1
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Kalalah AA, Koenig SSK, Bono JL, Bosilevac JM, Eppinger M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front Microbiol 2024; 15:1364026. [PMID: 38562479 PMCID: PMC10982417 DOI: 10.3389/fmicb.2024.1364026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| |
Collapse
|
3
|
Bova RA, Lamont AC, Picou TJ, Ho VB, Gilchrist KH, Melton-Celsa AR. Shiga Toxin (Stx) Type 1a and Stx2a Translocate through a Three-Layer Intestinal Model. Toxins (Basel) 2023; 15:toxins15030207. [PMID: 36977098 PMCID: PMC10054274 DOI: 10.3390/toxins15030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Shiga toxins (Stxs) produced by ingested E. coli can induce hemolytic uremic syndrome after crossing the intact intestinal barrier, entering the bloodstream, and targeting endothelial cells in the kidney. The method(s) by which the toxins reach the bloodstream are not fully defined. Here, we used two polarized cell models to evaluate Stx translocation: (i) a single-layer primary colonic epithelial cell model and (ii) a three-cell-layer model with colonic epithelial cells, myofibroblasts, and colonic endothelial cells. We traced the movement of Stx types 1a and 2a across the barrier models by measuring the toxicity of apical and basolateral media on Vero cells. We found that Stx1a and Stx2a crossed both models in either direction. However, approximately 10-fold more Stx translocated in the three-layer model as compared to the single-layer model. Overall, the percentage of toxin that translocated was about 0.01% in the epithelial-cell-only model but up to 0.09% in the three-cell-layer model. In both models, approximately 3- to 4-fold more Stx2a translocated than Stx1a. Infection of the three-cell-layer model with Stx-producing Escherichia coli (STEC) strains showed that serotype O157:H7 STEC reduced barrier function in the model and that the damage was not dependent on the presence of the eae gene. Infection of the three-layer model with O26:H11 STEC strain TW08571 (Stx1a+ and Stx2a+), however, allowed translocation of modest amounts of Stx without reducing barrier function. Deletion of stx2a from TW08571 or the use of anti-Stx1 antibody prevented translocation of toxin. Our results suggest that single-cell models may underestimate the amount of Stx translocation and that the more biomimetic three-layer model is suited for Stx translocation inhibitor studies.
Collapse
Affiliation(s)
- Rebecca A. Bova
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Andrew C. Lamont
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Theodore J. Picou
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Vincent B. Ho
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kristin H. Gilchrist
- Center for Biotechnology (4DBio3), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Angela R. Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
4
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
5
|
Ardissino G, Vignati C, Masia C, Capone V, Colombo R, Tel F, Daprai L, Testa S, Dodaro A, Paglialonga F, Luini M, Brigotti M, Picicco D, Baldioli C, Pagani F, Ceruti R, Tommasi P, Possenti I, Cresseri D, Consonni D, Montini G, Arghittu M. Bloody Diarrhea and Shiga Toxin-Producing Escherichia coli Hemolytic Uremic Syndrome in Children: Data from the ItalKid-HUS Network. J Pediatr 2021; 237:34-40.e1. [PMID: 34197890 DOI: 10.1016/j.jpeds.2021.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To analyze the results of an enhanced laboratory-surveillance protocol for bloody diarrhea aimed at identifying children with Shiga toxin-producing Escherichia coli (STEC) infection early in the course of the disease toward the early identification and management of patients with hemolytic uremic syndrome (HUS). STUDY DESIGN The study (2010-2019) involved a referral population of 2.3 million children. Stool samples of patients with bloody diarrhea were screened for Shiga toxin (Stx) genes. Positive patients were rehydrated and monitored for hemoglobinuria until diarrhea resolved or STEC-HUS was diagnosed. RESULTS A total of 4767 children were screened; 214 (4.5%) were positive for either Stx1 (29.0%) or Stx2 (45.3%) or both Stx1+2 (25.7%); 34 patients (15.9%) developed STEC-HUS (0.71% of bloody diarrheas). Hemoglobinuria was present in all patients with HUS. Patients with Stx2 alone showed a greater risk of STEC-HUS (23.7% vs 12.7%) and none of the patients with Stx1 alone developed HUS. During the same period of time, 95 other patients were diagnosed STEC-HUS but were not captured by the screening program (26 had nonbloody diarrhea, 11 came from areas not covered by the screening program, and 58 had not been referred to the screening program, although they did meet the inclusion criteria). At HUS presentation, serum creatinine of patients identified by screening was significantly lower compared with that of the remaining patients (median 0.9 vs 1.51 mg/dL). CONCLUSIONS Nearly 1% of children with bloody diarrhea developed STEC-HUS, and its diagnosis was anticipated by the screening program for Stx. The screening of bloody diarrhea for Stx is recommended, and monitoring patients carrying Stx2 with urine dipstick for hemoglobinuria is suggested to identify the renal complication as early as possible.
Collapse
Affiliation(s)
- Gianluigi Ardissino
- Center for HUS Prevention Control and Management, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano.
| | - Chiara Vignati
- Laboratory of Microbiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano
| | - Carla Masia
- Laboratory of Microbiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano
| | - Valentina Capone
- Center for HUS Prevention Control and Management, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano
| | - Rosaria Colombo
- Laboratory of Microbiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano
| | - Francesca Tel
- Department of Pediatrics, Vittore Buzzi Children's Hospital, Milano
| | - Laura Daprai
- Laboratory of Microbiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano
| | - Sara Testa
- Center for HUS Prevention Control and Management, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano
| | - Antonella Dodaro
- Laboratory of Microbiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano
| | - Fabio Paglialonga
- Center for HUS Prevention Control and Management, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano
| | - Mario Luini
- Lombardia and Emilia Romagna Experimental Zootechnic Institute (IZSLER), Lodi; Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi
| | - Maurizio Brigotti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna
| | - Damiano Picicco
- ASL 1 Imperiese: Azienda Sanitaria Locale 1 Imperiese - Ospedale di Sanremo, Sanremo
| | - Carlo Baldioli
- Pediatric Unit, Ospedale Pia Luvini, ASST-Sette Laghi-Università Insubria, Cittiglio
| | - Franca Pagani
- Department of Laboratory Medicine, Fondazione Poliambulanza Istituto Ospedaliero, Brescia
| | - Rossella Ceruti
- Department of Laboratory Medicine, Azienda Ospedaliera Carlo Poma, Mantova
| | - Paola Tommasi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, Milano
| | | | - Donata Cresseri
- Nephrology and Dialysis Unit, Center for HUS Prevention Control and Management, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano
| | - Giovanni Montini
- Center for HUS Prevention Control and Management, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano; Department of Clinical Sciences and Community Health, University of Milan, Milano
| | - Milena Arghittu
- Azienda socio sanitaria territoriale (ASST) Melegnano e della Martesana - Vizzolo Predabissi, Milano, Italy
| |
Collapse
|
6
|
Risk of Hemolytic Uremic Syndrome Related to Treatment of Escherichia coli O157 Infection with Different Antimicrobial Classes. Microorganisms 2021; 9:microorganisms9091997. [PMID: 34576892 PMCID: PMC8466573 DOI: 10.3390/microorganisms9091997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Treatment of Shiga toxin-producing Escherichia coli O157 (O157) diarrhea with antimicrobials might alter the risk of hemolytic uremic syndrome (HUS). However, full characterization of which antimicrobials might affect risk is lacking, particularly among adults. To inform clinical management, we conducted a case-control study of residents of the FoodNet surveillance areas with O157 diarrhea during a 4-year period to assess antimicrobial class-specific associations with HUS among persons with O157 diarrhea. We collected data from medical records and patient interviews. We measured associations between treatment with agents in specific antimicrobial classes during the first week of diarrhea and development of HUS, adjusting for age and illness severity. We enrolled 1308 patients; 102 (7.8%) developed confirmed HUS. Antimicrobial treatment varied by age: <5 years (12.6%), 5–14 (11.5%), 15–39 (45.4%), ≥40 (53.4%). Persons treated with a β-lactam had higher odds of developing HUS (OR 2.80, CI 1.14–6.89). None of the few persons treated with a macrolide developed HUS, but the protective association was not statistically significant. Exposure to “any antimicrobial” was not associated with increased odds of HUS. Our findings confirm the risk of β-lactams among children with O157 diarrhea and extends it to adults. We observed a high frequency of inappropriate antimicrobial treatment among adults. Our data suggest that antimicrobial classes differ in the magnitude of risk for persons with O157 diarrhea.
Collapse
|
7
|
A Toxic Environment: a Growing Understanding of How Microbial Communities Affect Escherichia coli O157:H7 Shiga Toxin Expression. Appl Environ Microbiol 2020; 86:AEM.00509-20. [PMID: 32358004 DOI: 10.1128/aem.00509-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.
Collapse
|
8
|
Hauser JR, Atitkar RR, Petro CD, Lindsey RL, Strockbine N, O'Brien AD, Melton-Celsa AR. The Virulence of Escherichia coli O157:H7 Isolates in Mice Depends on Shiga Toxin Type 2a (Stx2a)-Induction and High Levels of Stx2a in Stool. Front Cell Infect Microbiol 2020; 10:62. [PMID: 32175286 PMCID: PMC7054288 DOI: 10.3389/fcimb.2020.00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
In this study we compared nine Shiga toxin (Stx)-producing Escherichia coli O157:H7 patient isolates for Stx levels, stx-phage insertion site(s), and pathogenicity in a streptomycin (Str)-treated mouse model. The strains encoded stx2a, stx1a and stx2a, or stx2a and stx2c. All of the strains elaborated 105-106 cytotoxic doses 50% (CD50) into the supernatant after growth in vitro as measured on Vero cells, and showed variable levels of increased toxin production after growth with sub-inhibitory levels of ciprofloxacin (Cip). The stx2a+stx2c+ isolates were 90–100% lethal for Str-treated BALB/c mice, though one isolate, JH2013, had a delayed time-to-death. The stx2a+ isolate was avirulent. Both an stx2a and a recA deletion mutant of one of the stx2a+stx2c+ strains, JH2010, exhibited at least a three-log decrease in cytotoxicity in vitro and both were avirulent in the mice. Stool from Str-treated mice infected with the highly virulent isolates were 10- to 100-fold more cytotoxic than feces from mice infected with the clinical isolate, JH2012, that made only Stx2a. Taken together these findings demonstrate that the stx2a-phage from JH2010 induces to higher levels in vivo than does the phage from JH2012. The stx1a+stx2a+ clinical isolates were avirulent and neutralization of Stx1 in stool from mice infected with those strains indicated that the toxin produced in vivo was primarily Stx1a. Treatment of mice infected with Stx1a+Stx2a+ isolates with Cip resulted in an increase in Stx2a production in vivo and lethality in the mice. Our data suggest that high levels of Stx2a in stool are predictive of virulence in mice.
Collapse
Affiliation(s)
- Jocelyn R Hauser
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rama R Atitkar
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Courtney D Petro
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rebecca L Lindsey
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Nancy Strockbine
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Angela R Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
9
|
Bimodal Response to Shiga Toxin 2 Subtypes Results from Relatively Weak Binding to the Target Cell. Infect Immun 2019; 87:IAI.00428-19. [PMID: 31527121 DOI: 10.1128/iai.00428-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023] Open
Abstract
There are two major antigenic forms of Shiga toxin (Stx), Stx1 and Stx2, which bind the same receptor and act on the same target but nonetheless differ in potency. Stx1a is more toxic to cultured cells, but Stx2 subtypes are more potent in animal models. To understand this phenomenon in cultured cells, we used a system that combines flow cytometry with a fluorescent reporter to monitor the Stx-induced inhibition of protein synthesis in single cells. We observed that Vero cells intoxicated with Stx1a behave differently than those intoxicated with Stx2 subtypes: cells challenged with Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Cells challenged with a hybrid toxin containing the catalytic subunit of Stx1a and the cell-binding subunit of Stx2a also exhibited a bimodal response to intoxication, while cells challenged with a hybrid toxin containing the catalytic subunit of Stx2a and the cell-binding subunit of Stx1a exhibited a population-wide loss of protein synthesis. Other experiments further supported a primary role for the subtype of the B subunit in the outcome of host-Stx interactions. Our collective observations indicate that the bimodal response to Stx2 subtypes is due to relatively weak binding between Stx2 and the host cell that reduces the total functional pool of Stx2 in comparison to that of Stx1a. This explains, in part, the molecular basis for the differential cellular toxicity between Stx1a and Stx2 subtypes.
Collapse
|
10
|
Flink C, Nyberg K. Occurrence of
Campylobacter
spp.,
Salmonella
spp. and shiga toxin‐producing
Escherichia coli
in inline milk filters from Swedish dairy farms. J Food Saf 2019. [DOI: 10.1111/jfs.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Karin Nyberg
- Science Division, Swedish Food Agency Uppsala Sweden
| |
Collapse
|
11
|
Tarr GAM, Stokowski T, Shringi S, Tarr PI, Freedman SB, Oltean HN, Rabinowitz PM, Chui L. Contribution and Interaction of Shiga Toxin Genes to Escherichia coli O157:H7 Virulence. Toxins (Basel) 2019; 11:toxins11100607. [PMID: 31635282 PMCID: PMC6832461 DOI: 10.3390/toxins11100607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Escherichia coli O157:H7 is the predominant cause of diarrhea-associated hemolytic uremic syndrome (HUS) worldwide. Its cardinal virulence traits are Shiga toxins, which are encoded by stx genes, the most common of which are stx1a, stx2a, and stx2c. The toxins these genes encode differ in their in vitro and experimental phenotypes, but the human population-level impact of these differences is poorly understood. Using Shiga toxin-encoding bacteriophage insertion typing and real-time polymerase chain reaction, we genotyped isolates from 936 E. coli O157:H7 cases and verified HUS status via chart review. We compared the HUS risk between isolates with stx2a and those with stx2a and another gene and estimated additive interaction of the stx genes. Adjusted for age and symptoms, the HUS incidence of E. coli O157:H7 containing stx2a alone was 4.4% greater (95% confidence interval (CI) −0.3%, 9.1%) than when it occurred with stx1a. When stx1a and stx2a occur together, the risk of HUS was 27.1% lower (95% CI −87.8%, −2.3%) than would be expected if interaction were not present. At the population level, temporal or geographic shifts toward these genotypes should be monitored, and stx genotype may be an important consideration in clinically predicting HUS among E. coli O157:H7 cases.
Collapse
Affiliation(s)
- Gillian A M Tarr
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada.
| | - Taryn Stokowski
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Public Labs, Edmonton, AB T6G 2J2, Canada.
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stephen B Freedman
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada.
| | - Hanna N Oltean
- Washington State Department of Health, Shoreline, WA 98155, USA.
| | - Peter M Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Public Labs, Edmonton, AB T6G 2J2, Canada.
| |
Collapse
|
12
|
Fitzgerald SF, Beckett AE, Palarea-Albaladejo J, McAteer S, Shaaban S, Morgan J, Ahmad NI, Young R, Mabbott NA, Morrison L, Bono JL, Gally DL, McNeilly TN. Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids. PLoS Pathog 2019; 15:e1008003. [PMID: 31581229 PMCID: PMC6776261 DOI: 10.1371/journal.ppat.1008003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium. Enterohaemorrhagic E. coli (EHEC) O157 strains are found in cattle where they are asymptomatic, while human exposure can lead to severe symptoms including bloody diarrhoea and kidney damage due to the activity of Shiga toxin (Stx). The most serious symptoms in humans are associated with isolates that encode Stx subtype 2a. The advantage of these toxins in the animal reservoir is still not clear, however there is experimental evidence implicating Stx with increased bacterial adherence, immune modulation and suppression of predatory protozoa. In this study, the hypothesis that Stx2a is important for super-shedding and calf-to-calf transmission was tested by comparing excretion and transmission dynamics of E. coli O157 strains with and without Stx2a. While Stx2a did not alter excretion levels when calfs were orally challenge, it enabled colonisation of more in contact ‘sentinel’ animals in our transmission model. We show that Stx2a is generally induced more rapidly than Stx2c, resulting in increased levels of Stx2a expression. Both Stx2a and Stx2c were able to restrict cellular proliferation of epithelial cells in cultured bovine enteroids. Taken together, we propose that rapid production of Stx2a and its role in establishing E. coli O157 colonisation in the bovine gastrointestinal tract facilitate effective transmission and have led to its expansion in the cattle E. coli O157 population.
Collapse
Affiliation(s)
- Stephen F. Fitzgerald
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | - Amy E. Beckett
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Sharif Shaaban
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Jason Morgan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Rachel Young
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Neil A. Mabbott
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Liam Morrison
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - James L. Bono
- United States Department of Agriculture, Agricultural Research Service, Nebraska, United States of America
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (DLG); (TNM)
| | - Tom N. McNeilly
- Moredun Research Institute, Penicuik, United Kingdom
- * E-mail: (DLG); (TNM)
| |
Collapse
|
13
|
Response to Questions Posed by the Food and Drug Administration Regarding Virulence Factors and Attributes that Define Foodborne Shiga Toxin-Producing Escherichia coli (STEC) as Severe Human Pathogens †. J Food Prot 2019; 82:724-767. [PMID: 30969806 DOI: 10.4315/0362-028x.jfp-18-479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
-
- NACMCF Executive Secretariat, * U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science, PP3, 9-178, 1400 Independence Avenue S.W., Washington, D.C. 20250-3700, USA
| |
Collapse
|
14
|
Shiga Toxin Type 1a (Stx1a) Reduces the Toxicity of the More Potent Stx2a In Vivo and In Vitro. Infect Immun 2019; 87:IAI.00787-18. [PMID: 30670557 DOI: 10.1128/iai.00787-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) causes foodborne outbreaks of bloody diarrhea. There are two major types of immunologically distinct Stxs: Stx1a and Stx2a. Stx1a is more cytotoxic to Vero cells than Stx2a, but Stx2a has a lower 50% lethal dose (LD50) in mice. Epidemiological data suggest that infections by STEC strains that produce only Stx2a progress more often to a life-threatening sequela of infection called hemolytic-uremic syndrome (HUS) than isolates that make Stx1a only or produce both Stx1a and Stx2a. In this study, we found that an E. coli O26:H11 strain that produces both Stx1a and Stx2a was virulent in streptomycin- and ciprofloxacin-treated mice and that mice were protected by administration of an anti-Stx2 antibody. However, we discovered that in the absence of ciprofloxacin, neutralization of Stx1a enhanced the virulence of the strain, a result that corroborated our previous finding that Stx1a reduces the toxicity of Stx2a by the oral route. We further found that intraperitoneal administration of the purified Stx1a B subunit delayed the mean time to death of mice intoxicated with Stx2a and reduced the cytotoxic effect of Stx2a on Vero cells. Taken together, our data suggest that Stx1a reduces both the pathogenicity of Stx2 in vivo and cytotoxicity in vitro.
Collapse
|
15
|
ppGpp and cytotoxicity diversity in Shiga toxin-producing Escherichia coli (STEC) isolates. Epidemiol Infect 2017; 145:2204-2211. [PMID: 28587697 DOI: 10.1017/s0950268817001091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a known food pathogen, which main reservoir is the intestine of ruminants. The abundance of different STEC lineages in nature reflect a heterogeneity that is characterised by the differential expression of certain genotypic characteristics, which in turn are influenced by the environmental conditions to which the microorganism is exposed. Bacterial homeostasis and stress response are under the control of the alarmone guanosine tetraphosphate (ppGpp), which intrinsic levels varies across the E. coli species. In the present study, 50 STEC isolates from healthy sheep were evaluated regarding their ppGpp content, cytotoxicity and other relevant genetic and phenotypic characteristics. We found that the level of ppGpp and cytotoxicity varied considerably among the examined strains. Isolates that harboured the stx2 gene were the least cytotoxic and presented the highest levels of ppGpp. All stx2 isolates belonged to phylogroup A, while strains that carried stx1 or both stx1 and stx2 genes pertained to phylogroup B1. All but two stx2 isolates belonged to the stx2b subtype. Strains that belonged to phylogroup B1 displayed on average low levels of ppGpp and high cytotoxicity. Overall, there was a negative correlation between cytotoxicity and ppGpp.
Collapse
|
16
|
Rusconi B, Sanjar F, Koenig SSK, Mammel MK, Tarr PI, Eppinger M. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks. Front Microbiol 2016; 7:985. [PMID: 27446025 PMCID: PMC4928038 DOI: 10.3389/fmicb.2016.00985] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/08/2016] [Indexed: 01/29/2023] Open
Abstract
Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies.
Collapse
Affiliation(s)
- Brigida Rusconi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San AntonioSan Antonio, TX, USA; Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| | - Fatemeh Sanjar
- South Texas Center for Emerging Infectious Diseases, University of Texas at San AntonioSan Antonio, TX, USA; Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| | - Sara S K Koenig
- South Texas Center for Emerging Infectious Diseases, University of Texas at San AntonioSan Antonio, TX, USA; Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| | - Mark K Mammel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine St. Louis, MO, USA
| | - Mark Eppinger
- South Texas Center for Emerging Infectious Diseases, University of Texas at San AntonioSan Antonio, TX, USA; Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|