1
|
Zhong H, Sun X. Contribution of Interleukin-17A to Retinal Degenerative Diseases. Front Immunol 2022; 13:847937. [PMID: 35392087 PMCID: PMC8980477 DOI: 10.3389/fimmu.2022.847937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Retinal degenerative diseases are a leading cause of vision loss and blindness throughout the world, characterized by chronic and progressive loss of neurons and/or myelin. One of the common features of retinal degenerative diseases and central neurodegenerative diseases is chronic neuroinflammation. Interleukin-17A (IL-17A) is the cytokine most closely related to disease in its family. Accumulating evidence suggests that IL-17A plays a key role in human retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. This review aims to provide an overview of the role of IL-17A participating in the pathogenesis of retinal degenerative diseases, which may open new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Huimin Zhong
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
2
|
Lahiri D, Nag M, Dey A, Sarkar T, Pattnaik S, Ghosh S, Edinur HA, Pati S, Kari ZA, Ray RR. Exosome-associated host–pathogen interaction: a potential effect of biofilm formation. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractExosomes being non-ionized micro-vesicles with a size range of 30–100 nm possess the ability to bring about intracellular communication and intercellular transport of various types of cellular components like miRNA, mRNA, DNA, and proteins. This is achieved through the targeted transmission of various inclusions to nearby or distant tissues. This is associated with the effective communication of information to bring about changes in physiological properties and functional attributes. The extracellular vesicles (EVs), produced by fungi, parasites, and bacteria, are responsible to bring about modulation/alteration of the immune responses exerted by the host body. The lipids, nucleic acids, proteins, and glycans of EVs derived from the pathogens act as the ligands of different families of pattern recognition receptors of the host body. The bacterial membrane vesicles (BMVs) are responsible for the transfer of small RNA species, along with other types of noncoding RNA thereby playing a key role in the regulation of the host immune system. Apart from immunomodulation, the BMVs are also responsible for bacterial colonization in the host tissue, biofilm formation, and survival therein showing antibiotic resistance, leading to pathogenesis and virulence. This mini-review would focus on the role of exosomes in the development of biofilm and consequent immunological responses within the host body along with an analysis of the mechanism associated with the development of resistance.
Collapse
|
3
|
Kim S, Park HE, Park WB, Kim SY, Park HT, Yoo HS. Mycobacterium avium Modulates the Protective Immune Response in Canine Peripheral Blood Mononuclear Cells. Front Cell Infect Microbiol 2021; 10:609712. [PMID: 33520738 PMCID: PMC7840563 DOI: 10.3389/fcimb.2020.609712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium avium, an opportunistic intracellular pathogen, is a member of the non-tuberculous mycobacteria species. M. avium causes respiratory disease in immunosuppressed individuals and a wide range of animals, including companion dogs and cats. In particular, the number of infected companion dogs has increased, although the underlying mechanism of M. avium pathogenesis in dogs has not been studied. Therefore, in the present study, the host immune response against M. avium in dogs was investigated by transcriptome analysis of canine peripheral blood mononuclear cells. M. avium was shown to induce different immune responses in canine peripheral blood mononuclear cells at different time points after infection. The expression of Th1-associated genes occurred early during M. avium infection, while that of Th17-associated genes increased after 12 h. In addition, the expression of apoptosis-related genes decreased and the abundance of intracellular M. avium increased in monocyte-derived macrophages after infection for 24 h. These results reveal the M. avium induces Th17 immune response and avoids apoptosis in infected canine cells. As the number of M. avium infection cases increases, the results of the present study will contribute to a better understanding of host immune responses to M. avium infection in companion dogs.
Collapse
Affiliation(s)
- Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
| | - Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, South Korea
- Bio-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Chat VS, Kearns DG, Uppal SK, Wu JJ. Risk of atypical mycobacterial infections in psoriasis patients during IL-17 inhibitor therapy. J DERMATOL TREAT 2019; 32:495-496. [PMID: 31689137 DOI: 10.1080/09546634.2019.1687812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vipawee S Chat
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | | | - Jashin J Wu
- Dermatology Research, Education Foundation, Irvine, CA, USA
| |
Collapse
|
5
|
Della Bella C, Venturini E, Devente S, Piccini P, Tapinassi S, Bianchi L, Grassi A, Benagiano M, Alnwaisri HFM, Montagnani C, Chiappini E, Bitter W, D’Elios MM, de Martino M, Galli L. Role of Mycobacterium avium lysate INF-γ, IL-17, and IL-2 ELISPOT assays in diagnosing nontuberculous mycobacteria lymphadenitis in children. Eur J Clin Microbiol Infect Dis 2019; 38:1113-1122. [DOI: 10.1007/s10096-019-03506-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022]
|
6
|
Interleukin 23/interleukin 17 axis activated by Mycobacterium avium complex (MAC) is attenuated in patients with MAC-lung disease. Tuberculosis (Edinb) 2018; 110:7-14. [PMID: 29779777 DOI: 10.1016/j.tube.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 02/03/2018] [Accepted: 03/01/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mycobacterium avium complex (MAC)-lung disease (LD) is increasing in patients without human immunodeficiency virus infection. However, data on host vulnerability to MAC-related immune responses, and in particular the interleukin (IL)-23/IL-17 axis, are lacking. METHODS We enrolled 50 patients with MAC-LD, 25 age-matched patients with tuberculosis (TB) and 25 controls. We measured levels of plasma cytokines, and studied IL-12/IL-17 responses in macrophage and lymphocyte activation to MAC. RESULTS The plasma level of IL-17 in the MAC group was higher than in the TB and control groups. In in-vitro macrophage stimulation, the expression of IL-23 in macrophages was similar in the patients with MAC-LD and controls, although the expression of IL-12 p40 was lower in the patients with MAC-LD. In assays of lymphocyte activation, IL-17 was induced by MAC-primed macrophages, but its level was lower in the patients with MAC-LD and TB than in the controls. The expression of programmed death (PD)-1 receptor was higher in CD4+IL17A+ lymphocytes in the patients with MAC-LD, and the production of IL-17 was significantly increased by blockade of PD-1 and PD-ligand 1. CONCLUSIONS MAC induced a similar expression of IL-23 from macrophages in the patients with MAC-LD compared to the controls, but a lower expression of IL-17 from lymphocytes, which may be through an increased expression of PD-1. The macrophage response of IL-12 p40 was stronger than that of IL-12 p70, and higher in the controls during MAC disease, which may suggest another kind of MAC-related immune evasion.
Collapse
|
7
|
Ruffin N, Hani L, Seddiki N. From dendritic cells to B cells dysfunctions during HIV-1 infection: T follicular helper cells at the crossroads. Immunology 2017; 151:137-145. [PMID: 28231392 DOI: 10.1111/imm.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells are essential for B-cell differentiation and the subsequent antibody responses. Their numbers and functions are altered during human and simian immunodeficiency virus (HIV/SIV) infections. In lymphoid tissues, Tfh cells are present in germinal centre, where they are the main source of replicative HIV-1 and represent a major reservoir. Paradoxically, Tfh cell numbers are increased in chronically infected individuals. Understanding the fate of Tfh cells in the course of HIV-1 infection is essential for the design of efficient strategies toward a protective HIV vaccine or a cure. The purpose of this review is to summarize the recent advance in our understanding of Tfh cell dynamics during HIV/SIV infection. In particular, to explore the possible causes of their expansion in lymphoid tissues by discussing the impact of HIV-1 infection on dendritic cells, to identify the molecular players rendering Tfh cells highly susceptible to HIV-1 infection, and to consider the contribution of regulatory follicular T cells in shaping Tfh cell functions.
Collapse
Affiliation(s)
- Nicolas Ruffin
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Lylia Hani
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| | - Nabila Seddiki
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| |
Collapse
|
8
|
Busman-Sahay KO, Walrath T, Huber S, O'Connor W. Cytokine crowdsourcing: multicellular production of TH17-associated cytokines. J Leukoc Biol 2015; 97:499-510. [PMID: 25548251 PMCID: PMC5477895 DOI: 10.1189/jlb.3ru0814-386r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
In the 2 decades since its discovery, IL-17A has become appreciated for mounting robust, protective responses against bacterial and fungal pathogens. When improperly regulated, however, IL-17A can play a profoundly pathogenic role in perpetuating inflammation and has been linked to a wide variety of debilitating diseases. IL-17A is often present in a composite milieu that includes cytokines produced by TH17 cells (i.e., IL-17F, IL-21, IL-22, and IL-26) or associated with other T cell lineages (e.g., IFN-γ). These combinatorial effects add mechanistic complexity and more importantly, contribute differentially to disease outcome. Whereas TH17 cells are among the best-understood cell types that secrete IL-17A, they are frequently neither the earliest nor dominant producers. Indeed, non-TH17 cell sources of IL-17A can dramatically alter the course and severity of inflammatory episodes. The dissection of the temporal regulation of TH17-associated cytokines and the resulting net signaling outcomes will be critical toward understanding the increasingly intricate role of IL-17A and TH17-associated cytokines in disease, informing our therapeutic decisions. Herein, we discuss important non-TH17 cell sources of IL-17A and other TH17-associated cytokines relevant to inflammatory events in mucosal tissues.
Collapse
Affiliation(s)
- Kathleen O Busman-Sahay
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Travis Walrath
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - William O'Connor
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Molecular pathology of macrophages and interleukin-17 in age-related macular degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:193-8. [PMID: 24664698 DOI: 10.1007/978-1-4614-3209-8_25] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pathology of age-related macular degeneration (AMD) is characterized by degeneration of photoreceptors and retinal pigment epithelial cells as well as by changes of choroidal capillaries in the macula. Although AMD is not a typical uveitis, there is a consistence and an imbalance of ocular para-inflammation. Ocular inflammation, particularly in the macula, plays a critical role in AMD pathogenesis. The inflammatory and immune-related elements involved in AMD include inflammatory and related cells as well as the secreted molecules and factors from these cells. Innate immune system elements such as macrophages and cytokines play an important role in AMD pathology and pathogenesis. This chapter reviews the observed deviation in macrophage plasticity and the elevated expression of interleukin-17 in AMD eyes while discussing potential contributions to AMD pathogenesis. Targeting of these specific inflammatory pathways and molecules at appropriate times should be explored and may become promising novel adjunct agents to AMD therapy.
Collapse
|