1
|
Zhao H, Li P, Bian L, Zhang W, Jiang C, Chen Y, Kong W, Zhang Y. Immune Response of Inactivated Rabies Vaccine Inoculated via Intraperitoneal, Intramuscular, Subcutaneous and Needle-Free Injection Technology-Based Intradermal Routes in Mice. Int J Mol Sci 2023; 24:13587. [PMID: 37686393 PMCID: PMC10488038 DOI: 10.3390/ijms241713587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Inoculation routes may significantly affect vaccine performance due to the local microenvironment, antigen localization and presentation, and, therefore, final immune responses. In this study, we conducted a head-to-head comparison of immune response and safety of inactivated rabies vaccine inoculated via intraperitoneal (IP), intramuscular (IM), subcutaneous (SC) and needle-free injection technology-based intradermal (ID) routes in ICR mice. Immune response was assessed in terms of antigen-specific antibodies, antibody subtypes and neutralizing antibodies for up to 28 weeks. A live rabies virus challenge was also carried out to evaluate vaccine potency. The dynamics of inflammatory cell infiltration at the skin and muscle levels were determined via histopathological examination. The kinetics and distribution of a model antigen were also determined by using in vivo fluorescence imaging. Evidence is presented that the vaccine inoculated via the ID route resulted in the highest antigen-specific antibody and neutralizing antibody titers among all administration routes, while IP and IM routes were comparable, followed by the SC route. Antibody subtype analysis shows that the IP route elicited a Th1-biased immune response, while SC and IM administration elicited a prominent Th2-type immune response. Unexpectedly, the ID route leads to a balanced Th1 and Th2 immune response. In addition, the ID route conferred effective protection against lethal challenge with 40 LD50 of the rabies CVS strain, which was followed by IP and IM routes. Moreover, a one-third dose of the vaccine inoculated via the ID route provided comparable or higher efficacy to a full dose of the vaccine via the other three routes. The superior performance of ID inoculation over other routes is related to longer local retention at injection sites and higher lymphatic drainage. Histopathology examination reveals a transient inflammatory cell infiltration at ID and IM injection sites which peaked at 48 h and 24 h, respectively, after immunization, with all side effects disappearing within one week. These results suggest that needle-free injection technology-based ID inoculation is a promising strategy for rabies vaccination in regard to safety and efficacy.
Collapse
Affiliation(s)
- Huiting Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Peixuan Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wen Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun 130012, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Itoh E, Shimizu S, Ami Y, Iwase Y, Someya Y. Dose-sparing effect of Sabin-derived inactivated polio vaccine produced in Japan by intradermal injection device for rats. Biologicals 2023; 82:101677. [PMID: 37031619 DOI: 10.1016/j.biologicals.2023.101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023] Open
Abstract
The live-attenuated oral polio vaccine has long been used as the standard for polio prevention, but in order to minimize the emergence of pathogenic revertants, the inactivated polio vaccine (IPV), which is administered intramuscularly or subcutaneously, is being increasingly demanded worldwide. However, there is a global shortage of IPV, and its cost is an obstacle in developing countries. Therefore, dose-sparing with intradermal administration of IPV has been investigated. In this study, rats were immunized by intradermal (ID) and intramuscular (IM) administration of Sabin-derived inactivated polio vaccine (sIPV) produced in Japan, and the immune responses were evaluated. The results showed that one-fifth (1/5)-dose of ID administration yielded neutralizing antibody titers comparable to the full-dose IM administration, whereas 1/5-dose of IM administration was less effective than the full dose. Furthermore, a vertical puncture-type ID injection device (Immucise) that was originally developed for humans was modified for rats, resulting in successful and stable ID administration into the thin skin of rats. Based on these results, the ID administration of sIPV using Immucise in clinical use is expected to offer benefits such as reduced amounts of vaccine per dose, cost-effectiveness, and thereby the feasibility of vaccination for more people.
Collapse
Affiliation(s)
- Eriko Itoh
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan
| | - Sakiko Shimizu
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Japan
| | - Yoichiro Iwase
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan.
| | - Yuichi Someya
- Department of Virology II, National Institute of Infectious Diseases, Japan.
| |
Collapse
|
3
|
Ma Y, Ying Z, Li J, Gu Q, Wang X, Cai L, Shi L, Sun M. Immunogenicity of fractional-dose of inactivated poliomyelitis vaccine made from Sabin strains delivered by intradermal vaccination in Wistar rats. Biologicals 2022; 75:3-11. [DOI: 10.1016/j.biologicals.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022] Open
|
4
|
Jiang Y, Li X, Yu L, Tong W, Chen P, Wang S, Zhao K, Tan X, Gao F, Yu H, Li G, Li L, Zhang Y, van den Born E, Zhou Y, Tong G. Immune efficacy of a candidate porcine reproductive and respiratory syndrome vaccine rHN-NP49 administered by a Needle-free intradermal delivery system in comparison with intramuscular injection. Vaccine 2021; 39:5557-5562. [PMID: 34412921 DOI: 10.1016/j.vaccine.2021.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the major drivers of economic loss in the swine industry worldwide. In commercial pig production, vaccination is the first option in an attempt to control infectious diseases. Pigs are therefore often immunized with different vaccines, and almost all of them are delivered via the intramuscular (IM) route. However, the IM injection may result in physical damage, stress reactions, and is labor demanding. An alternative route is urgently needed to reduce the disadvantages of conventional vaccination. In this study, a needle-free intradermal (ID) delivery system was evaluated for delivering a live PRRS vaccine as compared with the traditional needle-syringe method. Fifty-two 4-week-old piglets were divided into six groups: piglets in groups A-C were immunized using ID delivery system with 104, 105 and 106 TCID50 of PRRS candidate vaccine strain rHN-NP49, respectively; piglets in group D were immunized IM with 105 TCID50 of rHN-NP49; and group E and F were used as challenge and control groups, respectively. At 28 days post vaccination, piglets in group A to E were challenged with a lethal dose of highly-pathogenic PRRSV. Similar results were found in viremia and antibody response among the ID and IM groups during the immunization stage. After challenge, similar results were found in average body weight gain, viral shedding, serum viral load, and clinical score among the immunization groups, with a higher protection ratio in the ID group compared with IM group with the same immunization dose. These results demonstrated that the ID delivery system could provide similar or even better protection compared with IM route, and could be an effective route for PRRS vaccination.
Collapse
Affiliation(s)
- Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xianbin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shuaiyong Wang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiangmei Tan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hai Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | | | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
5
|
Abstract
In recent years, the piezoelectric jet and atomization devices have exhibited tremendous advantages including their simple construction, and the fact that they are discreet and portable as well as low cost. They have been widely used in cell printing, spray cooling, drug delivery, and other industry fields. First, in this paper, two different concepts of jet and atomization are defined, respectively. Secondly, based on these two concepts, the piezoelectric jet and atomization devices can be divided into two different categories: piezoelectric micro jet device and piezoelectric atomization device. According to the organizational structure, piezoelectric micro jet devices can be classified into four different models: bend mode, push mode, squeeze mode, and shear mode. In addition, their development history and structural characteristics are summarized, respectively. According to the location of applied energy, there are two kinds of piezoelectric atomization devices, i.e., the static mesh atomization device and the vibration mesh atomization device, and both their advantages and drawbacks are discussed. The research achievements are summarized in three aspects of cell printing, spray cooling, and drug delivery. Finally, the future development trends of piezoelectric jet and atomization devices are prospected and forecasted.
Collapse
|
6
|
Universal ELISA for quantification of D-antigen in inactivated poliovirus vaccines. J Virol Methods 2019; 276:113785. [PMID: 31765719 DOI: 10.1016/j.jviromet.2019.113785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022]
Abstract
To address the biosafety and biosecurity concerns related to the manufacture of inactivated polio vaccine (IPV), several manufacturers started producing it from attenuated Sabin strains. Slight immunological differences between wild and attenuated strains create a challenge for testing IPV potency, which is defined as the content of protective D-antigen determined in an ELISA test. Some ELISA reagents selected for testing conventional IPV made from wild strains (cIPV) may not be suitable for testing Sabin IPV (sIPV). This paper describes an ELISA procedure using human monoclonal antibodies selected to capture equally well both wild and attenuated strains of poliovirus. A unique monoclonal antibody neutralizing all three serotypes of poliovirus was used as the detection antibody. The method was shown to detect only D-antigen of both conventional and Sabin IPV and to be strictly serotype-specific. The method is highly sensitive and robust and produces linear results in a wide range of concentrations. We have also found that reference standards used for measuring potency of cIPV and sIPV must be made from respective vaccines. This makes it impossible to cross-calibrate potency reagents made from heterologous vaccine and requires the establishment of a new unit to measure potency of sIPV that is different from conventional D-antigen unit.
Collapse
|
7
|
Van Mulder T, de Koeijer M, Theeten H, Willems D, Van Damme P, Demolder M, De Meyer G, Beyers K, Vankerckhoven V. High frequency ultrasound to assess skin thickness in healthy adults. Vaccine 2017; 35:1810-1815. [DOI: 10.1016/j.vaccine.2016.07.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/29/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
|
8
|
Ma L, Cai W, Sun M, Cun Y, Zhou J, Liu J, Hu W, Zhang X, Song S, Jiang S, Liao G. Analyzed immunogenicity of fractional doses of Sabin-inactivated poliovirus vaccine (sIPV) with intradermal delivery in rats. Hum Vaccin Immunother 2016; 12:3125-3131. [PMID: 27558963 DOI: 10.1080/21645515.2016.1214347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The live-attenuated oral polio vaccine (OPV) will be no longer used when wild poliovirus (WPV) eliminating in worldwide, according to GPEI (the Global Polio Eradication Initiative) Reports. It is planning to replace OPV by Sabin-based inactivated poliovirus vaccine (sIPV) in developing countries, with purpose of reducing of the economic burden and maintaining of the appropriate antibody levels in population. It studied serial fractional doses immunized by intradermal injection (ID) in rats, to reduce consume of antigen and financial burden, maintaining sufficient immunogenicity; Methods: Study groups were divided in 4 groups of dose gradient, which were one-tenth (1/10), one-fifth (1/5), one-third (1/3) and one-full dose (1/1), according to the volume of distribution taken from the same batch of vaccine (sIPV). Wistar rats were injected intradermally with the needle and syringe sing the mantoux technique taken once month for 3 times. It was used as positive control that intramuscular inoculation (IM) was injected with one-full dose (1/1) with same batch of sIPV. PBS was used as negative control. Blood samples were collected via tail vein. After 30 d with 3 round of immunization, it analyzed the changes of neutralization antibody titers in the each group by each immunization program end; Results: The results of seroconversion had positive correlation with different doses in ID groups. The higher concentration of D-antigen (D-Ag) could conduct higher seroconversion. Furthermore, different types of viruses had different seroconversion trend. It showed that the geometric mean titers (GMTs) of each fractional-dose ID groups increased by higher concentration of D-Ag, and it got significant lower than the full-dose IM group. At 90th days of immunization, the GMTs for each poliovirus subtypes of fractional doses were almost higher than 1:8, implied that it could be meaning positive seroprotection titer for polio vaccine types, according to WHO suggestion; Conclusions: The fractional dose with one-fifth (1/5) could be used by intradermal injection to prevent poliovirus infection, if there were more human clinical detail research consistent with this findings in rats.
Collapse
Affiliation(s)
- Lei Ma
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Wei Cai
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Mingbo Sun
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Yina Cun
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Jian Zhou
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Jing Liu
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Wenzhu Hu
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Xinwen Zhang
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Shaohui Song
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Shude Jiang
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Guoyang Liao
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| |
Collapse
|
9
|
Schipper P, van der Maaden K, Romeijn S, Oomens C, Kersten G, Jiskoot W, Bouwstra J. Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. J Control Release 2016; 242:141-147. [PMID: 27496634 DOI: 10.1016/j.jconrel.2016.07.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to investigate the effect of various repeated fractional intradermal dosing schedules of inactivated polio vaccine serotype 1 (IPV1) on IPV1-specific IgG responses in rats. By utilizing an applicator that allowed for precisely controlled intradermal microinjections by using a single hollow microneedle, rats were immunized intradermally with 5 D-antigen units (DU) of IPV1 at 150μm skin depth. This dose was administered as a bolus, or in a repeated fractional dosing schedule: 4 doses of 1.25 DU (1/4th of total dose) were administered on four consecutive days or every other day; 8 doses of 0.625 DU (1/8th of total dose) were administered on eight consecutive days; or 4 exponentially increasing doses (0.04, 0.16, 0.8 and 4 DU), either with or without an exponentially increasing CpG oligodeoxynucleotide 1826 (CpG) dose, were administered on four consecutive days. All of these fractional dosing schedules resulted in up to ca. 10-fold higher IPV1-specific IgG responses than intradermal and intramuscular bolus dosing. IPV1 combined with adjuvant CpG in exponential dosing did not significantly increase the IPV1-specific IgG responses further, which demonstrated that maximal responses were achieved by fractional dosing. In conclusion, repeated fractional intradermal IPV1 dosing leads to superior IPV1-specific IgG responses without the use of adjuvants. These results indicate that a controlled release delivery system for intradermal IPV1 delivery can potentiate IPV1-specific IgG responses.
Collapse
Affiliation(s)
- Pim Schipper
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Koen van der Maaden
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Stefan Romeijn
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Cees Oomens
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Gideon Kersten
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Joke Bouwstra
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
10
|
Schipper P, van der Maaden K, Romeijn S, Oomens C, Kersten G, Jiskoot W, Bouwstra J. Determination of Depth-Dependent Intradermal Immunogenicity of Adjuvanted Inactivated Polio Vaccine Delivered by Microinjections via Hollow Microneedles. Pharm Res 2016; 33:2269-79. [PMID: 27317570 DOI: 10.1007/s11095-016-1965-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/27/2016] [Indexed: 01/30/2023]
Abstract
PURPOSE The aim of this study was to investigate the depth-dependent intradermal immunogenicity of inactivated polio vaccine (IPV) delivered by depth-controlled microinjections via hollow microneedles (HMN) and to investigate antibody response enhancing effects of IPV immunization adjuvanted with CpG oligodeoxynucleotide 1826 (CpG) or cholera toxin (CT). METHODS A novel applicator for HMN was designed to permit depth- and volume-controlled microinjections. The applicator was used to immunize rats intradermally with monovalent IPV serotype 1 (IPV1) at injection depths ranging from 50 to 550 μm, or at 400 μm for CpG and CT adjuvanted immunization, which were compared to intramuscular immunization. RESULTS The applicator allowed accurate microinjections into rat skin at predetermined injection depths (50-900 μm), -volumes (1-100 μL) and -rates (up to 60 μL/min) with minimal volume loss (±1-2%). HMN-mediated intradermal immunization resulted in similar IgG and virus-neutralizing antibody titers as conventional intramuscular immunization. No differences in IgG titers were observed as function of injection depth, however IgG titers were significantly increased in the CpG and CT adjuvanted groups (7-fold). CONCLUSION Intradermal immunogenicity of IPV1 was not affected by injection depth. CpG and CT were potent adjuvants for both intradermal and intramuscular immunization, allowing effective vaccination upon a minimally-invasive single intradermal microinjection by HMN.
Collapse
Affiliation(s)
- Pim Schipper
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Koen van der Maaden
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Stefan Romeijn
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Cees Oomens
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gideon Kersten
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Joke Bouwstra
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
11
|
Kraan H, van der Stel W, Kersten G, Amorij JP. Alternative administration routes and delivery technologies for polio vaccines. Expert Rev Vaccines 2016; 15:1029-40. [DOI: 10.1586/14760584.2016.1158650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heleen Kraan
- Department of Research, Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Wanda van der Stel
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gideon Kersten
- Department of Research, Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jean-Pierre Amorij
- Department of Research, Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| |
Collapse
|
12
|
Troy SB, Kouiavskaia D, Siik J, Kochba E, Beydoun H, Mirochnitchenko O, Levin Y, Khardori N, Chumakov K, Maldonado Y. Comparison of the Immunogenicity of Various Booster Doses of Inactivated Polio Vaccine Delivered Intradermally Versus Intramuscularly to HIV-Infected Adults. J Infect Dis 2015; 211:1969-76. [PMID: 25567841 DOI: 10.1093/infdis/jiu841] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inactivated polio vaccine (IPV) is necessary for global polio eradication because oral polio vaccine can rarely cause poliomyelitis as it mutates and may fail to provide adequate immunity in immunocompromised populations. However, IPV is unaffordable for many developing countries. Intradermal IPV shows promise as a means to decrease the effective dose and cost of IPV, but prior studies, all using 20% of the standard dose used in intramuscular IPV, resulted in inferior antibody titers. METHODS We randomly assigned 231 adults with well-controlled human immunodeficiency virus infection at a ratio of 2:2:2:1 to receive 40% of the standard dose of IPV intradermally, 20% of the standard dose intradermally, the full standard dose intramuscularly, or 40% of the standard dose intramuscularly. Intradermal vaccination was done using the NanoPass MicronJet600 microneedle device. RESULTS Baseline immunity was 87%, 90%, and 66% against poliovirus serotypes 1, 2, and 3, respectively. After vaccination, antibody titers increased a median of 64-fold. Vaccine response to 40% of the standard dose administered intradermally was comparable to that of the standard dose of IPV administered intramuscularly and resulted in higher (although not significantly) antibody titers. Intradermal administration had higher a incidence of local side effects (redness and itching) but a similar incidence of systemic side effects and was preferred by study participants over intramuscular administration. CONCLUSIONS A 60% reduction in the standard IPV dose without reduction in antibody titers is possible through intradermal administration.
Collapse
Affiliation(s)
| | - Diana Kouiavskaia
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | | | | | - Hind Beydoun
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk
| | - Olga Mirochnitchenko
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | | | | | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine, California
| |
Collapse
|