brady
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Barry L Shulkin
- Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Christopher J Palestro
- Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Koatale P, Welling MM, Ndlovu H, Kgatle M, Mdanda S, Mdlophane A, Okem A, Takyi-Williams J, Sathekge MM, Ebenhan T. Insights into Peptidoglycan-Targeting Radiotracers for Imaging Bacterial Infections: Updates, Challenges, and Future Perspectives. ACS Infect Dis 2024; 10:270-286. [PMID: 38290525 PMCID: PMC10862554 DOI: 10.1021/acsinfecdis.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.
Collapse
Affiliation(s)
- Palesa
C. Koatale
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Honest Ndlovu
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mankgopo Kgatle
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Sipho Mdanda
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Amanda Mdlophane
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Ambrose Okem
- Department
of Anaesthesia, School of Clinical Medicine, University of Witwatersrand, 2050 Johannesburg, South Africa
| | - John Takyi-Williams
- Pharmacokinetic
and Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mike M. Sathekge
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Thomas Ebenhan
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
- DSI/NWU Pre-clinical
Drug Development Platform, North West University, 2520 Potchefstroom, South Africa
| |
Collapse
|