1
|
Nishiyama A, Adachi Y, Tonouchi K, Moriyama S, Sun L, Aoki M, Asanuma H, Shirakura M, Fukushima A, Yamamoto T, Takahashi Y. Post-fusion influenza vaccine adjuvanted with SA-2 confers heterologous protection via Th1-polarized, non-neutralizing antibody responses. Vaccine 2023; 41:4525-4533. [PMID: 37330368 DOI: 10.1016/j.vaccine.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Development of a universal influenza vaccine that can provide robust and long-lasting protection against heterologous infections is a global public health priority. A variety of vaccine antigens are designed to increase the antigenicity of conserved epitopes to elicit cross-protective antibodies that often lack virus-neutralizing activity. Given the contribution of antibody effector functions to cross-protection, adjuvants need to be added to modulate antibody effector functions as well as to enhance antibody quantity. We previously showed that post-fusion influenza vaccine antigens elicit non-neutralizing but cross-protective antibodies against conserved epitopes. Here, using a murine model, we comparably assessed the adjuvanticity of the newly developed SA-2 adjuvant containing a synthetic TLR7 agonist DSP-0546 and squalene-based MF59 analog as representative Th1- or Th2-type adjuvants, respectively. Both types of adjuvants in the post-fusion vaccine comparably enhanced cross-reactive IgG titers against heterologous strains. However, only SA-2 skewed the IgG subclass into the IgG2c subclass in association to its Th1-polarizing nature. SA-2-enhanced IgG2c responses exhibited antibody-dependent cellular cytotoxicity against heterologous virus strains, without cross-neutralizing activity. Eventually, the SA-2-adjuvanted vaccination provided protection against lethal infection by heterologous H3N2 and H1N1 viruses. Together, we conclude that the combination with a SA-2 is advantageous for enhancing the cross-protective capability of post-fusion HA vaccines that elicit non-neutralizing IgG antibodies.
Collapse
Affiliation(s)
- Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsucho Shinjuku, Tokyo 162-8480, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Lin Sun
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Masamitsu Aoki
- Sumitomo Pharma. Co., Ltd., 3-1-98, Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Hideki Asanuma
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Masayuki Shirakura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Akihisa Fukushima
- Sumitomo Pharma. Co., Ltd., 3-1-98, Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| |
Collapse
|
2
|
Yamamoto T, Masuta Y, Momota M, Kanekiyo M, Kanuma T, Takahama S, Moriishi E, Yasutomi Y, Saito T, Graham BS, Takahashi Y, Ishii KJ. A unique nanoparticulate TLR9 agonist enables a HA split vaccine to confer FcγR-mediated protection against heterologous lethal influenza virus infection. Int Immunol 2020; 31:81-90. [PMID: 30535055 DOI: 10.1093/intimm/dxy069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
The development of a universal influenza vaccine that can provide a robust and long-lasting protection against a broader range of influenza virus strains is a global public health priority. One approach to improve vaccine efficacy is to use an adjuvant to boost immune responses to the target antigens; nevertheless, the role of adjuvants in the context of influenza vaccines is not fully understood. We have previously developed the K3-schizophyllan (SPG) adjuvant, which is composed of nanoparticulated oligodeoxynucleotides K3, a TLR9 agonist, with SPG, a non-agonistic β-glucan ligand of Dectin-1. In this study, K3-SPG given with conventional influenza hemagglutinin (HA) split vaccine (K3-SPG HA) conferred protection against antigenically mismatched heterologous virus challenge. While K3-SPG HA elicited robust cross-reactive HA-specific IgG2c and CD8 T-cell responses, CD8 T-cell depletion had no impact on this cross-protection. In contrast, K3-SPG HA was not able to confer protection against heterologous virus challenge in FcRγ-deficient mice. Our results indicated that FcγR-mediated antibody responses induced by the HA antigen and K3-SPG adjuvant were important for potent protection against antigenically mismatched influenza virus infection. Thus, we demonstrated that the K3-SPG-adjuvanted vaccine strategy broadens protective immunity against influenza and provides a basis for the development of next-generation influenza vaccines.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yuji Masuta
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratories of Discovery Research, Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tomohiro Kanuma
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Shoukichi Takahama
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Eiko Moriishi
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Abstract
Compared with biologics, vaccine potency assays represent a special challenge due to their unique compositions, multivalency, long life cycles and global distribution. Historically, vaccines were released using in vivo potency assays requiring immunization of dozens of animals. Modern vaccines use a variety of newer analytical tools including biochemical, cell-based and immunochemical methods to measure potency. The choice of analytics largely depends on the mechanism of action and ability to ensure lot-to-lot consistency. Live vaccines often require cell-based assays to ensure infectivity, whereas recombinant vaccine potency can be reliably monitored with immunoassays. Several case studies are presented to demonstrate the relationship between mechanism of action and potency assay. A high-level decision tree is presented to assist with assay selection.
Collapse
|