1
|
Chen S, Lei Z, Sun T. The critical role of miRNA in bacterial zoonosis. Int Immunopharmacol 2024; 143:113267. [PMID: 39374566 DOI: 10.1016/j.intimp.2024.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The public's health and the financial sustainability of international societies remain threatened by bacterial zoonoses, with limited reliable diagnostic and therapeutic options available for bacterial diseases. Bacterial infections influence mammalian miRNA expression in host-pathogen interactions. In order to counteract bacterial infections, miRNAs participate in gene-specific expression and play important regulatory roles that rely on translational inhibition and target gene degradation by binding to the 3' non-coding region of target genes. Intriguingly, according to current studies, that exogenous miRNAs derived from plants could potentially serve as effective medicinal components sourced from traditional Chinese medicine plants. These exogenous miRNAs exhibit stable functionality in mammals and mimic the regulatory roles of endogenous miRNAs, illuminating the molecular processes behind the therapeutic effects of plants. This review details the immune defense mechanisms of inflammation, apoptosis, autophagy and cell cycle disturbance caused by some typical bacterial infections, summarizes the role of some mammalian miRNAs in regulating these mechanisms, and introduces the cGAS-STING signaling pathway in detail. Evidence suggests that this newly discovered immune defense mechanism in mammalian cells can also be affected by miRNAs. Meanwhile, some examples of transboundary regulation of mammalian mRNA and even bacterial diseases by exogenous miRNAs from plants are also summarized. This viewpoint provides fresh understanding of microbial tactics and host mechanisms in the management of bacterial illnesses.
Collapse
Affiliation(s)
- Si Chen
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Oliveira-Mendonça LS, Mendes ÉA, Castro JO, Silva MM, Santos AG, Kaneto CM, Dias SO, Allaman IB, Vannier-Santos MA, Silva JF, Augusto DG, Anjos DOD, Santos NAS, Lima KP, Horta MF, Albuquerque GR, Costa MGC, Silva-Jardim I, Santos JLD. Trichoderma stromaticum spores induce autophagy and downregulate inflammatory mediators in human peripheral blood-derived macrophages. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100145. [PMID: 35909603 PMCID: PMC9325901 DOI: 10.1016/j.crmicr.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T. stromaticum biocontrol agent induces autophagy, up-regulating autophagy-related genes T. stromaticum modulates expression of micro RNAs that control imune response T. stromaticum dow-nregulates expression of TLR2, TLR4, CLEC7A, NLRP3, IL-10, IL1β and IL18 T. stromaticum modulates ROS production
Trichoderma spp. are usually considered safe and normally used as biocontrol and biofertilization. Safety for human health is evaluated by several tests that detect various effects such as allergenicity, toxicity, infectivity, and pathogenicity. However, they do not evaluate the effects of the agent upon the immune system. The aim of this study was to investigate the interaction between T. stromaticum spores and mammalian cells to assess the immunomodulatory potential of the spores of this fungus. First, mouse macrophage cell line J774 and human macrophages were exposed to fungal spores and analyzed for structural features, through scanning and transmission electron microscopy. Then, various analysis were performed in human macrophages as to their effect in some functional and molecular aspects of the immune system through immunocytochemistry, flow cytometry and gene expression assays. We demonstrated that T. stromaticum spores induces autophagy and autophagy-related genes (ATGs) and downmodulate inflammatory mediators, including ROS, NLRP3, the cytokines IL-1β, IL-18, IL-12 and IL-10, as well as TLR2, TLR4, miR-146b and miR-155, which may lead to an augmented susceptibility to pathogens. Our study shows the extension of damages the biofungicide Tricovab® can cause in the innate immune response. Further studies are necessary to elucidate other innate and adaptive immune responses and, consequently, the safety of this fungus when in contact with humans.
Collapse
|
3
|
Dias ML, O'Connor KM, Dempsey EM, O'Halloran KD, McDonald FB. Targeting the Toll-like receptor pathway as a therapeutic strategy for neonatal infection. Am J Physiol Regul Integr Comp Physiol 2021; 321:R879-R902. [PMID: 34612068 DOI: 10.1152/ajpregu.00307.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are crucial transmembrane receptors that form part of the innate immune response. They play a role in the recognition of various microorganisms and their elimination from the host. TLRs have been proposed as vital immunomodulators in the regulation of multiple neonatal stressors that extend beyond infection such as oxidative stress and pain. The immune system is immature at birth and takes some time to become fully established. As such, babies are especially vulnerable to sepsis at this early stage of life. Findings suggest a gestational age-dependent increase in TLR expression. TLRs engage with accessory and adaptor proteins to facilitate recognition of pathogens and their activation of the receptor. TLRs are generally upregulated during infection and promote the transcription and release of proinflammatory cytokines. Several studies report that TLRs are epigenetically modulated by chromatin changes and promoter methylation upon bacterial infection that have long-term influences on immune responses. TLR activation is reported to modulate cardiorespiratory responses during infection and may play a key role in driving homeostatic instability observed during sepsis. Although complex, TLR signaling and downstream pathways are potential therapeutic targets in the treatment of neonatal diseases. By reviewing the expression and function of key Toll-like receptors, we aim to provide an important framework to understand the functional role of these receptors in response to stress and infection in premature infants.
Collapse
Affiliation(s)
- Maria L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| | - Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
González LA, Melo-González F, Sebastián VP, Vallejos OP, Noguera LP, Suazo ID, Schultz BM, Manosalva AH, Peñaloza HF, Soto JA, Parker D, Riedel CA, González PA, Kalergis AM, Bueno SM. Characterization of the Anti-Inflammatory Capacity of IL-10-Producing Neutrophils in Response to Streptococcus pneumoniae Infection. Front Immunol 2021; 12:638917. [PMID: 33995357 PMCID: PMC8113954 DOI: 10.3389/fimmu.2021.638917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are immune cells classically defined as pro-inflammatory effector cells. However, current accumulated evidence indicates that neutrophils have more versatile immune-modulating properties. During acute lung infection with Streptococcus pneumoniae in mice, interleukin-10 (IL-10) production is required to temper an excessive lung injury and to improve survival, yet the cellular source of IL-10 and the immunomodulatory role of neutrophils during S. pneumoniae infection remain unknown. Here we show that neutrophils are the main myeloid cells that produce IL-10 in the lungs during the first 48 h of infection. Importantly, in vitro assays with bone-marrow derived neutrophils confirmed that IL-10 can be induced by these cells by the direct recognition of pneumococcal antigens. In vivo, we identified the recruitment of two neutrophil subpopulations in the lungs following infection, which exhibited clear morphological differences and a distinctive profile of IL-10 production at 48 h post-infection. Furthermore, adoptive transfer of neutrophils from WT mice into IL-10 knockout mice (Il10-/-) fully restored IL-10 production in the lungs and reduced lung histopathology. These results suggest that IL-10 production by neutrophils induced by S. pneumoniae limits lung injury and is important to mediate an effective immune response required for host survival.
Collapse
Affiliation(s)
- Liliana A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani P Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés H Manosalva
- Servicio de Anatomía Patológica, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Bertrams W, Griss K, Han M, Seidel K, Hippenstiel S, Suttorp N, Finkernagel F, Wilhelm J, Vogelmeier CF, Schmeck B. Transcriptional analysis identifies potential biomarkers and molecular regulators in acute malaria infection. Life Sci 2021; 270:119158. [PMID: 33545200 DOI: 10.1016/j.lfs.2021.119158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/28/2022]
Abstract
AIMS Malaria is a serious health threat in tropical countries. The causative parasite of Malaria tropica, the severe form, is the protozoan Plasmodium falciparum. In humans, it infects red blood cells, compromising blood flow and tissue perfusion. This study aims to identify potential biomarkers and RNA networks in leukocyte transcriptomes from patients suffering from Malaria tropica. MATERIALS AND METHODS We identified differentially regulated mRNAs and microRNAs in peripheral blood leukocytes of healthy donors and Malaria patients. Genes whose expression changes were not attributable to changes in leukocyte composition were used for bioinformatics analysis and network construction. Using a previously published cohort of community-acquired pneumonia (CAP) patients, we established discriminating transcriptomic features versus Malaria. We aimed to establish differences between the patient groups by principal component (PCA) and receiving operator characteristic (ROC) analyses and in silico cell type deconvolution. KEY FINDINGS We found 870 genes that were significantly differentially expressed between healthy donors and Malaria patients. E2F1, BIRC5 and CCNB1 were identified to be primarily responsible for PCA separation of these two groups. We searched for biological function and found that cell cycle processes were strongly activated. By in silico cell type deconvolution, we attribute this to an expansion of γδ T cells. Additional discrimination between CAP and Malaria yielded 445 differentially expressed genes, among which immune proteasome transcripts PSMB8, PSMB9 and PSMB10 were significantly induced in Malaria. SIGNIFICANCE We identified transcripts from patient leukocytes that differentiate between healthy, Malaria and CAP, and indicate a biological context with potential pathophysiological relevance.
Collapse
Affiliation(s)
- Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, Marburg, Germany
| | - Kathrin Griss
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, Marburg, Germany; Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Maria Han
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, Marburg, Germany; Medizinische Klinik m.S. Hämatologie und Onkologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Seidel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, Marburg, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Bioinformatics Core Facility, Philipps-Universität Marburg, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University, Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Germany; Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Germany
| | - Claus F Vogelmeier
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, Marburg, Germany; Department of Internal Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany; German Center for Lung Research (DZL), German Center for infectious Disease Research (DZIF), Center for Synthetic Microbiology (Synmikro), Philipps-Universität Marburg, Germany.
| |
Collapse
|
6
|
Comparing the protective effects of resveratrol, curcumin and sulforaphane against LPS/IFN-γ-mediated inflammation in doxorubicin-treated macrophages. Sci Rep 2021; 11:545. [PMID: 33436962 PMCID: PMC7803961 DOI: 10.1038/s41598-020-80804-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Doxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.
Collapse
|
7
|
Bertrams W, Jung AL, Schmeck B. Modeling of Pneumonia and Acute Lung Injury: Bioinformatics, Systems Medicine, and Artificial Intelligence. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11689-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
8
|
Lindhauer NS, Bertrams W, Pöppel A, Herkt CE, Wesener A, Hoffmann K, Greene B, Van Der Linden M, Vilcinskas A, Seidel K, Schmeck B. Antibacterial activity of a Tribolium castaneum defensin in an in vitro infection model of Streptococcus pneumoniae. Virulence 2020; 10:902-909. [PMID: 31657264 PMCID: PMC6844301 DOI: 10.1080/21505594.2019.1685150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is the most common bacterial cause of community-acquired pneumonia. Increasing rates of antibiotic-resistant S. pneumoniae strains impair therapy and necessitate alternative treatment options. In this study, we analysed insect-derived antimicrobial peptides (AMPs) for antibacterial effects on S. pneumoniae in a human in vitro infection model. AMP effects on bacterial growth were examined by colony forming unit (CFU)-assays, and growth curve measurements. Furthermore, cytotoxicity to primary human macrophages was detected by measuring lactate-dehydrogenase release to the supernatant. One AMP (Defensin 1) was tested in a model of primary human monocyte-derived macrophages infected with S. pneumoniae strain D39 and a multi-resistant clinical isolate. Inflammatory reactions were characterised by qPCR and multiplex-ELISA. In total, the antibacterial effects of 23 AMPs were characterized. Only Tribolium castaneum Defensin 1 showed significant antibacterial effects against S. pneumoniae strain D39 and a multi-resistant clinical isolate. During in vitro infection of primary human macrophages with S. pneumoniae D39, Defensin 1 displayed strong antibacterial effects, and consequently reduced bacteria-induced cytokine expression and release. In summary, Tribolium castaneum Defensin 1 showed profound antibacterial effectivity against Streptococcus pneumoniae D39 and a multi-resistant clinical isolate without unwanted cytotoxic or inflammatory side effects on human blood-derived macrophages.
Collapse
Affiliation(s)
- Nora S Lindhauer
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Anne Pöppel
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Christina E Herkt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Andre Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Kerstin Hoffmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Brandon Greene
- Institute of Medical Bioinformatics and Biostatistics, Universities of Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Mark Van Der Linden
- German National Reference Center for Streptococci, Department of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Kerstin Seidel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany.,Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
9
|
Ferro E, Enrico Bena C, Grigolon S, Bosia C. From Endogenous to Synthetic microRNA-Mediated Regulatory Circuits: An Overview. Cells 2019; 8:E1540. [PMID: 31795372 PMCID: PMC6952906 DOI: 10.3390/cells8121540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that are evolutionarily conserved and are pivotal post-transcriptional mediators of gene regulation. Together with transcription factors and epigenetic regulators, they form a highly interconnected network whose building blocks can be classified depending on the number of molecular species involved and the type of interactions amongst them. Depending on their topology, these molecular circuits may carry out specific functions that years of studies have related to the processing of gene expression noise. In this review, we first present the different over-represented network motifs involving microRNAs and their specific role in implementing relevant biological functions, reviewing both theoretical and experimental studies. We then illustrate the recent advances in synthetic biology, such as the construction of artificially synthesised circuits, which provide a controlled tool to test experimentally the possible microRNA regulatory tasks and constitute a starting point for clinical applications.
Collapse
Affiliation(s)
- Elsi Ferro
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Chiara Enrico Bena
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carla Bosia
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
10
|
Yamaguchi M, Hirose Y, Takemura M, Ono M, Sumitomo T, Nakata M, Terao Y, Kawabata S. Streptococcus pneumoniae Evades Host Cell Phagocytosis and Limits Host Mortality Through Its Cell Wall Anchoring Protein PfbA. Front Cell Infect Microbiol 2019; 9:301. [PMID: 31482074 PMCID: PMC6710382 DOI: 10.3389/fcimb.2019.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium belonging to the oral streptococcus species, mitis group. This pathogen is a leading cause of community-acquired pneumonia, which often evades host immunity and causes systemic diseases, such as sepsis and meningitis. Previously, we reported that PfbA is a β-helical cell surface protein contributing to pneumococcal adhesion to and invasion of human epithelial cells in addition to its survival in blood. In the present study, we investigated the role of PfbA in pneumococcal pathogenesis. Phylogenetic analysis indicated that the pfbA gene is highly conserved in S. pneumoniae and Streptococcus pseudopneumoniae within the mitis group. Our in vitro assays showed that PfbA inhibits neutrophil phagocytosis, leading to pneumococcal survival. We found that PfbA activates NF-κB through TLR2, but not TLR4. In addition, TLR2/4 inhibitor peptide treatment of neutrophils enhanced the survival of the S. pneumoniae ΔpfbA strain as compared to a control peptide treatment, whereas the treatment did not affect survival of a wild-type strain. In a mouse pneumonia model, the host mortality and level of TNF-α in bronchoalveolar lavage fluid were comparable between wild-type and ΔpfbA-infected mice, while deletion of pfbA decreased the bacterial burden in bronchoalveolar lavage fluid. In a mouse sepsis model, the ΔpfbA strain demonstrated significantly increased host mortality and TNF-α levels in plasma, but showed reduced bacterial burden in lung and liver. These results indicate that PfbA may contribute to the success of S. pneumoniae species by inhibiting host cell phagocytosis, excess inflammation, and mortality by interacting with TLR2.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Moe Takemura
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masayuki Ono
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
11
|
Abstract
Inflammatory and infectious diseases are among the main causes of morbidity and mortality worldwide. Inflammation is central to maintenance of organismal homeostasis upon infection, tissue damage, and malignancy. It occurs transiently in response to diverse stimuli (e.g., physical, radioactive, infective, pro-allergenic, or toxic), and in some cases may manifest itself in chronic diseases. To limit the potentially deleterious effects of acute or chronic inflammatory responses, complex transcriptional and posttranscriptional regulatory networks have evolved, often involving nonprotein-coding RNAs (ncRNA). MicroRNAs (miRNAs) are a class of posttranscriptional regulators that control mRNA translation and stability. Long ncRNAs (lncRNAs) are a very diverse group of transcripts >200 nt, functioning among others as scaffolds or decoys both in the nucleus and the cytoplasm. By now, it is well established that miRNAs and lncRNAs are implicated in all major cellular processes including control of cell death, proliferation, or metabolism. Extensive research over the last years furthermore revealed a fundamental role of ncRNAs in pathogen recognition and inflammatory responses. This chapter reviews and summarizes the current knowledge on regulatory ncRNA networks in infection and inflammation.
Collapse
Affiliation(s)
- Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Christina Stielow
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
12
|
Gao W, Yang H. MicroRNA‑124‑3p attenuates severe community‑acquired pneumonia progression in macrophages by targeting tumor necrosis factor receptor‑associated factor 6. Int J Mol Med 2018; 43:1003-1010. [PMID: 30535475 DOI: 10.3892/ijmm.2018.4011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/01/2018] [Indexed: 11/06/2022] Open
Abstract
Community‑acquired pneumonia (CAP) is a severe type of pneumonia in adults, with a high mortality rate. Macrophages have been reported to mediate severe CAP (SCAP) in vitro following administration of LPS. Therefore, the present study established a SCAP model in Ana‑1 macrophages by lipopolysaccharide (LPS) induction, and aimed to explore the function of microRNA (miR)‑124‑3p in the LPS‑induced SCAP. The effect of LPS on Ana‑1 cell viability was evaluated by an MTT assay. In addition, the protein and mRNA levels of interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α were determined by enzyme‑linked immunosorbent assay and reverse transcription‑quantitative polymerase chain reaction, respectively. The nuclear factor (NF)‑κB activity and phosphorylation of p38 mitogen‑activated protein kinase (MAPK) were also evaluated by western blotting. The results demonstrated that exposure to 0.1 µg/ml LPS displayed no evident toxicity on macrophages. Compared with the control group, higher TNF receptor‑associated factor 6 (TRAF6) mRNA and protein levels were observed subsequent to induction by LPS (0.1 µg/ml), suggesting the promoting role of TRAF6 in SCAP. Furthermore, miR‑124‑3p was proven to target the 3'‑untranslated region (3'UTR) of TRAF6. The miR‑124‑3p mimic effectively inhibited the LPS‑induced upregulation of IL‑1β and TNF‑α secretion, and mRNA expression levels in macrophages, which may be mediated by the p38 MAPK and NF‑κB signaling pathway. Taken together, these results strongly indicated that miR‑124‑3p targeted the 3'UTR of TRAF6, while it attenuated SCAP by reducing LPS‑induced inflammatory cytokine production and inhibiting the activation of p38 MAPK and NF‑κB signaling pathways. These findings indicate the immunoregulatory role of miR‑124‑3p against macrophage‑mediated SCAP.
Collapse
Affiliation(s)
- Wei Gao
- Department of Critical Care Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Hongxia Yang
- Department of Critical Care Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
13
|
Li R, Fang L, Pu Q, Bu H, Zhu P, Chen Z, Yu M, Li X, Weiland T, Bansal A, Ye SQ, Wei Y, Jiang J, Wu M. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 2018; 11:11/536/eaao2387. [PMID: 29945883 DOI: 10.1126/scisignal.aao2387] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) regulate gene expression. We investigated the role of lncRNAs in the inflammatory response to bacterial infection in the lungs. We identified the lncRNA MEG3 as a tissue-specific modulator of inflammatory responses during bacterial infection. Among the 10 transcript isoforms of MEG3, transcript 4 (referred to as MEG3-4) encodes the isoform with the lowest abundance in mouse lungs. Nonetheless, we found that MEG3-4 bound to the microRNA miR-138 in a competitive manner with mRNA encoding the proinflammatory cytokine interleukin-1β (IL-1β), thereby increasing IL-1β abundance and intensifying inflammatory responses to bacterial infection in alveolar macrophages and lung epithelial cells in culture and in lung tissue in mice. MEG3-4-mediated sponging of miR-138 in the cytoplasm increased the autocrine activity of IL-1β that subsequently induced a negative feedback mechanism mediated by nuclear factor κB that decreased MEG3-4 abundance and inflammatory cytokine production. This timely reduction in MEG3-4 abundance tempered proinflammatory responses in mice with pulmonary bacterial infection, preventing the progression to sepsis. Together, these findings reveal that MEG3-4 dynamically modulates pulmonary inflammatory responses through transcriptional regulation of immune response genes, extending the decoy and sponge mechanism associated with lncRNAs to antibacterial immunity, which affects both response and disease progression.
Collapse
Affiliation(s)
- Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China.,Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Pengcheng Zhu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Zihan Chen
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Min Yu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | | | | | - Shui Qing Ye
- Department of Pediatrics and Department of Biomedical and Health Informatics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, Sichuan 400042, P. R. China.
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
14
|
MicroRNA sequence analysis identifies microRNAs associated with peri-implantitis in dogs. Biosci Rep 2017; 37:BSR20170768. [PMID: 28864780 PMCID: PMC5964874 DOI: 10.1042/bsr20170768] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 01/13/2023] Open
Abstract
Peri-implantitis, which is characterized by dense inflammatory infiltrates and increased osteoclast activity, can lead to alveolar bone destruction and implantation failure. miRNAs participate in the regulation of various inflammatory diseases, such as periodontitis and osteoporosis. Therefore, the present study aimed to investigate the differential expression of miRNAs in canine peri-implantitis and to explore the functions of their target genes. An miRNA sequence analysis was used to identify differentially expressed miRNAs in peri-implantitis. Under the criteria of a fold-change >1.5 and P<0.01, 8 up-regulated and 30 down-regulated miRNAs were selected for predictions of target genes and their biological functions. Based on the results of Gene Ontology (GO) and KEGG pathway analyses, these miRNAs may fine-tune the inflammatory process in peri-implantitis through an intricate mechanism. The results of quantitative real-time PCR (qRT-PCR) revealed that let-7g, miR-27a, and miR-145 may play important roles in peri-implantitis and are worth further investigation. The results of the present study provide insights into the potential biological effects of the differentially expressed miRNAs, and specific enrichment of target genes involved in the mitogen-activated protein kinase (MAPK) signaling pathway was observed. These findings highlight the intricate and specific roles of miRNAs in inflammation and osteoclastogenesis, both of which are key aspects of peri-implantitis, and thus may contribute to future investigations of the etiology, underlying mechanism, and treatment of peri-implantitis.
Collapse
|
15
|
Drury RE, O'Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017; 8:1182. [PMID: 28993774 PMCID: PMC5622146 DOI: 10.3389/fimmu.2017.01182] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
16
|
Jentho E, Bodden M, Schulz C, Jung AL, Seidel K, Schmeck B, Bertrams W. microRNA-125a-3p is regulated by MyD88 in Legionella pneumophila infection and targets NTAN1. PLoS One 2017; 12:e0176204. [PMID: 28445535 PMCID: PMC5406027 DOI: 10.1371/journal.pone.0176204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/06/2017] [Indexed: 12/01/2022] Open
Abstract
Background Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia. It is highly adapted to intracellular replication and manipulates host cell functions like vesicle trafficking and mRNA translation to its own advantage. However, it is still unknown to what extent microRNAs (miRNAs) are involved in the Legionella-host cell interaction. Methods WT and MyD88-/- murine bone marrow-derived macrophages (BMM) were infected with L. pneumophila, the transcriptome was analyzed by high throughput qPCR array (microRNAs) and conventional qPCR (mRNAs), and mRNA-miRNA interaction was validated by luciferase assays with 3´-UTR mutations and western blot. Results L. pneumophila infection caused a pro-inflammatory reaction and significant miRNA changes in murine macrophages. In MyD88-/- cells, induction of inflammatory markers, such as Ccxl1/Kc, Il6 and miR-146a-5p was reduced. Induction of miR-125a-3p was completely abrogated in MyD88-/- cells. Target prediction analyses revealed N-terminal asparagine amidase 1 (NTAN1), a factor from the n-end rule pathway, to be a putative target of miR-125a-3p. This interaction could be confirmed by luciferase assay and western blot. Conclusion Taken together, we characterized the miRNA regulation in L. pneumophila infection with regard to MyD88 signaling and identified NTAN1 as a target of miR-125a-3p. This finding unravels a yet unknown feature of Legionella-host cell interaction, potentially relevant for new treatment options.
Collapse
Affiliation(s)
- Elisa Jentho
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Malena Bodden
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Christine Schulz
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Anna-Lena Jung
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Kerstin Seidel
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| | - Wilhelm Bertrams
- Institute for Lung Research/iLung, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
17
|
Cohen TS. Role of MicroRNA in the Lung's Innate Immune Response. J Innate Immun 2016; 9:243-249. [PMID: 27915347 DOI: 10.1159/000452669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The immune response to respiratory pathogens must be robust enough to defend the host yet properly constrained such that inflammation-induced tissue damage is avoided. MicroRNA (miRNA) are small noncoding RNA which posttranscriptionally influence gene expression. In this review, we discuss recent experimental evidence of the contribution of miRNA to the lung's response to bacterial and viral pathogens.
Collapse
Affiliation(s)
- Taylor S Cohen
- Department of Infectious Disease, Medimmune, Gaithersburg, MD, USA
| |
Collapse
|