1
|
Wang N, Fang Y, Hou Y, Cheng D, Dressler EV, Wang H, Wang J, Wang G, Li Y, Liu H, Xiang R, Yang S, Sun P. Senescent cells promote breast cancer cells motility by secreting GM-CSF and bFGF that activate the JNK signaling pathway. Cell Commun Signal 2024; 22:478. [PMID: 39375718 PMCID: PMC11457416 DOI: 10.1186/s12964-024-01861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Cellular senescence can be induced in mammalian tissues by multiple stimuli, including aging, oncogene activation and loss of tumor suppressor genes, and various types of stresses. While senescence is a tumor suppressing mechanism when induced within premalignant or malignant tumor cells, senescent cells can promote cancer development through increased secretion of growth factors, cytokines, chemokines, extracellular matrix, and degradative enzymes, collectively known as senescence-associated secretory phenotype (SASP). Previous studies indicated that senescent cells, through SASP factors, stimulate tumor cell invasion that is a critical step in cancer cell metastasis. METHODS In the current study, we investigated the effect of senescent cells on the motility of breast cancer cells, which is another key step in cancer cell metastasis. We analyzed the motility of breast cancer cells co-cultured with senescent cells in vitro and metastasis of the breast cancer cells co-injected with senescent cells in orthotopic xenograft models. We also delineated the signaling pathway mediating the effect of senescent cells on cancer cell motility. RESULTS Our results indicate that senescent cells stimulated the migration of breast cancer cells through secretion of GM-CSF and bFGF, which in turn induced activation of the JNK pathway in cancer cells. More importantly, senescent cells promoted breast cancer metastasis, with a minimum effect on the primary tumor growth, in orthotopic xenograft mouse models. CONCLUSIONS These results have revealed an additional mechanism by which senescent cells promote tumor cell metastasis and tumor progression, and will potentially lead to identification of novel targets for cancer therapies that suppress metastasis, the major cause of cancer mortality.
Collapse
Affiliation(s)
- Nan Wang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Yan Fang
- School of Medicine, Nankai University, Tianjin, China
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yigong Hou
- School of Medicine, Nankai University, Tianjin, China
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Dongmei Cheng
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Emily V Dressler
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hao Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Juan Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Guanwen Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China.
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Liu Z, Yuan X, Huang Y, Gu Z, Xue L, Xue S, Wang J. The Role of Interferon-Induced Proteins with Tetratricopeptide Repeats 1 and 2 in Sepsis-Induced Acute Liver Injury. Infect Drug Resist 2024; 17:2337-2349. [PMID: 38882652 PMCID: PMC11180434 DOI: 10.2147/idr.s459838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background Sepsis refers to a life-threatening organ dysfunction which can be resulted from the infection-induced dysregulated host response. A large number of inflammatory cytokines are released to act on the liver, making the liver one of the common target organs for the development of multiple organ dysfunction syndrome (MODS) in patients with sepsis. Sepsis-induced acute liver injury (SALI) can aggravate systemic disease. As a result, it is of great clinical significance to comprehend the molecular biological mechanism of SALI and to identify the markers for evaluating SALI. Interferon-induced proteins with tetratricopeptide repeats 1 and 2 (IFIT1, IFIT2) have been recognized as the anti-inflammatory factors that are widely expressed in various organs. The present study was aimed at clarifying the roles of IFIT1 and IFIT2 in the development of SALI. Methods A two-sample Mendelian randomization (MR) analysis was employed. Summary statistics datas were obtained from GWAS for inflammatory factors [tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)], IFIT2, and sepsis as well as liver injury. Independent SNPs were selected as instrumental variables (IVs). Inverse variance weighted (IVW) in the MR analysis was adopted as the primary method for estimating the causal associations of inflammatory factors and IFIT2 with two diseases, and the associations of inflammatory factors with IFIT2. Additionally, weighted median method, MR-Egger and sensitivity analyses were applied in assessing the robustness of the results and ensure the result reliability. Subsequently, 119 healthy volunteers, 116 patients with sepsis and 116 SALI patients were recruited. The ELISA method was employed to quantify the expression levels of TNF-α, IL-1β, and IL-6. Additionally, qRT-PCR was conducted to measure the expression of IFIT1 and IFIT2. Furthermore, the correlations of IFIT1 and IFIT2 with inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were explored. Results As shown by the MR analysis, the genetically predisposed sepsis was significantly associated with the risk of IL-1β, with an odds ratio (OR) of 1.069 (95% confidence interval (CI), 1.015-1.127, p = 0.0119), and negatively associated with the risk of IL-6, with an OR of 0.880 (95% CI: 0.792-0.979, p= 0.0184). Meanwhile, there were positive causal effects of IL-6 (OR = 1.269, 95% CI: 1.032-1.561, p= 0.0238), IL-1β (OR = 1.106, 95% CI: 1.010-1.211, p = 0.0299) and IFIT2 (OR = 1.191, 95% CI: 1.045-1.359, p = 0.0090) on liver injury. Additionally, there was a positive causal effect of IFIT2 (OR = 1.164, 95% CI: 1.035-1.309, p= 0.0110) on IL-1β. Upon sensitivity analyses, there was weak evidence of such effects, indicating that the findings of this study were robust and reliable. Our results revealed the elevated levels of TNF-α, IL-1β, and IL-6 in the blood samples of sepsis and SALI patients (p < 0.0001). Conversely, IFIT1 and IFIT2 demonstrated the significantly decreased levels in peripheral blood mononuclear cells (PBMCs) of SALI patients (p < 0.0001). Furthermore, the expression levels of IFIT1 and IFIT2 were both negatively correlated with ALT activity (r = -0.3426, p = 0.0002; r = -0.3069, p = 0.0008) and AST activity (r = -0.2483, p = 0.0072; r = -0.3261, p = 0.0004), respectively. Moreover, the expression of IFIT1 and IFIT2 was both negatively related to the levels of TNF-α (r = -0.5027, p < 0.0001; r = -0.4218, p < 0.0001), IL-1β (r = -0.3349, p = 0.0002; r = -0.4070, p < 0.0001) and IL-6 (r = -0.2734, p = 0.0030; r = -0.3536, p < 0.0001), respectively. Conclusion IFIT1 and IFIT2 can serve as the diagnostic markers for sepsis-related liver injury, and IFIT1 and IFIT2 may participate in the pathological process of sepsis-related liver injury by regulating inflammation and liver function.
Collapse
Affiliation(s)
- Zhipeng Liu
- Information Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Xinyu Yuan
- Emergency Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Yan Huang
- Medical College, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zihan Gu
- Nanjing University of Finance & Economics, Nanjing, 210023, People's Republic of China
| | - Lu Xue
- Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Shanshan Xue
- Institute of Clinical Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Jun Wang
- Emergency Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| |
Collapse
|
3
|
Chen L, Liu Y, Zhang Y, Zhang Y, Wang W, Han H, Yang C, Dong X. Superoxide dismutase ameliorates oxidative stress and regulates liver transcriptomics to provide therapeutic benefits in hepatic inflammation. PeerJ 2023; 11:e15829. [PMID: 37583908 PMCID: PMC10424669 DOI: 10.7717/peerj.15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Oxidative stress refers to the imbalance between oxidants and antioxidants in organisms and often induces hepatic inflammation. Supplementing exogenous superoxide dismutase is an effective way to alleviate oxidative stress; however, the effects and mechanisms by which superoxide dismutase alleviates hepatic inflammation remain unclear. Methods This study established a Kunming mouse model to verify and investigate the oxidative stress and hepatic inflammation-alleviating effects of the superoxide dismutase oral supplement that was prepared by our research group in a previous study. Results The superoxide dismutase product significantly restored the body weight and liver alanine transaminase, aspartate aminotransferase, superoxide dismutase, catalase, glutathione, and glutathione peroxidase levels of oxidative stress induced mice. Moreover, exogenous superoxide dismutase significantly inhibited interleukin 1β and interleukin 6 mRNA expression in the livers of mice with hepatic inflammation. Transcriptomic analysis indicated that superoxide dismutase had a significant inhibitory effect on Endog expression, alleviating oxidative stress damage, and mediating liver cell apoptosis by regulating the expression of Rab5if, Hnrnpab, and Ifit1. Conclusion Our research verified the oxidative stress remediation effects of superoxide dismutase and its therapeutic role against hepatic inflammation. This study can lay a foundation for investigating the mechanism by which superoxide dismutase alleviates hepatic disease.
Collapse
Affiliation(s)
- Longyan Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Yang Liu
- QiLu University of Technology, Jinan, China
| | | | | | - Wei Wang
- QiLu University of Technology, Jinan, China
| | - Hongyu Han
- QiLu University of Technology, Jinan, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xueqian Dong
- QiLu University of Technology, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Li N, Xu W, Liu H, Zhou R, Zou S, Wang S, Li S, Yang Z, Piao Y, Zhang Y. Whole exome sequencing reveals novel variants associated with diminished ovarian reserve in young women. Front Genet 2023; 14:1154067. [PMID: 37065482 PMCID: PMC10095150 DOI: 10.3389/fgene.2023.1154067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Background: Diminished ovarian reserve is one of the most important causes of female infertility. In the etiology study of DOR, besides age, it is known that chromosomal abnormality, radiotherapy, chemotherapy and ovarian surgery can result in DOR. For young women without obvious risk factors, gene mutation should be considered as a possible cause. However, the specific molecular mechanism of DOR has not been fully elucidated.Methods: In order to explore the pathogenic variants related to DOR, twenty young women under 35 years old affected by DOR without definite factors damaging ovarian reserve were recruited as the research subjects, and five women with normal ovarian reserve were recruited as the control group. Whole exome sequencing was applied as the genomics research tool.Results: As a result, we obtained a set of mutated genes that may be related to DOR, where the missense variant on GPR84 was selected for further study. It is found that GPR84Y370H variant promotes the expression of proinflammatory cytokines (TNF-α, IL12B, IL-1β) and chemokines (CCL2, CCL5), as well as the activation of NF-κB signaling pathway.Conclusion: In conclusion, GPR84Y370H variant was identified though analysis for WES results of 20 DOR patients. The deleterious variant of GPR84 could be the potential molecular mechanism of non-age-related pathological DOR through its role in promoting inflammation. The findings of this study can be used as a preliminary research basis for the development of early molecular diagnosis and treatment target selection of DOR.
Collapse
Affiliation(s)
- Na Li
- School of Medicine, Nankai University, Tianjin, China
| | - Wanxue Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Huimin Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Rui Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Siqi Zou
- School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Siyu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Zexin Yang
- Graduate school, Tianjin Medical University, Tianjin, China
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- *Correspondence: Yongjun Piao, ; Yunshan Zhang,
| | - Yunshan Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- *Correspondence: Yongjun Piao, ; Yunshan Zhang,
| |
Collapse
|
5
|
Overexpression of IFIT1 protects against LPS-induced acute lung injury via regulating CCL5-p65NF-κB signaling. Int Immunopharmacol 2023; 114:109485. [PMID: 36446235 DOI: 10.1016/j.intimp.2022.109485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury (ALI) is featured by intensive inflammatory responses causing significant morbidity and mortality. Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), induced by interferon (IFN), has been discovered to modulate viral infection and cell apoptosis and inhibit the production of pro-inflammatory cytokines. However, it's role and mechanism in ALI remain unclear and need to be explored furtherly. Here, we discovered that IFIT1 decreased the expression of TNF-α, IL-1β and IL-6 in mouse-derived macrophage cells (MH-S) and alleviated apoptosis of murine lung epithelial cells (MLE-12) induced by MH-S cell supernatant, contributing to anti-inflammatory and antiapoptotic effects in vitro and in vivo. Moreover, RNA sequencing analysis (RNA-seq) showed that inflammatory chemokine CC motif chemokine ligand 5 (CCL5) partially eliminated the protective effects of IFIT1 and promoted the expression of inflammatory cytokines TNF-α, IL-1β and IL-6 by CCL5-p65NF-κB signaling pathway. This study demonstrated that IFIT1 attenuated ALI-associated inflammation and cell apoptosis by regulating the CCL5-p65NF-κB signaling pathway. These findings are of great significance for the treatment of lung injury.
Collapse
|
6
|
Genome-wide CRISPR knockout screening identified G protein pathway suppressor 2 as a novel tumor suppressor for uveal melanoma metastasis. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04160-5. [PMID: 35941228 DOI: 10.1007/s00432-022-04160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Uveal melanoma (UM) is the most common intraocular malignant tumor in adults. Due to the lack of effective treatments for metastatic UM, the survival of UM has not changed over the past 3 decades. Therefore, it is important to identify essential genes regulating the metastasis of UM. METHODS In this study, a genome-wide CRISPR knockout screen in an orthotopic mouse model of UM was performed to identify the regulatory genes conferring the metastatic phenotype. Loss-of-function analyses were performed to explore the function of G protein pathway suppressor 2 (GPS2) in UM metastasis in vitro and in vivo. RNA sequencing was performed to investigate the molecular mechanism underlying the function of GPS2 as a tumor suppressor in UM. RESULTS Among the highest-ranking genes, we found several validated tumor suppressors, such as SHPRH, GPS2, PRPH2, and hsa-mir-1229; GPS2 was chosen as the candidate gene for further studies. GPS2 was lower expressed in the tumor tissues of UM patients. Furthermore, knocking-down GPS2 promoted the proliferation and metastatic abilities of UM cells both in vivo and in vitro. Finally, analysis of the transcriptome data revealed that silencing GPS2 upregulates oncogenic signaling pathways MAPK and PI3K-Akt, and in the meantime downregulates tumor suppressor signaling pathway Slit/Robo in UM cells. CONCLUSION Altogether, our study proved that the GPS2 gene functions as a tumor suppressor and might be a novel potential therapeutic target for UM treatment.
Collapse
|
7
|
Li J, Qin X, Shi J, Wang X, Li T, Xu M, Chen X, Zhao Y, Han J, Piao Y, Zhang W, Qu P, Wang L, Xiang R, Shi Y. A systematic CRISPR screen reveals an IL-20/IL20RA-mediated immune crosstalk to prevent the ovarian cancer metastasis. eLife 2021; 10:66222. [PMID: 34114949 PMCID: PMC8195602 DOI: 10.7554/elife.66222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/04/2021] [Indexed: 01/22/2023] Open
Abstract
Transcoelomic spread of cancer cells across the peritoneal cavity occurs in most initially diagnosed ovarian cancer (OC) patients and accounts for most cancer-related death. However, how OC cells interact with peritoneal stromal cells to evade the immune surveillance remains largely unexplored. Here, through an in vivo genome-wide CRISPR/Cas9 screen, we identified IL20RA, which decreased dramatically in OC patients during peritoneal metastasis, as a key factor preventing the transcoelomic metastasis of OC. Reconstitution of IL20RA in highly metastatic OC cells greatly suppresses the transcoelomic metastasis. OC cells, when disseminate into the peritoneal cavity, greatly induce peritoneum mesothelial cells to express IL-20 and IL-24, which in turn activate the IL20RA downstream signaling in OC cells to produce mature IL-18, eventually resulting in the polarization of macrophages into the M1-like subtype to clear the cancer cells. Thus, we show an IL-20/IL20RA-mediated crosstalk between OC and mesothelial cells that supports a metastasis-repressing immune microenvironment.
Collapse
Affiliation(s)
- Jia Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Xuan Qin
- The School of Medicine, Nankai University, Tianjin, China
| | - Jie Shi
- The School of Medicine, Nankai University, Tianjin, China
| | | | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyao Xu
- The School of Medicine, Nankai University, Tianjin, China
| | - Xiaosu Chen
- The School of Medicine, Nankai University, Tianjin, China
| | - Yujia Zhao
- The School of Medicine, Nankai University, Tianjin, China
| | - Jiahao Han
- The School of Medicine, Nankai University, Tianjin, China
| | - Yongjun Piao
- The School of Medicine, Nankai University, Tianjin, China
| | - Wenwen Zhang
- Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Longlong Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- The School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Xu M, Huang S, Dong X, Chen Y, Li M, Shi W, Wang G, Huang C, Wang Q, Liu Y, Sun P, Yang S, Xiang R, Chang A. A novel isoform of ATOH8 promotes the metastasis of breast cancer by regulating RhoC. J Mol Cell Biol 2020; 13:59-71. [PMID: 33049034 PMCID: PMC8035989 DOI: 10.1093/jmcb/mjaa050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/20/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Metastases are the main cause of cancer-related mortality in breast cancer. Although significant progress has been made in the field of tumor metastasis, the exact molecular mechanisms involved in tumor metastasis are still unclear. Here, we report that ATOH8-V1, a novel isoform of ATOH8, is highly expressed in breast cancer and is a negative prognostic indicator of survival for patients. Forced expression of ATOH8-V1 dramatically enhances, while silencing of ATOH8-V1 decreases the metastasis of breast cancer cell lines. Moreover, ATOH8-V1 directly binds to the RhoC promoter and stimulates the expression of RhoC, which in turn enhances the metastasis of breast cancer. Altogether, our data demonstrate that ATOH8-V1 is a novel pro-metastatic factor that enhances cancer metastasis, suggesting that ATOH8-V1 is a potential therapeutic target for treatment of metastatic cancers.
Collapse
Affiliation(s)
- Mengyao Xu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shan Huang
- School of Medicine, Nankai University, Tianjin 300071, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | - Xiaoli Dong
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Miao Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wen Shi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guanwen Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Qiong Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanhua Liu
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Peiqing Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin 300071, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Wang JL, Cai F, Liu XH, Li LM, He X, Hu XM, Kang CM, Bai HL, Zhang RY, Wu CM, Wu LM, Wang J, Zheng L, Ping BH, Hu YW, Wang Q. Lipopolysaccharide Promotes Inflammatory Response via Enhancing IFIT1 Expression in Human Umbilical Vein Endothelial Cells. DNA Cell Biol 2020; 39:1274-1281. [PMID: 32551893 DOI: 10.1089/dna.2020.5454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jia-Li Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Linyi People's Hospital of Shandong Province, Linyi, China
| | - Fen Cai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Xue-Hui Liu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Li-Min Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu-Mei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun-Min Kang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan-Lan Bai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ru-Yi Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang-Meng Wu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Mei Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Jia Wang
- Rizhao People's Hospital of Shandong Province, Rizhao, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bao-Hong Ping
- Department of Hui Qiao, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Zhou X, Zhang L, Lie L, Zhang Z, Zhu B, Yang J, Gao Y, Li P, Huang Y, Xu H, Li Y, Du X, Zhou C, Hu S, Wen Q, Zhong XP, Ma L. MxA suppresses TAK1-IKKα/β-NF-κB mediated inflammatory cytokine production to facilitate Mycobacterium tuberculosis infection. J Infect 2020; 81:231-241. [PMID: 32445727 DOI: 10.1016/j.jinf.2020.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Interferons (IFNs) play multifunctional roles in host defense against infectious diseases by inducing IFN-stimulated genes (ISGs). However, little is known about how ISGs regulate host immune response to Mycobacterium tuberculosis (Mtb) infection, the major cause of tuberculosis (TB). METHODS We thus profiled the potential effects and mechanisms of eight Mtb-induced ISGs on Mtb infection by RNA interference in human macrophages (Mφs) derived from peripheral blood monocytes (hMDMs) and THP-1 cell line derived Mφs (THP-1-Mφs). RESULTS MxA silencing significantly decreased intracellular Mtb infection in Mφs. Mechanistically, MxA silencing promoted inflammatory cytokines IL-1β, IL-6 and TNF-α production, and induced NF-κB p65 activation. Pharmacological inhibition of NF-κB p65 activation or gene silencing of NF-κB p65 blocked the increased production of IL-1β, IL-6 and TNF-α and restored Mtb infection by MxA silencing. Furthermore, pharmacological inhibition of TAK1 and IKKα/β blocked NF-κB p65 activation and subsequent production of pro-inflammatory cytokines by MxA silencing. Isoniazid (INH) treatment and MxA silencing could promote TAK1-IKKα/β-NF-κB signaling pathway activation and combat Mtb infection independently. CONCLUSIONS Our results reveal a novel role of MxA in regulating TAK1-IKKα/β-NF-κB signaling activation and production of antimicrobial inflammatory cytokines upon Mtb infection, providing a potential target for clinical treatment of TB.
Collapse
Affiliation(s)
- Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Lijie Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zelin Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuchi Gao
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yanfen Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Ping Zhong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
WIP1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC. Signal Transduct Target Ther 2020; 5:36. [PMID: 32296033 PMCID: PMC7156655 DOI: 10.1038/s41392-020-0126-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 11/09/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of stem cell-like cancer cells that can initiate tumors in vivo, and are the major source of cancer initiation, relapse, and drug resistance. We previously reported that the p38 MAPK, through its downstream effectors MK2 and HSP27, suppressed CSC properties by downregulating the expression of transcription factors that mediate stemness in non-small-cell lung cancer (NSCLC) cells, and that despite unaltered total expression of total p38 proteins, the levels of activated p38 were reduced in NSCLC tissues. However, the mechanism underlying the reduced levels of activated p38 in NSCLC is unknown. In this study, we identified WIP1, a p38 phosphatase frequently overexpressed in cancer, as a suppressor of p38 in a pathway that regulates CSC properties in NSCLC. Increased WIP1 expression correlated with reduced levels of activated p38, and with increased levels of a CSC marker in NSCLC tissues. Further investigation revealed that WIP1 promoted stemness-related protein expression and CSC properties by inhibiting p38 activity in NSCLC cells. WIP1 inhibitors are currently under development as anticancer drugs based on their ability to reactivate p53. We found that a WIP1 inhibitor suppressed stemness-related protein expression and CSC properties by activating p38 in NSCLC cells in vitro and in vivo. These studies have identified the WIP1–p38–MK2–HSP27 cascade as a novel signaling pathway that, when altered, promotes CSC properties in NSCLC development, and have defined novel mechanisms underlying the oncogenic activity of WIP1 and the anticancer efficacy of WIP1 inhibitors.
Collapse
|
12
|
Zhang J, Xu X, Zhu H, Wang Y, Hou Y, Liu Y. Dietary fish oil supplementation alters liver gene expressions to protect against LPS-induced liver injury in weanling piglets. Innate Immun 2019; 25:60-72. [PMID: 30782046 PMCID: PMC6830890 DOI: 10.1177/1753425918821420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here, the potential mechanisms of the protective effects of fish oil against
LPS-induced liver injury in a piglet model were investigated by using RNA
sequencing. Twenty-four piglets were used in a 2 × 2 factorial design, and the
main factors included diet (5% corn oil or 5% fish oil) and immunological
challenge (LPS or saline, on d 19). All piglets were slaughtered at 4 h after
challenge, and liver samples were collected. Fish oil improved liver morphology
and reduced TNF-α, IL-1β and IL-6 productions after LPS challenge. RNA
sequencing analysis showed fish oil had significant effect on the expressions of
genes involved in immune response during LPS-induced inflammation. Selected gene
expression changes were validated using quantitative RT-PCR. Fish oil reduced
the expressions of pro-inflammatory genes IL1R1,
IL1RAP, CEBPB and CRP,
and increased that of anti-inflammatory genes IL-18BP,
NFKBIA, IFIT1, IFIT2 and
ATF3. Moreover, fish oil restored the expressions of some
lipid metabolism-related genes, such as ACAA1,
ACACA, ACADS and ACADM,
which were only decreased in pigs fed a corn oil diet after LPS challenge. Our
RNA sequencing reveals novel gene-nutrient interactions following fish oil
supplementation and evoked inflammation, which add to the current understanding
of the benefits of n-3 polyunsaturated fatty acids against liver injury.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Xin Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
13
|
Zhao L, Wang L, Zhang C, Liu Z, Piao Y, Yan J, Xiang R, Yao Y, Shi Y. E6-induced selective translation of WNT4 and JIP2 promotes the progression of cervical cancer via a noncanonical WNT signaling pathway. Signal Transduct Target Ther 2019; 4:32. [PMID: 31637011 PMCID: PMC6799841 DOI: 10.1038/s41392-019-0060-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
mRNA translation reprogramming occurs frequently in many pathologies, including cancer and viral infection. It remains largely unknown whether viral-induced alterations in mRNA translation contribute to carcinogenesis. Most cervical cancer is caused by high-risk human papillomavirus infection, resulting in the malignant transformation of normal epithelial cells mainly via viral E6 and E7 oncoproteins. Here, we utilized polysome profiling and deep RNA sequencing to systematically evaluate E6-regulated mRNA translation in HPV18-infected cervical cancer cells. We found that silencing E6 can cause over a two-fold change in the translation efficiency of ~653 mRNAs, most likely in an eIF4E- and eIF2α-independent manner. In addition, we identified that E6 can selectively upregulate the translation of WNT4, JIP1, and JIP2, resulting in the activation of the noncanonical WNT/PCP/JNK pathway to promote cell proliferation in vitro and tumor growth in vivo. Ectopic expression of WNT4/JIP2 can effectively rescue the decreased cell proliferation caused by E6 silencing, strongly suggesting that the WNT4/JIP2 pathway mediates the role of E6 in promoting cell proliferation. Thus, our results revealed a novel oncogenic mechanism of E6 via regulating the translation of mRNAs.
Collapse
Affiliation(s)
- Lin Zhao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, 28 Fuxing Road, 100853 Beijing, China
| | - Longlong Wang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Chenglan Zhang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Ze Liu
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Yongjun Piao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jie Yan
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Yuanqing Yao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, 28 Fuxing Road, 100853 Beijing, China
| | - Yi Shi
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| |
Collapse
|
14
|
Schultz KLW, Troisi EM, Baxter VK, Glowinski R, Griffin DE. Interferon regulatory factors 3 and 7 have distinct roles in the pathogenesis of alphavirus encephalomyelitis. J Gen Virol 2018; 100:46-62. [PMID: 30451651 DOI: 10.1099/jgv.0.001174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) regulatory factors (IRFs) are important determinants of the innate response to infection. We evaluated the role(s) of combined and individual IRF deficiencies in the outcome of infection of C57BL/6 mice with Sindbis virus, an alphavirus that infects neurons and causes encephalomyelitis. The brain and spinal cord levels of Irf7, but not Irf3 mRNAs, were increased after infection. IRF3/5/7-/- and IRF3/7-/- mice died within 3-4 days with uncontrolled virus replication, similar to IFNα receptor-deficient mice, while all wild-type (WT) mice recovered. IRF3-/- and IRF7-/- mice had brain levels of IFNα that were lower, but brain and spinal cord levels of IFNβ and IFN-stimulated gene mRNAs that were similar to or higher than WT mice without detectable serum IFN or increases in Ifna or Ifnb mRNAs in the lymph nodes, indicating that the differences in outcome were not due to deficiencies in the central nervous system (CNS) type I IFN response. IRF3-/- mice developed persistent neurological deficits and had more spinal cord inflammation and higher CNS levels of Il1b and Ifnγ mRNAs than WT mice, but all mice survived. IRF7-/- mice died 5-8 days after infection with rapidly progressive paralysis and differed from both WT and IRF3-/- mice in the induction of higher CNS levels of IFNβ, tumour necrosis factor (TNF) α and Cxcl13 mRNA, delayed virus clearance and more extensive cell death. Therefore, fatal disease in IRF7-/- mice is likely due to immune-mediated neurotoxicity associated with failure to regulate the production of inflammatory cytokines such as TNFα in the CNS.
Collapse
Affiliation(s)
- Kimberly L W Schultz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,†Present address: Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Elizabeth M Troisi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,‡Present address: University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca Glowinski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,§Present address: Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Inactivation of p38 MAPK contributes to stem cell-like properties of non-small cell lung cancer. Oncotarget 2018; 8:26702-26717. [PMID: 28460458 PMCID: PMC5432291 DOI: 10.18632/oncotarget.15804] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023] Open
Abstract
Cancer stem cells (CSCs) are recognized as the major source for cancer initiation and recurrence. Yet, the mechanism by which the cancer stem cell properties are acquired and maintained in a cancer cell population is not well understood. In the current study, we observed that the level of active p38 MAPK is downregulated, while the level of the stemness marker SOX2 is upregulated in lung cancer tissues as compared to normal tissues. We further demonstrated that inactivation of p38 is a potential mechanism contributing to acquisition and maintenance of cancer stem cell properties in non-small cell lung cancer (NSCLC) cells. p38, in particular the p38γ and p38δ isoforms, suppresses the cancer stem cell properties and tumor initiating ability of NSCLC cells by promoting the ubiquitylation and degradation of stemness proteins such as SOX2, Oct4, Nanog, Klf4 and c-Myc, through MK2-mediated phosphorylation of Hsp27 that is an essential component of the proteasomal degradation machinery. In contrast, inactivation of p38 in lung cancer cells leads to upregulation of the stemness proteins, thus promoting the cancer stem cell properties of these cells. These findings have demonstrated a novel mechanism by which cancer stem cell properties are acquired and maintained in a cancer cell population, and have revealed a new function of the p38 pathway in suppressing cancer development. These studies have also identified a new pathway that can potentially serve as a target for cancer therapies aimed at eliminating CSCs.
Collapse
|
16
|
Li C, Ma D, Chen M, Zhang L, Zhang L, Zhang J, Qu X, Wang C. Ulinastatin attenuates LPS-induced human endothelial cells oxidative damage through suppressing JNK/c-Jun signaling pathway. Biochem Biophys Res Commun 2016; 474:572-578. [PMID: 27109479 DOI: 10.1016/j.bbrc.2016.04.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023]
Abstract
Lipopolysaccharide (LPS)-induced oxidative stress is a main feature observed in the sepsis by increasing endothelial oxidative damage. Many studies have demonstrated that Ulinastatin (UTI) can inhibit pro-inflammatory proteases, decrease inflammatory cytokine levels and suppress oxidative stress. However, the potential molecular mechanism underlying UTI which exerts its antioxidant effect is not well understood. In this study, we aimed to investigate the effects of UTI on the LPS-induced oxidative stress and the underlying mechanisms using human umbilical vein endothelial cells (HUVECs). After oxidative stress induced By LPS in HUVECs, the cell viability and reactive oxygen species (ROS) in cytoplasm were measured. In addition, superoxide dismutase (SOD) and malondialdehyde (MDA) were examined. We found that LPS resulted in a profound elevation of ROS production and MDA levels. The decrease in Cu/Zn-SOD protein and increased in Mn-SOD protein were observed in a time- and dose-dependent manner. These responses were suppressed by an addition of UTI. The increase in c-Jun N-terminal kinases (JNK) phosphorylation by LPS in HUVECs was markedly blocked by UTI or JNK inhibitor SP600125. Our results suggest that UTI exerts its anti-oxidant effects by decreasing overproduction of ROS induced by LPS via suppressing JNK/c-Jun phosphorylation. Therefore UTI may play a protective role in vascular endothelial injury induced by oxidative stress such as sepsis. This study may provide insight into a possible molecular mechanism by which Ulinastatin inhibits LPS-induced oxidative stress.
Collapse
Affiliation(s)
- Chunping Li
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Dandan Ma
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Man Chen
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Linlin Zhang
- Department of Critical-Care Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261000, China
| | - Lin Zhang
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Jicheng Zhang
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Xin Qu
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Chunting Wang
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|