1
|
Pham N, Benhammou JN. Statins in Chronic Liver Disease: Review of the Literature and Future Role. Semin Liver Dis 2024; 44:191-208. [PMID: 38701856 DOI: 10.1055/a-2319-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Chronic liver disease (CLD) is a major contributor to global mortality, morbidity, and healthcare burden. Progress in pharmacotherapeutic for CLD management is lagging given its impact on the global population. While statins are indicated for the management of dyslipidemia and cardiovascular disease, their role in CLD prevention and treatment is emerging. Beyond their lipid-lowering effects, their liver-related mechanisms of action are multifactorial and include anti-inflammatory, antiproliferative, and immune-protective effects. In this review, we highlight what is known about the clinical benefits of statins in viral and nonviral etiologies of CLD and hepatocellular carcinoma (HCC), and explore key mechanisms and pathways targeted by statins. While their benefits may span the spectrum of CLD and potentially HCC treatment, their role in CLD chemoprevention is likely to have the largest impact. As emerging data suggest that genetic variants may impact their benefits, the role of statins in precision hepatology will need to be further explored.
Collapse
Affiliation(s)
- Nguyen Pham
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jihane N Benhammou
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Veterans Affairs Greater Los Angeles, Los Angeles, California
- Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Abdelkawy KS, Belal F, Abdelaziz A, Elmekawy HA, Abdelgaied MY, El-Khodary NM. Statins Increase the Bioavailability of Fixed-Dose Combination of Sofosbuvir/Ledipasvir by Inhibition of P-glycoprotein. Drug Res (Stuttg) 2022; 72:319-326. [PMID: 35724670 DOI: 10.1055/a-1835-1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Coadministration of statins and direct acting antiviral agents is frequently used. This study explored the effects of both atorvastatin and lovastatin on pharmacokinetics of a fixed-dose combination of sofosbuvir/ledipasvir "FDCSL". METHODS 12 healthy volunteers participated in a randomized, three-phase crossover trial and were administered a single atorvastatin dose 80 mg plus tablet containing 400/90 mg FDCSL, a single lovastatin dose 40 mg plus tablet containing 400/90 mg FDCSL, or tablets containing 400/90 mg FDCSL alone. Liquid chromatography-tandem mass spectrometry was used to analyze plasma samples of sofosbuvir, ledipasvir and sofosbuvir metabolite "GS-331007" and their pharmacokinetic parameters were determined. RESULTS Atorvastatin caused a significant rise in sofosbuvir bioavailability as explained by increasing in AUC0-∞ and Cmax by 34.36% and 11.97%, respectively. In addition, AUC0-∞ and Cmax of GS-331007 were increased by 73.73% and 67.86%, respectively after atorvastatin intake. Similarly, co-administration of lovastatin with FDCSL increased the bioavailability of sofosbuvir, its metabolite (AUC0-∞ increase by 17.2%, 17.38%, respectively, and Cmax increase by 12.03%, 22.24%, respectively). However, neither atorvastatin nor lovastatin showed a change in ledipasvir bioavailability. Hepatic elimination was not affected after statin intake with FDCSL. Compared to lovastatin, atorvastatin showed significant increase in AUC0-∞ and Cmax of both sofosbuvir and its metabolite. CONCLUSIONS Both atorvastatin and lovastatin increased AUC of sofosbuvir and its metabolite after concurrent administration with FDCSL. Statins' P-glycoprotein inhibition is the attributed mechanism of interaction. The increase in sofosbuvir bioavailability was more pronounced after atorvastatin intake. Close monitoring is needed after co-administration of atorvastatin and FDCSL.
Collapse
Affiliation(s)
- K S Abdelkawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fathalla Belal
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - AbdelazizE Abdelaziz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - H A Elmekawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - M Y Abdelgaied
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - N M El-Khodary
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
3
|
Inhibition of Orbivirus Replication by Fluvastatin and Identification of the Key Elements of the Mevalonate Pathway Involved. Viruses 2021; 13:v13081437. [PMID: 34452303 PMCID: PMC8402872 DOI: 10.3390/v13081437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/21/2023] Open
Abstract
Statin derivatives can inhibit the replication of a range of viruses, including hepatitis C virus (HCV, Hepacivirus), dengue virus (Flavivirus), African swine fever virus (Asfarviridae) and poliovirus (Picornaviridae). We assess the antiviral effect of fluvastatin in cells infected with orbiviruses (bluetongue virus (BTV) and Great Island virus (GIV)). The synthesis of orbivirus outer-capsid protein VP2 (detected by confocal immunofluorescence imaging) was used to assess levels of virus replication, showing a reduction in fluvastatin-treated cells. A reduction in virus titres of ~1.7 log (98%) in fluvastatin-treated cells was detected by a plaque assay. We have previously identified a fourth non-structural protein (NS4) of BTV and GIV, showing that it interacts with lipid droplets in infected cells. Fluvastatin, which inhibits 3-hydroxy 3-methyl glutaryl CoA reductase in the mevalonic acid pathway, disrupts these NS4 interactions. These findings highlight the role of the lipid pathways in orbivirus replication and suggest a greater role for the membrane-enveloped orbivirus particles than previously recognised. Chemical intermediates of the mevalonic acid pathway were used to assess their potential to rescue orbivirus replication. Pre-treatment of IFNAR(−/−) mice with fluvastatin promoted their survival upon challenge with live BTV, although only limited protection was observed.
Collapse
|
4
|
Tang XX, Yan X, Fu WH, Yi LQ, Tang BW, Yu LB, Fang MJ, Wu Z, Qiu YK. New β-Lactone with Tea Pathogenic Fungus Inhibitory Effect from Marine-Derived Fungus MCCC3A00957. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2877-2885. [PMID: 30785752 DOI: 10.1021/acs.jafc.9b00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium solani H915 (MCCC3A00957), a fungus originating from mangrove sediment, showed potent inhibitory activity against tea pathogenic fungus Pestalotiopsis theae. Successive chromatographic separation on an ethyl acetate (EtOAc) extract of F. solani H915 resulted in the isolation of five new alkenoic diacid derivatives: fusarilactones A-C (1-3), and fusaridioic acids B (4) and C (5), in addition to seven known compounds (6-12). The chemical structures of these metabolites were elucidated on the basis of UV, IR, HR-ESI-MS, and NMR spectroscopic data. The antifungal activity of the isolated compounds was evaluated. Compounds with a β-lactone ring (1, 2, and 7) exhibited potent inhibitory activities, while none of the other compounds show activity. The ED50 values of the compounds 1, 2, and 7 were 38.14 ± 1.67, 42.26 ± 1.96, and 18.35 ± 1.27 μg/mL, respectively. In addition, inhibitory activity of these compounds against 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase gene expression was also detected using real-time RT-PCR. Results indicated that compounds 1, 2, and 7 may inhibit the growth of P. theae by interfering with the biosynthesis of ergosterol by down-regulating the expression of HMG-CoA synthase.
Collapse
Affiliation(s)
- Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography State, Ministry of Natural Resources , Da-Xue Road , Xiamen 361005 , China
| | - Xia Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center , Ningbo University , Ningbo 315832 , China
| | - Wen-Hao Fu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Lu-Qi Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Bo-Wen Tang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Li-Bo Yu
- Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography State, Ministry of Natural Resources , Da-Xue Road , Xiamen 361005 , China
| | - Mei-Juan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| | - Ying-Kun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences , Xiamen University , South Xiang-An Road , Xiamen , 361102 , China
| |
Collapse
|
5
|
Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019; 20:ijms20030644. [PMID: 30717356 PMCID: PMC6387424 DOI: 10.3390/ijms20030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.
Collapse
|
6
|
Simon TG, Butt AA. Lipid dysregulation in hepatitis C virus, and impact of statin therapy upon clinical outcomes. World J Gastroenterol 2015; 21:8293-8303. [PMID: 26217081 PMCID: PMC4507099 DOI: 10.3748/wjg.v21.i27.8293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/17/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) is one of the most common causes of chronic liver disease and the leading indication for liver transplantation worldwide. Every aspect of the HCV life cycle is closely tied to human lipid metabolism. The virus circulates as a lipid-rich particle, utilizing lipoprotein cell receptors to gain entry into the hepatocyte. It has also been shown to upregulate lipid biosynthesis and impair lipid degradation, resulting in significant intracellular lipid accumulation and circulating hypocholesterolemia. Patients with chronic hepatitis C (CHC) are at increased risk of hepatic steatosis, fibrosis, and cardiovascular disease including accelerated atherosclerosis. HMG CoA Reductase inhibitors, or statins, have been shown to play an important role in the modulation of hepatic steatosis and fibrosis, and recent attention has focused upon their potential therapeutic role in CHC. This article reviews the hepatitis C viral life cycle as it impacts host lipoproteins and lipid metabolism. It then describes the pathogenesis of HCV-related hepatic steatosis, hypocholesterolemia and atherosclerosis, and finally describes the promising anti-viral and anti-fibrotic effects of statins, for the treatment of CHC.
Collapse
|
7
|
Liao P, Wang H, Hemmerlin A, Nagegowda DA, Bach TJ, Wang M, Chye ML. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. PLANT CELL REPORTS 2014; 33:1005-22. [PMID: 24682521 DOI: 10.1007/s00299-014-1592-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 05/09/2023]
Abstract
HMGS functions in phytosterol biosynthesis, development and stress responses. F-244 could specifically-inhibit HMGS in tobacco BY-2 cells and Brassica seedlings. An update on HMGS from higher plants is presented. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) is the second enzyme in the mevalonate pathway of isoprenoid biosynthesis and catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce S-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Besides HMG-CoA reductase (HMGR), HMGS is another key enzyme in the regulation of cholesterol and ketone bodies in mammals. In plants, it plays an important role in phytosterol biosynthesis. Here, we summarize the past investigations on eukaryotic HMGS with particular focus on plant HMGS, its enzymatic properties, gene expression, protein structure, and its current status of research in China. An update of the findings on HMGS from animals (human, rat, avian) to plants (Brassica juncea, Hevea brasiliensis, Arabidopsis thaliana) will be discussed. Current studies on HMGS have been vastly promoted by developments in biochemistry and molecular biology. Nonetheless, several limitations have been encountered, thus some novel advances in HMGS-related research that have recently emerged will be touched on.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China,
| | | | | | | | | | | | | |
Collapse
|
8
|
Real CI, Megger DA, Sitek B, Jahn-Hofmann K, Ickenstein LM, John MJ, Walker A, Timm J, Kuhlmann K, Eisenacher M, Meyer HE, Gerken G, Broering R, Schlaak JF. Identification of proteins that mediate the pro-viral functions of the interferon stimulated gene 15 in hepatitis C virus replication. Antiviral Res 2013; 100:654-61. [DOI: 10.1016/j.antiviral.2013.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Abstract
Recent advances in understanding of the molecular characteristics of the hepatitis C virus have led to the development of novel antiviral therapeutics. Direct-acting antivirals are designed to inhibit viral targets, whereas host-targeted antivirals block host factors that are used by the virus for its own life cycle. The rapid development of agents in multiple classes has led to the promise of shorter therapy duration, an improved side effect profile, and eventually interferon-sparing regimens. This article reviews novel hepatitis C virus therapeutics in development, including mechanism of action, efficacy, and adverse effects.
Collapse
Affiliation(s)
- Jennifer Y Chen
- GI Unit, Massachusetts General Hospital, GRJ724, 55 Fruit Street, Boston, MA 02114, USA
| | | |
Collapse
|
10
|
Lương KVQ, Nguyễn LTH. Theoretical basis of a beneficial role for vitamin D in viral hepatitis. World J Gastroenterol 2012; 18:5338-50. [PMID: 23082050 PMCID: PMC3471102 DOI: 10.3748/wjg.v18.i38.5338] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/22/2012] [Accepted: 05/06/2012] [Indexed: 02/06/2023] Open
Abstract
Abnormal bone metabolism and dysfunction of the calcium-parathyroid hormone-vitamin D axis have been reported in patients with viral hepatitis. Some studies suggested a relationship between vitamin D and viral hepatitis. Genetic studies have provided an opportunity to identify the proteins that link vitamin D to the pathology of viral hepatitis (i.e., the major histocompatibility complex class II molecules, the vitamin D receptor, cytochrome P450, the renin-angiotensin system, apolipoprotein E, liver X receptor, toll-like receptor, and the proteins regulated by the Sp1 promoter gene). Vitamin D also exerts its effects on viral hepatitis via non-genomic factors, i.e., matrix metalloproteinase, endothelial vascular growth factor, prostaglandins, cyclooxygenase-2, and oxidative stress. In conclusion, vitamin D could have a beneficial role in viral hepatitis. Calcitriol is best used for viral hepatitis because it is the active form of the vitamin D3 metabolite.
Collapse
|
11
|
Skaff DA, Ramyar KX, McWhorter WJ, Barta ML, Geisbrecht BV, Miziorko HM. Biochemical and structural basis for inhibition of Enterococcus faecalis hydroxymethylglutaryl-CoA synthase, mvaS, by hymeglusin. Biochemistry 2012; 51:4713-22. [PMID: 22510038 DOI: 10.1021/bi300037k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hymeglusin (1233A, F244, L-659-699) is established as a specific β-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 Å) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.
Collapse
|
12
|
Schaefer EAK, Chung RT. Anti-hepatitis C virus drugs in development. Gastroenterology 2012; 142:1340-1350.e1. [PMID: 22537441 DOI: 10.1053/j.gastro.2012.02.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/23/2012] [Accepted: 02/03/2012] [Indexed: 02/07/2023]
Abstract
Development of robust cell culture models for hepatitis C viral infection has greatly increased our understanding of this virus and its life cycle. This knowledge has led to the development of many drugs that target specific elements of viral replication, including viral proteins and host factors required for replication. The NS3/4A serine protease inhibitors were the first of these to be used in the clinic, and reagents that target other elements of the viral lifecycle are in advanced stages of clinical development. These include new NS3/4A protease inhibitors, NS5B RNA-dependent RNA polymerase inhibitors, NS5A inhibitors, and host-directed antivirals, such as cyclophilin inhibitors. Alternative interferons with possibly improved tolerability, specifically interferon-λ1 (interleukin-29), are also under development. These new reagents against hepatitis C virus should lead to highly effective, well-tolerated, and likely interferon-sparing therapies in the next several years.
Collapse
Affiliation(s)
- Esperance A K Schaefer
- Massachusetts General Hospital, Department of Medicine, Gastrointestinal Unit, Boston, USA.
| | | |
Collapse
|