1
|
Liu Y, Song Y, Liu F, Chen Y, Liu Y, Shi J, Li K, Yin Y, Liang Q, Liu N, Ming M, Hua L, Shi Q, Xu J, Yuan R, Li S, Zhang L, Zhao Y, Wang N, Zhang J, Zhang Y, Chang Z, Zhang Z. Effectiveness of the enterovirus A71 vaccine on hand, foot, and mouth disease: a real-world study in China. Clin Microbiol Infect 2025; 31:258-265. [PMID: 39343096 DOI: 10.1016/j.cmi.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES For the prevention of hand, foot, and mouth disease (HFMD), enterovirus A71 (EV-A71) vaccines have been used in China since 2016. To better inform vaccination strategies, we assess the real-world effectiveness of EV-A71 vaccination in China. METHODS The analysis was based on surveillance data of HFMD caused by EV-A71 in children under the age of 5 in China, along with meteorological and demographic data. The seasonal autoregressive integrated moving average model and the interrupted time series analysis were used to estimate the effectiveness of the EV-A71 vaccination on the EV-A71 HFMD incidence and to predict the counterfactual cases with no EV-A71 vaccine. RESULTS Between 2010 and 2018, 6 712 613 cases of HFMD caused by EV-A71 were reported in children under 5 years old in 260 Chinese cities. During 2017-2018, the EV-A71 vaccination was associated with a reduction in EV-A71 HFMD incidence, with a relative risk of 0.83 (95% CI, 0.81-0.86), and an estimated reduction of 297 946 (95% CI, 250 534-346 658) cases. However, this association varied across cities (I2 = 85.6%, p < 0.001) and the effectiveness of the EV-A71 vaccination decreased as population density increased. Higher vaccination coverage was associated with greater effectiveness of the EV-A71 vaccination and an earlier point in EV-A71 case reduction. Specifically, when the vaccination coverage exceeded ∼20%, the relative risk was rapidly reduced to below 0.71 (95% CI, 0.69-0.72). DISCUSSION Our study demonstrated that the EV-A71 vaccination was associated with a reduction in the incidence of EV-A71 HFMD, but the association varied with regions and was influenced by vaccination coverage and population density. To optimize EV-A71 HFMD prevention, increasing vaccination coverage (>20%) is recommended for children under 5 years old.
Collapse
Affiliation(s)
- Yuanhua Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yang Song
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yang Liu
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jin Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Ke Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yun Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Qingqing Liang
- Health Information Center, Guilin Center for Disease Control and Prevention, Guilin, China
| | - Na Liu
- Department of Immunization Program, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Ming Ming
- Department of Immunization Program, Taian Center for Disease Control and Prevention, Taian, China
| | - Lei Hua
- Department of Immunization Program, Baoji Center for Disease Control and Prevention, Baoji, China
| | - Qian Shi
- Department of Immunization Program, Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Jiayao Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Shuting Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lele Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yu Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Na Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jidan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yanping Zhang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaorui Chang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Cui J, Liu F, Song Y, Wang Q, Liu Y, Zhang Y, Li Z, Chang Z. Effectiveness of Enterovirus 71 inactivated vaccines against hand, foot, and mouth disease: A test-negative case-control study. Hum Vaccin Immunother 2024; 20:2330163. [PMID: 38544389 PMCID: PMC10984126 DOI: 10.1080/21645515.2024.2330163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
The Enterovirus A71 (EV-A71) vaccine was introduced in China in December 2015 as a preventive measure against hand, foot, and mouth disease (HFMD) caused by EV-A71. However, the effectiveness of the vaccine (VE) in real-world settings needs to be evaluated. We conducted a test-negative case-control study to assess the effectiveness of EV-A71 vaccines in preventing EV-A71-associated HFMD. Children aged 6-71 months with HFMD were enrolled as participants. The case group comprised those who tested positive for EV-A71, while the control group comprised those who tested negative for EV-A71. To estimate VE, a logistic regression model was employed, adjusting for potential confounders including age, gender, and clinical severity. In total, 3223 children aged 6 to 71 months were included in the study, with 162 in the case group and 3061 in the control group. The proportion of children who received EV-A71 vaccination was significantly lower in the case group compared to the control group (p < .001). The overall VEadj was estimated to be 90.8%. The VEadj estimates for partially and fully vaccinated children were 90.1% and 90.9%, respectively. Stratified by age group, the VEadj estimates were 88.7% for 6 to 35-month-olds and 95.5% for 36 to 71-month-olds. Regarding disease severity, the VEadj estimates were 86.3% for mild cases and 100% for severe cases. Sensitivity analysis showed minimal changes in the VE point estimates, with most changing by no more than 1% point. Our study demonstrates a high level of vaccine effectiveness against EV-A71-HFMD, especially in severe cases. Active promotion of EV-A71 vaccination is an effective strategy in preventing EV-A71 infections.
Collapse
Affiliation(s)
- Yutong Zhang
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinzhao Cui
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fengfeng Liu
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Song
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Quanyi Wang
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yanzhe Liu
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanping Zhang
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhongjie Li
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaorui Chang
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Wu L, Zhang Y, Liu J, Huang Z, Shao H, Ma X, Sun X. Safety of an inactivated enterovirus 71 vaccine administered concurrently with other vaccines among infants aged 6-11 months: An observational study using active surveillance. Hum Vaccin Immunother 2024; 20:2412388. [PMID: 39402977 PMCID: PMC11485911 DOI: 10.1080/21645515.2024.2412388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Vaccine co-administration can efficiently increase vaccination uptake and timely immunization. This study aimed to evaluate the safety of the enterovirus 71 (EV71) vaccine administered alone or concurrently with other vaccines in infants 6-11 months. A total of 3,769 EV71 vaccine doses were administered to children in the active surveillance area, of which 1,909 were administered concurrently with other vaccines and 1,860 doses were administered alone. Active surveillance was conducted to observe adverse events (AEs) within 0-7 and ≥8 days after vaccination and to determine the incidence of reported AEs. The overall AE incidence was 2.12% (95% CI: 1.66%-2.58%), with 1.56% (95% CI:1.00%-2.12%) for the EV71 vaccine alone and 2.67% (95% CI: 1.95%-3.40%) for simultaneous administration of the EV71 vaccine and other vaccines (x 2 = 5.612, p = .018). The solicited local AE incidence was 1.00% (95% CI: 0.55%-1.44%) in the EV71 vaccine co-administration group and 0.59% (95% CI: 0.24%-0.94%) in the EV71 vaccine alone group (x 2 = 1.946, p = .018). The solicited systemic AE incidence was 1.68% (95% CI: 1.10%-2.25%) and 0.86% (95% CI: 0.44%-1.28%) in the EV71 vaccine co-administered and EV71 vaccine alone groups, respectively (x 2 = 4.990, p = .025). No serious vaccine-related AEs were reported. Fever was the most common AE; no difference was observed in the incidence rate of fever between the two groups (x 2 = 3.467, p = .063). Overall, AE incidence following EV71 vaccination alone or concurrently with other vaccines was acceptable; concurrent vaccination did not increase AE risk or severity.
Collapse
Affiliation(s)
- Linlin Wu
- Department of Immunization Program, Shanghai Municipal Centers for Disease Prevention and Control, Shanghai, China
| | - Yu Zhang
- Department of Immunization Program, Shanghai Municipal Centers for Disease Prevention and Control, Shanghai, China
| | - Jiechen Liu
- Department of Immunization Program, Shanghai Municipal Centers for Disease Prevention and Control, Shanghai, China
| | - Zhuoying Huang
- Department of Immunization Program, Shanghai Municipal Centers for Disease Prevention and Control, Shanghai, China
| | - Huiyong Shao
- Department of Immunization Program, Shanghai Municipal Centers for Disease Prevention and Control, Shanghai, China
| | - Xiaoying Ma
- Department of Immunization Program, Shanghai Municipal Centers for Disease Prevention and Control, Shanghai, China
| | - Xiaodong Sun
- Department of Immunization Program, Shanghai Municipal Centers for Disease Prevention and Control, Shanghai, China
| |
Collapse
|
4
|
Mbani CJ, Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Moukassa D, Hober D. Enterovirus Antibodies: Friends and Foes. Rev Med Virol 2024; 34:e70004. [PMID: 39505825 DOI: 10.1002/rmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV. However, antibody binding to virions does not always result in viral neutralisation. Non-neutralising antibodies, or sub-neutralising concentrations of antibodies, can enhance infection of viruses, leading to more severe pathologies. This phenomenon, known as antibody-dependent enhancement (ADE) of infection, has been described in vitro and/or in vivo for EV including poliovirus, coxsackievirus B and EV-A71. It has been shown that ADE of EV infection is mediated by FcγRs expressed by monocytes, macrophages, B lymphocytes and granulocytes. Antibodies play a crucial role in the diagnosis and monitoring of infections. They are valuable markers that have been used to establish a link between enteroviral infection and chronic diseases such as type 1 diabetes. Monoclonal and polyclonal antibodies targeting enteroviral proteins have been developed and shown to be effective to prevent or combat EV infections in vitro and in vivo. In addition, vaccines are under development, and clinical trials of vaccines are underway or have been completed, providing hope for the prevention of diseases due to EV. However, the ADE of the infection should be considered in the development of anti-EV antibodies or safe vaccines.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Corentin Morvan
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
5
|
Lochaiyakun N, Srimanote P, Khantisitthiporn O, Thanongsaksrikul J. Novel Anti-Enterovirus A71 Compounds Discovered by Repositioning Antivirals from the Open-Source MMV Pandemic Response Box. Pharmaceuticals (Basel) 2024; 17:785. [PMID: 38931452 PMCID: PMC11206571 DOI: 10.3390/ph17060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The open-source drug library, namely, MMV Pandemic Response Box, contains 153 antiviral agents, a chemically and pharmacologically diverse mixture of early-stage, emerging anti-infective scaffolds, and mature compounds currently undergoing clinical development. Hence, the Pandemic Response Box might contain compounds that bind and interfere with target molecules or cellular pathways that are conserved or shared among the closely related viruses with enterovirus A71 (EV-A71). This study aimed to screen antiviral agents included in the Pandemic Response Box for repurposing to anti-EV-A71 activity and investigate the inhibitory effects of the compounds on viral replication. The compounds' cytotoxicity and ability to rescue infected cells were determined by % cell survival using an SRB assay. The hit compounds were verified for anti-EV-A71 activity by virus reduction assays for viral RNA copy numbers, viral protein synthesis, and mature particle production using qRT-PCR, Western blot analysis, and CCID50 assay, respectively. It was found that some of the hit compounds could reduce EV-A71 genome replication and protein synthesis. D-D7 (2-pyridone-containing human rhinovirus 3C protease inhibitor) exhibited the highest anti-EV-A71 activity. Even though D-D7 has been originally indicated as a polyprotein processing inhibitor of human rhinovirus 3C protease, it could be repurposed as an anti-EV-A71 agent.
Collapse
Affiliation(s)
- Nattinee Lochaiyakun
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand; (N.L.); (P.S.)
| | - Potjanee Srimanote
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand; (N.L.); (P.S.)
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani 12120, Thailand;
| | - Onruedee Khantisitthiporn
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani 12120, Thailand;
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand; (N.L.); (P.S.)
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani 12120, Thailand;
| |
Collapse
|
6
|
Li P, Jia WY, Zhang X, Wang DB, Li Z, Li CQ, Song CL. Effect of enterovirus 71 vaccine on epidemiological characteristics of hand, foot and mouth disease: An 8-year retrospective intermittent time series analysis. Vaccine 2023; 41:6143-6145. [PMID: 37684169 DOI: 10.1016/j.vaccine.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Peng Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, China
| | - Wan-Yu Jia
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, China
| | - Xue Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, China
| | | | - Zheng Li
- Beijing Children's Hospital Capital Medical University, China
| | | | - Chun-Lan Song
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, China.
| |
Collapse
|
7
|
Lian H, Jiang H, Yi L, Sun J, Xie H, Qiu M, Sun L, Lin H, Yang M, Qu L, Yang H, Lu J, Zeng H. Seroprevalence of human enterovirus A71 in Guangzhou, China, 2019-2021. BIOSAFETY AND HEALTH 2023; 5:168-173. [PMID: 40078511 PMCID: PMC11895029 DOI: 10.1016/j.bsheal.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 03/14/2025] Open
Abstract
Enterovirus A71 (EV-A71) is a significant hand-foot-mouth disease (HFMD) etiology. The inactivated EV-A71 vaccines were approved in China in 2016. However, the seroprevalence of EV-A71 after the vaccine application and its potential association with the EV-A71 epidemic in the population are rarely studied. In this study, we analyzed the incidence of EV-A71 infection and seroepidemiology in Guangzhou City, China. From 2019 to 2021, 167,920 clinically confirmed HFMD cases were reported in Guangzhou. In 6,868 enterovirus-positive samples, Coxsackievirus A6 and Coxsackievirus A16 were dominant genotypes, and only 3 EV-A71-positive samples were detected, highlighting the deficient epidemic activity of EV-A71. Microneutralization assay was performed on 1,000 representative serum samples. Notably, the seroprevalence and geometric mean titer (GMT) decreased significantly in 2020, and that in the < 3-year age group were increased and even higher than that in 3-5-year age group in 2019 and 2021, which was contrary to our previous surveillance result and other studies in Guangzhou. Furthermore, a moderate decline of GMT level was observed following the vaccination, but the seropositive serums were still detected for 49 months after second immunization, suggesting the long-term persistence of the immunity. Our seroepidemiology study revealed relatively higher neutralizing antibody activity in the susceptible population after the EV-A71 vaccine was adopted in 2016 in Guangzhou. It may be one of the reasons for the lower epidemic activity of EV-A71 in Guangzhou from 2019 to 2021.
Collapse
Affiliation(s)
- Huimin Lian
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Huimin Jiang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Lina Yi
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jing Sun
- Health Commission of Heping District, Shenyang City, Liaoning 110003, China
| | - Huaping Xie
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Ming Qiu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Limei Sun
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Huifang Lin
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Mingda Yang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- School of Public Health, Jinan University, Guangzhou 510632, China
| | - Lin Qu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Haiyi Yang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jing Lu
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Hanri Zeng
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| |
Collapse
|
8
|
Xiao Y, Guo X, Zhang M, Chen Y, Zhang Y, Yu X, Luo L, Chen H, Xu W, Liu H, Wu L, Hou R, Ma Y, Long L, Ruan J, Chen W, Yang X. Safety and Immunogenicity of Enterovirus 71 Vaccine (Vero Cell) Administered Simultaneously with Trivalent Split-Virion Influenza Vaccine in Infants Aged 6-7 Months: A Phase 4, Randomized, Controlled Trial. Vaccines (Basel) 2023; 11:vaccines11040862. [PMID: 37112774 PMCID: PMC10146551 DOI: 10.3390/vaccines11040862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Objective: To assess the immunogenicity and safety of the enterovirus 71 vaccine (Vero cell) (EV71 vaccine) and trivalent split-virion influenza vaccine (IIV3). Methods: Healthy infants aged 6-7 months were recruited from Zhejiang Province, Henan Province, and Guizhou Province and randomly assigned to the simultaneous vaccination group, EV71 group, and IIV3 group at a ratio of 1:1:1. Then, 3 mL blood samples were collected before vaccination and 28 days after the second dose of vaccine. Cytopathic effect inhibition assay was used to detect EV71 neutralization antibody, and cytopathic effect inhibition assay was used to detect influenza virus antibody. Results: A total of 378 infants were enrolled and received the first dose of vaccine and were included in the safety analysis, and 350 infants were involved in the immunogenicity analysis. The adverse events rates were 31.75%, 28.57%, and 34.13% in the simultaneous vaccination group, EV71 group, and IIV3 group (p > 0.05), respectively. No vaccine-related serious adverse events were reported. After two doses of EV71 vaccine, the seroconversion rates of EV71 neutralizing antibody were 98.26% and 97.37% in the simultaneous vaccination group and the EV71 group, respectively. After two doses of IIV3, the simultaneous vaccination group and the IIV3 group, respectively, had seroconversion rates of 80.00% and 86.78% for H1N1 antibody, 99.13% and 98.35% for H3N2 antibody, and 76.52% and 80.99% for B antibody. There was no statistically significant difference in the seroconversion rates of influenza virus antibodies between groups (p > 0.05). Conclusions: The coadministration of EV71 vaccine and IIV3 has good safety and immunogenicity in infants aged 6-7 months.
Collapse
Affiliation(s)
- Yanhui Xiao
- Medical Affairs Department, China National Biotec Group Company Limited, No. 2, Shuangqiao Street, Chaoyang District, Beijing 100024, China
| | - Xue Guo
- Medical Affairs Department, Changchun Institute of Biological Products Company Limited, Changchun 130012, China
| | - Min Zhang
- Medical Affairs Department, China National Biotec Group Company Limited, No. 2, Shuangqiao Street, Chaoyang District, Beijing 100024, China
| | - Yaping Chen
- Immunisation Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yanyang Zhang
- Institute for Communicable Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Xiaoqing Yu
- Institute of Expanded Programme on Immunization, Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, China
| | - Linyun Luo
- Medical Affairs Department, China National Biotec Group Company Limited, No. 2, Shuangqiao Street, Chaoyang District, Beijing 100024, China
| | - Haiping Chen
- Medical Affairs Department, China National Biotec Group Company Limited, No. 2, Shuangqiao Street, Chaoyang District, Beijing 100024, China
| | - Weichai Xu
- Immunisation Programme Department, Liandu District Center for Disease Control and Prevention, Lishui 323000, China
| | - Haibo Liu
- Immunisation Programme Department, Liandu District Center for Disease Control and Prevention, Lishui 323000, China
| | - Lixia Wu
- Immunisation Programme Department, Boai County Center for Disease Control and Prevention, Jiaozuo 454450, China
| | - Renwu Hou
- Immunisation Programme Department, Boai County Center for Disease Control and Prevention, Jiaozuo 454450, China
| | - Yong Ma
- Immunisation Programme Department, Qianxinan Prefecture Center for Disease Control and Prevention, Qianxinan 562400, China
| | - Lin Long
- Immunisation Programme Department, Qianxinan Prefecture Center for Disease Control and Prevention, Qianxinan 562400, China
| | - Jiewei Ruan
- Medical Affairs Department, China National Biotec Group Company Limited, No. 2, Shuangqiao Street, Chaoyang District, Beijing 100024, China
| | - Wei Chen
- Medical Affairs Department, Wuhan Institute of Biological Products Company Limited, Wuhan 430070, China
| | - Xiaoming Yang
- Medical Affairs Department, China National Biotec Group Company Limited, No. 2, Shuangqiao Street, Chaoyang District, Beijing 100024, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Company Limited, Wuhan 430070, China
| |
Collapse
|
9
|
Alhazmi A, Nekoua MP, Mercier A, Vergez I, Sane F, Alidjinou EK, Hober D. Combating coxsackievirus B infections. Rev Med Virol 2023; 33:e2406. [PMID: 36371612 DOI: 10.1002/rmv.2406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Coxsackieviruses B (CVB) are small, non-enveloped, single-stranded RNA viruses belonging to the Enterovirus genus of the Picornaviridae family. They are common worldwide and cause a wide variety of human diseases ranging from those having relatively mild symptoms to severe acute and chronic pathologies such as cardiomyopathy and type 1 diabetes. The development of safe and effective strategies to combat these viruses remains a challenge. The present review outlines current approaches to control CVB infections and associated diseases. Various drugs targeting viral or host proteins involved in viral replication as well as vaccines have been developed and shown potential to prevent or combat CVB infections in vitro and in vivo in animal models. Repurposed drugs and alternative strategies targeting miRNAs or based on plant extracts and probiotics and their derivatives have also shown antiviral effects against CVB. In addition, clinical trials with vaccines and drugs are underway and offer hope for the prevention or treatment of CVB-induced diseases.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France.,Microbiology and Parasitology Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Ambroise Mercier
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | - Ines Vergez
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| |
Collapse
|
10
|
Recent advances in anti-coxsackievirus A16 viral drug research. Future Med Chem 2023; 15:97-117. [PMID: 36538291 DOI: 10.4155/fmc-2022-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hand, foot and mouth disease, a childhood disorder caused by enteroviruses, is intermittently endemic in the Asia-Pacific region and endangers the lives of many infants and young children. Coxsackievirus A16 (CV-A16) is one of the major pathogens causing hand, foot, and mouth disease on occasion, resulting in catastrophic neurological sequelae and patient death. Currently, no clinical interventions are available that completely block the CV-A16 infection. Therefore, research on anti-CV-A16 treatment continues to be a significant focus of interest. This report provides a detailed background on and an introduction to CV-A16; a description of the viral gene and protein structures and a summary of the current advances in pharmaceutical targets, drug research and other related areas.
Collapse
|
11
|
Chen Y, Xiao Y, Ye Y, Jiang F, He H, Luo L, Chen H, Shi L, Mu Q, Chen W, Guo X, Zhang M, Li J, Guan Q, Chen Z, Yang X. Immunogenicity and safety of an inactivated enterovirus 71 vaccine coadministered with trivalent split-virion inactivated influenza vaccine: A phase 4, multicenter, randomized, controlled trial in China. Front Immunol 2022; 13:1080408. [PMID: 36569946 PMCID: PMC9772018 DOI: 10.3389/fimmu.2022.1080408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background Few data exist on the immunogenicity and safety of an inactivated enterovirus 71 vaccine (EV71 vaccine) coadministered with trivalent split-virion inactivated influenza vaccine (IIV3) in infants. Methods This trial was a phase 4, randomized, controlled trial. Infants aged 6-11 months were eligible, with no history of hand, foot and mouth disease (HFMD) and no history of EV71 vaccine or any influenza vaccine. Eligible infants were randomly assigned to EV71+IIV3 group, EV71 group or IIV3 group. Blood samples were collected on day 0 and 56. Results Between September 2019 and June 2020, 1151 infants met eligibility criteria and 1134 infants were enrolled. 1045 infants were included in the per-protocol population, including 347 in the EV71+IIV3 group, 343 in the EV71 group, and 355 in the IIV3 group. The seroconversion rate (98.56% vs 98.54%; seroconversion rates difference of 0.02% [95% CI: 0.70-0.98]) and GMT (419.05 vs 503.72; GMT ratio of 0.83 [95% CI 0.70 - 0.98]) of EV71 neutralizing antibodies in the EV71+IIV3 group was not inferior to those in the EV71 group. The non-inferiority results for influenza virus antibodies (A/H1N1, A/H3N2 and B) showed that the seroconversion rates and GMTs of the EV71+IIV3 group were non-inferiority to those of the IIV3 group. Systemic and local adverse event rates were similar between groups. None of serious adverse events (SAEs) were related to vaccination. Conclusions Coadministration of the EV71 vaccine with IIV3 was safe and did not interfere with immunogenicity. These findings support a viable immunization strategy for infants with the EV71 vaccine coadministered with IIV3 in China. This trial is registered with ClinicalTrials.gov, number NCT04091880.
Collapse
Affiliation(s)
- Yaping Chen
- Immunization Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yanhui Xiao
- Medical Affairs Department, China National Biotec Group Company Limited, Beijing, China
| | - Ying Ye
- Institute for Communicable Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Feng Jiang
- Institute of Expanded Programme on Immunization, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Hanqing He
- Immunization Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Linyun Luo
- Medical Affairs Department, China National Biotec Group Company Limited, Beijing, China
| | - Haiping Chen
- Medical Affairs Department, China National Biotec Group Company Limited, Beijing, China
| | - Lubin Shi
- Institute of Expanded Programme on Immunization, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Qiuyue Mu
- Institute of Expanded Programme on Immunization, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Wei Chen
- Medical Affairs Department, Wuhan Institute of Biological Products Company Limited, Wuhan, Hubei, China
| | - Xue Guo
- Medical Affairs Department, Changchun Institute of Biological Products Company Limited, Changchun, Jilin, China
| | - Min Zhang
- Medical Affairs Department, China National Biotec Group Company Limited, Beijing, China
| | - Jun Li
- Institute of Expanded Programme on Immunization, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Qinghu Guan
- Institute of Expanded Programme on Immunization, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Zhiping Chen
- Immunization Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China,*Correspondence: Xiaoming Yang, ; Zhiping Chen,
| | - Xiaoming Yang
- Medical Affairs Department, China National Biotec Group Company Limited, Beijing, China,Research and Development Department, National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Company Limited, Wuhan, Hubei, China,*Correspondence: Xiaoming Yang, ; Zhiping Chen,
| |
Collapse
|
12
|
Tong Y, Zhang X, Chen J, Chen W, Wang Z, Li Q, Duan K, Wei S, Yang B, Qian X, Li J, Hang L, Deng S, Li X, Guo C, Shen H, Liu Y, Deng P, Xie T, Li Q, Li L, Du H, Mao Q, Gao F, Lu W, Guan X, Huang J, Li X, Chen X. Immunogenicity and safety of an enterovirus 71 vaccine in children aged 36-71 months: A double-blind, randomised, similar vaccine-controlled, non-inferiority phase III trial. EClinicalMedicine 2022; 52:101596. [PMID: 35923425 PMCID: PMC9340505 DOI: 10.1016/j.eclinm.2022.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The enterovirus 71 (EV71) vaccine produced by Wuhan Institute of Biological Products Co., Ltd. (WIBP) (B-EV71) has been given to children aged 6-35 months, and it has shown good safety, immunogenicity and efficacy. However, the administration of EV71 vaccine in children aged 36-71 months, which is another target population, needs further exploration. METHODS We conducted a double-blind, randomised, controlled, non-inferiority phase III clinical trial in children aged 36-71 months, with a further comparison group of children aged 6-35 months in China. Children aged 6-71 months with no history of hand, foot and mouth disease or prior-vaccination of EV71 vaccine were eligible and recruited. Eligible participants aged 36-71 months were randomly assigned (1:1) to receive two doses of the B-EV71 vaccine (Older-B group) or the control EV71 vaccine (C-EV71 vaccine, produced by Institute of Medical Biology, Chinese Academy of Medical Sciences) (Older-C group), administered at a 30-day interval. Eligible participants aged 6-35 months were enrolled consecutively to receive two doses of the B-EV71 vaccine (Younger-B group) at a 30-day interval. Participants, investigators and those assessing outcomes were masked to the vaccine received. Non-inferiority analyses were conducted to compare the immunogenicity of EV71 vaccine in the Older-B group with that in the Older-C and Younger-B groups. Non-inferiority margins were 10% for seroconversion rate differences and 0.5 for geometric mean titre (GMT) ratios. The primary endpoints were the GMT level and seroconversion rate of anti-EV71 neutralising antibody 30 days after the second dose of vaccination. The primary analysis was performed in the per-protocol population. Safety analyses were conducted amongst participants receiving at least one dose of vaccine. This trial was registered at Chinadrugtrials.org.cn (#CTR20192345). FINDINGS Between June 3 and June 30, 2020, 1600 participants were enrolled and assigned, including 625 participants in the Older-B group, 625 participants in the Older-C group and 350 participants in the Younger-B group. The seroconversion rate of anti-EV71 neutralising antibody in the Older-B group (99.66%; 95% CI: 99.18%-100.00%) was non-inferior to that of the Older-C (99.32%; 95% CI: 98.65%-99.98%) and Younger-B groups (100.00%; 95% CI: 100.00%-100.00%). The differences in seroconversion rates in the Older-B group to those in the Older-C and Younger-B groups were 0.34% (95%CI: -2.17%-2.86%) and -0.34% (95%CI: -2.78%-2.09%). The GMT of the anti-EV71 neutralising antibody in the Older-B group (693.87) was also non-inferior to that in the Older-C (289.37) and Younger-B groups (634.80). The ratios of GMTs in the Older-B group to those in the Older-C and Younger-B groups were 2.67 (95%CI: 2.00-3.00) and 1.00 (95%CI: 0.75-1.00), respectively. The incidence of any adverse event (AE) related to vaccination was similar amongst the three groups (34/625 [5.44%] in the Older-B group, 32/623 [5.14%] in the Older-C group, and 26/349 [7.45%] in the Younger-B group), with only 2 (0.57%) participants having grade 3 AEs in the Younger-B group. Fifteen (0.94%) participants from these three groups had reported serious AEs (SAEs), all of which were unrelated to vaccines. INTERPRETATION EV71 vaccine produced by WIBP could extend to be administered to children aged 36-71 months against EV71 infection. However, the persistence of vaccine-induced immunities needs to be further investigated. FUNDING Hubei Province's young medical talent program (20191229), Hubei Province's young talent program (2021), Hubei Province's young public health talent program (2021); and the Wuhan Institute of Biological Products Co., Ltd.
Collapse
Affiliation(s)
- Yeqing Tong
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Xinyue Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhua Chen
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Wei Chen
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Zhao Wang
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Qiong Li
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beifang Yang
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Xiaoai Qian
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Jiahong Li
- Xiangzhou District Centre for Disease Control and Prevention, Wuhan, China
| | - Lianju Hang
- Xiangzhou District Centre for Disease Control and Prevention, Wuhan, China
| | - Shaoyong Deng
- Xiangzhou District Centre for Disease Control and Prevention, Wuhan, China
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Changfu Guo
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Heng Shen
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Yan Liu
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Peng Deng
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Tingbo Xie
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Qingliang Li
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Li Li
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Hongqiao Du
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
| | - Qunying Mao
- National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, China
| | - Weiwei Lu
- National Vaccine &Serum Institute, Beijing, China
| | - Xuhua Guan
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
- Corresponding authors.
| | - Jiao Huang
- Centre for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Corresponding authors.
| | - Xiuling Li
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
- Corresponding authors.
| | - Xiaoqi Chen
- Wuhan Institute of Biological Products Co., Ltd, Wuhan, China
- Corresponding authors.
| |
Collapse
|
13
|
Sun J, Li Y, Yang Z, Fang Q, Chen B. Effect of enterovirus 71 vaccination on the epidemiological characteristics and etiology in hospitalized children with hand-foot-and-mouth disease: A retrospective study from a tertiary children's hospital. Medicine (Baltimore) 2022; 101:e30356. [PMID: 36123878 PMCID: PMC9478296 DOI: 10.1097/md.0000000000030356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Enterovirus 71 (EV71) vaccine for hand-foot-and-mouth disease (HFMD) prevention has been available for several years. However, as a new vaccine, the impact of EV71 vaccination on the epidemiology and etiology of HFMD is currently unclear. The purpose of this study was to compare and analyze the changes of epidemiological characteristics and etiology of HFMD patients after the introduction of EV71 vaccine. The data of hospitalized children with HFMD from 2014 to 2020 were collected from the case record department of a tertiary children hospital of Anhui Province. The changes of epidemiological characteristics, time distribution, disease severity and enterovirus serotypes in hospitalized children were analyzed. A total of 7373 cases of HFMD were reported during 2014 to 2020, including 634 (8.6%) severe cases. The number of cases reached the peak in 2016 (n = 1783) and decreased gradually after EV71 vaccination. The results of etiological test showed the positive rate was 80.5%, in which EV71 accounted for 1599 (21.7%) and CV-A16 accounted for 1028 (13.9%) respectively. The number of patients showed a bimodal distribution throughout the year, which were April to June and October to November. The age distribution changed significantly following the introduction of EV71 vaccine. The proportion of 1-year-old group of post-vaccination was significantly higher than that of pre-vaccination (61.9% vs 50.8%, P < .001). The proportion of HFMD caused by EV71 and severe cases decreased significantly after the vaccination (P < .001 for both). While the comparison of epidemiological characteristics and enterovirus serotypes between unvaccinated and vaccinated cases during 2017 to 2020 showed no significant difference. The dominant enterovirus serotypes of hospitalized HFMD changed significantly after the introduction of EV71 vaccine. The proportion of severe cases decreased significantly after the vaccination, but EV71 was still a major pathogen in patients with severe HFMD. More age-appropriate children are recommended to get vaccinated to establish stronger herd immunity in the population.
Collapse
Affiliation(s)
- Jing Sun
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, China
| | - Yuanyuan Li
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, China
| | - Zhi Yang
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, China
| | - Qingfeng Fang
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, China
| | - Biquan Chen
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, China
- *Correspondence: Biquan Chen, Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, China (e-mail: )
| |
Collapse
|
14
|
Immunogenicity and Safety of an Inactivated Enterovirus 71 Vaccine Administered Simultaneously with Hepatitis B Virus Vaccine, Group A Meningococcal Polysaccharide Vaccine, Measles-Rubella Combined Vaccine and Japanese Encephalitis Vaccine: A Multi-Center, Randomized, Controlled Clinical Trial in China. Vaccines (Basel) 2022; 10:vaccines10060895. [PMID: 35746502 PMCID: PMC9230521 DOI: 10.3390/vaccines10060895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The aim of this study was to investigate the immunogenicity and safety of the enterovirus 71 vaccine (EV71 vaccine) administered alone or simultaneously. Methods: A multi-center, open-label, randomized controlled trial was performed involving 1080 healthy infants aged 6 months or 8 months from Shandong, Shanxi, Shaanxi, and Hunan provinces. These infants were divided into four simultaneous administration groups and EV71 vaccine separate administration group. Blood samples were collected from the infants before the first vaccination and after the completion of the vaccination. This trial was registered in the Clinical Trials Registry (NCT03519568). Results: A total of 895 were included in the per-protocol analysis. The seroconversion rates of antibodies against EV71 in four simultaneous administration groups (98.44% (189/192), 94.57% (122/129), 99.47% (187/188) and 98.45% (190/193)) were non-inferior to EV71 vaccine separate administration group (97.93% [189/193]) respectively. Fever was the most common adverse event, the pairwise comparison tests showed no difference in the incidence rate of solicited, systemic or local adverse events. Three serious adverse events related to the vaccination were reported. Conclusions: The evidence of immunogenicity and safety supports that the EV71 vaccine administered simultaneously with vaccines need to be administered during the same period of time recommended in China.
Collapse
|
15
|
Nguyen-Tran H, Messacar K. Preventing enterovirus A71 disease: another promising vaccine for children. Lancet 2022; 399:1671-1673. [PMID: 35427482 DOI: 10.1016/s0140-6736(22)00380-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Hai Nguyen-Tran
- Department of Pediatric Infectious Diseases, The Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin Messacar
- Department of Hospital Medicine, The Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
17
|
Sandoni M, Ciardo L, Tamburini C, Boncompagni A, Rossi C, Guidotti I, Garetti E, Lugli L, Iughetti L, Berardi A. Enteroviral Infections in the First Three Months of Life. Pathogens 2022; 11:60. [PMID: 35056008 PMCID: PMC8782040 DOI: 10.3390/pathogens11010060] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses (EVs) are an important source of infection in the paediatric age, with most cases concerning the neonatal age and early infancy. Molecular epidemiology is crucial to understand the circulation of main serotypes in a specific area and period due to their extreme epidemiological variability. The diagnosis of EVs infection currently relies on the detection of EVs RNA in biological samples (usually cerebrospinal fluid and plasma, but also throat swabs and feces) through a polymerase chain reaction assay. Although EVs infections usually have a benign course, they sometimes become life threatening, especially when symptoms develop in the first few days of life. Mortality is primarily associated with myocarditis, acute hepatitis, and multi-organ failure. Neurodevelopmental sequelae have been reported following severe infections with central nervous system involvement. Unfortunately, at present, the treatment of EVs infections is mainly supportive. The use of specific antiviral agents in severe neonatal infections has been reported in single cases or studies including few neonates. Therefore, further studies are needed to confirm the efficacy of these drugs in clinical practice.
Collapse
Affiliation(s)
- Marcello Sandoni
- Pediatric Post-Graduate School, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.S.); (L.C.); (C.T.); (L.I.)
| | - Lidia Ciardo
- Pediatric Post-Graduate School, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.S.); (L.C.); (C.T.); (L.I.)
| | - Caterina Tamburini
- Pediatric Post-Graduate School, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.S.); (L.C.); (C.T.); (L.I.)
| | - Alessandra Boncompagni
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Cecilia Rossi
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Isotta Guidotti
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Elisabetta Garetti
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Licia Lugli
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| | - Lorenzo Iughetti
- Pediatric Post-Graduate School, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.S.); (L.C.); (C.T.); (L.I.)
- Pediatric Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, Azienda Ospedaliera, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.B.); (C.R.); (I.G.); (E.G.); (A.B.)
| |
Collapse
|
18
|
Singh S, Mane SS, Kasniya G, Cartaya S, Rahman MM, Maheshwari A, Motta M, Dudeja P. Enteroviral Infections in Infants. NEWBORN (CLARKSVILLE, MD.) 2022; 1:297-305. [PMID: 36304567 PMCID: PMC9599990 DOI: 10.5005/jp-journals-11002-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enteroviruses (EVs) are major pathogens in young infants. These viruses were traditionally classified into the following four subgenera: polio, coxsackie A and B, and echoviruses. Now that poliomyelitis seems to be controlled in most parts of the world, coxsackie and echoviruses are gaining more attention because (i) the structural and pathophysiological similarities and (ii) the consequent possibilities in translational medicine. Enteroviruses are transmitted mainly by oral and fecal-oral routes; the clinical manifestations include a viral prodrome including fever, feeding intolerance, and lethargy, which may be followed by exanthema; aseptic meningitis and encephalitis; pleurodynia; myopericarditis; and multi-system organ failure. Laboratory diagnosis is largely based on reverse transcriptase-polymerase chain reaction, cell culture, and serology. Prevention and treatment can be achieved using vaccination, and administration of immunoglobulins and antiviral drugs. In this article, we have reviewed the properties of these viruses, their clinical manifestations, and currently available methods of detection, treatment, and prognosis.
Collapse
Affiliation(s)
- Srijan Singh
- Department of Pediatrics, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Sushant Satish Mane
- Department of Pediatrics, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Gangajal Kasniya
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, New York, United States of America
| | - Sofia Cartaya
- Department of Pediatrics, University of South Florida, Tampa, Florida, United States of America
| | - Mohd Mujibur Rahman
- Department of Neonatology, Institute of Child and Mother Health, Dhaka, Bangladesh
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| | - Mario Motta
- Neonatologia e Terapia Intensiva Neonatale ASST Spedali Civili di Brescia, Italy
| | - Pradeep Dudeja
- Department of Gastroenterology, University of Illinois at Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Sun Y, Zhang L, Li N, Zhao H, Ma R, Fang T, Yang T, Xu G, Liu Z, Zhan S. No association between enterovirus 71 (EV71) vaccination and risk of febrile seizures: a population-based near real-time surveillance study. Expert Rev Vaccines 2021; 21:125-134. [PMID: 34860622 DOI: 10.1080/14760584.2022.2011228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Since 2016, vaccines against enterovirus 71 (EV71) infection have been approved for use in China. Reports to the national passive surveillance system raised concerns about febrile seizures (FS) after EV71 vaccination. Rapid safety assessment of this novel vaccine is a public health priority. The objective was to assess risks of FS following EV71 vaccination in China. METHODS We used data from a Regional Health Information Platform in Ningbo. The exposed population was children aged 6-71 months who received any dose of EV71 vaccine from 1 January 2016 to 31 December 2019. We implemented a multilayered approach to actively monitor FS following EV71 vaccination that included near real-time surveillance using two complementary sequential designs and further signal evaluation performing self-controlled risk interval (SCRI) analyses. RESULTS A total of 330,668 EV71 doses were administered to the study population. During 157 weeks of sequential analyses, no statistically increased risks were detected, when compared with the self-matched control interval or the background risk. Further SCRI analyses confirmed no associations between EV71 vaccination and FS (adjusted incidence rate ratio: 1.04, 95% CI: 0.75 to 1.43). CONCLUSIONS Our results reassured the safety of FS after EV71 vaccination using postlicensure data for the first time.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Liang Zhang
- Institute of Health Big Data, Institute of Immunization and Prevention, Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Ning Li
- Institute of Health Big Data, Institute of Immunization and Prevention, Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Houyu Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Rui Ma
- Institute of Health Big Data, Institute of Immunization and Prevention, Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Ting Fang
- Institute of Health Big Data, Institute of Immunization and Prevention, Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Tianchi Yang
- Institute of Health Big Data, Institute of Immunization and Prevention, Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Guozhang Xu
- Institute of Health Big Data, Institute of Immunization and Prevention, Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Zhike Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
20
|
Wang Z, Zhou C, Gao F, Zhu Q, Jiang Y, Ma X, Hu Y, Shi L, Wang X, Zhang C, Liu B, Shen L, Mao Q, Liu G. Preclinical evaluation of recombinant HFMD vaccine based on enterovirus 71 (EV71) virus-like particles (VLP): Immunogenicity, efficacy and toxicology. Vaccine 2021; 39:4296-4305. [PMID: 34167837 DOI: 10.1016/j.vaccine.2021.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Enterovirus 71 (EV71) is one of the major causative agents for hand, foot and mouth disease (HFMD) in children. Currently, three inactivated EV71 vaccines have been approved by Chinese government. We previously demonstrated that recombinant EV71 virus-like particles (VLP) produced in Pichia pastoris can be produced at a high yield with a simple manufacturing process, and the candidate vaccine elicited protective humoral immune responses in mice. In present study, the nonclinical immunogenicity, efficacy and toxicity of the EV71 vaccine was comprehensively evaluated in rodents and non-human primates. The immunogenicity assessment showed that EV71 VLPs vaccine elicited high and persistent neutralizing antibody responses, which could be comparable with a licensed inactivated vaccine in animals. The immune sera of vaccinated mice also exhibited cross-neutralization activities to the heterologous subtypes of EV71. Both passive and maternal antigen specific antibodies protected the neonatal mice against the lethal EV71 challenge. Furthermore, nonclinical safety assessment of EV71 VLP vaccine showed no signs of systemic toxicity in animals. Therefore, the excellent immunogenicity, efficacy and toxicology data supported further evaluation of the VLP-based EV71 vaccine in humans.
Collapse
Affiliation(s)
- Ziyan Wang
- Shanghai Zerun Biotech Co., Ltd., Shanghai, China.
| | | | - Fan Gao
- National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Qianjun Zhu
- Shanghai Zerun Biotech Co., Ltd., Shanghai, China.
| | | | - Xinxing Ma
- Shanghai Zerun Biotech Co., Ltd., Shanghai, China.
| | - Yalin Hu
- Shanghai Zerun Biotech Co., Ltd., Shanghai, China.
| | - Likang Shi
- Shanghai Zerun Biotech Co., Ltd., Shanghai, China.
| | | | - Chao Zhang
- Shanghai Zerun Biotech Co., Ltd., Shanghai, China.
| | - Baofeng Liu
- Shandong Xinbo Pharmaceutical R&D Co. Ltd., Dezhou, Shandong, China.
| | - Lianzhong Shen
- Shandong Xinbo Pharmaceutical R&D Co. Ltd., Dezhou, Shandong, China.
| | - Qunying Mao
- National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Ge Liu
- Shanghai Zerun Biotech Co., Ltd., Shanghai, China.
| |
Collapse
|
21
|
Ye L, Chen J, Fang T, Ma R, Wang J, Pan X, Dong H, Xu G. Vaccination coverage estimates and utilization patterns of inactivated enterovirus 71 vaccine post vaccine introduction in Ningbo, China. BMC Public Health 2021; 21:1118. [PMID: 34112128 PMCID: PMC8194148 DOI: 10.1186/s12889-021-11198-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background In China, enterovirus 71 (EV71) is the major etiological agents of hand foot mouth disease that poses severe risks to children’s health. Since 2015, three inactivated EV71 vaccines have been approved for use. Previous studies indicated the high willingness of EV71 vaccination in eastern China. However, few studies have assessed coverage and utilization patterns of EV71 vaccine in China. Methods Children born during 2012–2018 were sampled and their records were abstracted from Ningbo childhood immunization information management system. Descriptive statistics characterized the study population and assessed coverage and timeliness for EV71 vaccination. Simultaneous administration patterns as well as type of EV71 vaccine used were also evaluated. Bivariate and multivariable analysis was used to examine the relationship of socio-demographic characteristics with vaccination coverage and timeliness. Results Of 716,178 children living in Ningbo. One hundred seventy-two thousand two hundred thirty-six received EV71 vaccine with a coverage rate of 24.05% and only 8.61% received vaccination timely. 21.97% of children received the complete two dose EV71 series but only 6.49% completed timely. Vaccination coverage and timeliness increased significantly from 2012 birth cohort to 2018 birth cohort. Relatively higher coverage and timeliness were observed in resident children, Inner districts, high socioeconomic areas and large-scaled immunization clinics. Of 329,569 doses of EV71 vaccine, only 5853(1.78%) doses were administered at the same day as other vaccines. Conclusions There is a need for increasing EV71 vaccination coverage and timeliness as well as eliminating disparities among different populations. Our study highlights the importance of simultaneous administration to increasing coverage and timeliness of EV71 vaccination.
Collapse
Affiliation(s)
- Lixia Ye
- Ningbo Municipal Center for Disease Prevention and Control, Institute of Immunization and Prevention, Yongfeng Road, Haishu District, Ningbo, 315010, China
| | - Jieping Chen
- Ningbo Municipal Center for Disease Prevention and Control, Institute of Immunization and Prevention, Yongfeng Road, Haishu District, Ningbo, 315010, China
| | - Ting Fang
- Ningbo Municipal Center for Disease Prevention and Control, Institute of Immunization and Prevention, Yongfeng Road, Haishu District, Ningbo, 315010, China
| | - Rui Ma
- Ningbo Municipal Center for Disease Prevention and Control, Institute of Immunization and Prevention, Yongfeng Road, Haishu District, Ningbo, 315010, China
| | - Jianmei Wang
- Ningbo Municipal Center for Disease Prevention and Control, Institute of Immunization and Prevention, Yongfeng Road, Haishu District, Ningbo, 315010, China
| | - Xingqiang Pan
- Ningbo Municipal Center for Disease Prevention and Control, Institute of Immunization and Prevention, Yongfeng Road, Haishu District, Ningbo, 315010, China
| | - Hongjun Dong
- Ningbo Municipal Center for Disease Prevention and Control, Institute of Immunization and Prevention, Yongfeng Road, Haishu District, Ningbo, 315010, China
| | - Guozhang Xu
- Ningbo Municipal Center for Disease Prevention and Control, Institute of Immunization and Prevention, Yongfeng Road, Haishu District, Ningbo, 315010, China.
| |
Collapse
|
22
|
Hu Y, Kitamura N, Musharrafieh R, Wang J. Discovery of Potent and Broad-Spectrum Pyrazolopyridine-Containing Antivirals against Enteroviruses D68, A71, and Coxsackievirus B3 by Targeting the Viral 2C Protein. J Med Chem 2021; 64:8755-8774. [PMID: 34085827 PMCID: PMC9179928 DOI: 10.1021/acs.jmedchem.1c00758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The enterovirus genus of the picornavirus family contains many important human pathogens. EV-D68 primarily infects children, and the disease manifestations range from respiratory illnesses to neurological complications such as acute flaccid myelitis (AFM). EV-A71 is a major pathogen for the hand, foot, and mouth disease (HFMD) in children and can also lead to AFM and death in severe cases. CVB3 infection can cause cardiac arrhythmias, acute heart failure, as well as type 1 diabetes. There is currently no FDA-approved antiviral for any of these enteroviruses. In this study, we report our discovery and development of pyrazolopyridine-containing small molecules with potent and broad-spectrum antiviral activity against multiple strains of EV-D68, EV-A71, and CVB3. Serial viral passage experiments, coupled with reverse genetics and thermal shift binding assays, suggested that these molecules target the viral protein 2C. Overall, the pyrazolopyridine inhibitors represent a promising class of candidates for the urgently needed nonpolio enterovirus antivirals.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Naoya Kitamura
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
23
|
Tang J, Zhang Z, Zhang Z, Huang H, Du T, Wang X, Yan L, Rao Q, Yang J, Wang M, Shen R, Sun Q, Jiang H. Two cases of hand, foot and mouth disease caused by enterovirus A71 after vaccination. Int J Infect Dis 2021; 108:190-197. [PMID: 33737136 DOI: 10.1016/j.ijid.2021.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Enterovirus A71 (EVA71) is one of the main pathogens causing hand, foot and mouth disease (HFMD). In China, the proportion of cases of HFMD caused by EVA71 is known to be significantly lower following EVA71 vaccination; however, infection with EVA71 can still occur after vaccination. METHODS The complete genomic sequences of EVA71-KM18A and KM18B (from two rare cases of EVA71 infection following vaccination) were obtained. Phylogenetic analysis, nucleotide mutation analysis, recombinant analysis and comparative analysis of amino acid mutations were performed. RESULTS Phylogenetic analysis determined that the EVA71 strains belonged to the C4a subgenotype. The KM18A and KM18B strains were highly similar to the vaccine strains. For the KM18B strain, there were some obvious homologous recombination signals in the 5'non-coding region, region 2A, region 2C and region 3D. Amino acid mutations were observed in the SP55 (position 729) and 71-6 (position 500) conformational neutralizing epitopes of the KM18A and KM18B strains. CONCLUSIONS These amino acid mutations may affect the SP55 and 71-6 conformational neutralizing epitopes and change their spatial conformation, thereby weakening vaccine effectiveness.
Collapse
Affiliation(s)
- Jiaolian Tang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Zhilei Zhang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Zhen Zhang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China
| | - Hailing Huang
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Tingyi Du
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China
| | - Lingmei Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China
| | - Qin Rao
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Jinghui Yang
- Department of Paediatrics, The First People's Hospital of Yunnan Province, Kunming, PR China
| | - Meifeng Wang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Ru Shen
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China.
| | - Hongchao Jiang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China.
| |
Collapse
|
24
|
Li ML, Shih SR, Tolbert BS, Brewer G. Enterovirus A71 Vaccines. Vaccines (Basel) 2021; 9:vaccines9030199. [PMID: 33673595 PMCID: PMC7997495 DOI: 10.3390/vaccines9030199] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a major causative agent of hand, foot, and mouth disease (HFMD) and herpangina. Moreover, EV-A71 infection can lead to neurological complications and death. Vaccination is the most efficient way to control virus infection. There are currently three inactivated, whole EV-A71 vaccines licensed by the China NMPA (National Medical Products Administration). Several other types of vaccines, such as virus-like particles and recombinant VP1 (capsid protein), are also under development. In this review, we discuss recent advances in the development of EV-A71 vaccines.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
- Correspondence:
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
25
|
Lee MHP, Tan CW, Tee HK, Ong KC, Sam IC, Chan YF. Vaccine candidates generated by codon and codon pair deoptimization of enterovirus A71 protect against lethal challenge in mice. Vaccine 2021; 39:1708-1720. [PMID: 33640144 DOI: 10.1016/j.vaccine.2021.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease (HFMD) in young children. It is associated with severe neurological complications and death. This study aims to develop a live-attenuated vaccine by codon deoptimization (CD) and codon-pair deoptimization (CPD) of EV-A71. CD is generated by introducing the least preferred codons for amino acids while CPD increases the presence of underrepresented codon pairs in the specific genes. CD and CPD chimeras were generated by synonymous mutations at the VP2, VP3, VP1 and 2A gene regions, designated as XYZ. All twelve deoptimized viruses were viable with similar replication kinetics, but the plaque sizes were inversely proportional to the level of deoptimization. All the deoptimized viruses showed attenuated growth in vitro with reduced viral protein expression at 48 h and lower viral RNA at 39 °C. Six-week-old ICR mice were immunized intraperitoneally with selected CD and CPD X and XY vaccine candidates covering the VP2-VP3 and VP2-VP3-VP1 genes, respectively. All vaccine candidates elicited high anti-EV-A71 IgG levels similar to wild-type (WT) EV-A71. The CD X and CPD X vaccines produced robust neutralizing antibodies but not the CD XY and CPD XY. On lethal challenge, offspring of mice immunized with WT, CD X and CPD X were fully protected, but the CD XY- and CPD XY-vaccinated mice had delayed symptoms and eventually died. Similarly, active immunization of 1-day-old suckling mice with CD X, CPD X and CD XY vaccine candidates provided complete immune protection but CPD XY only protected 40% of the challenged mice. Histology of the muscles from CD X- and CPD X-vaccinated mice showed minimal pathology compared to extensive inflammation in the post-challenged mock-vaccinated mice. Overall, we demonstrated that the CD X and CPD X elicited good neutralizing antibodies, conferred immune protection and are promising live-attenuated vaccine candidates for EV-A71.
Collapse
Affiliation(s)
- Michelle Hui Pheng Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Head JR, Collender PA, Lewnard JA, Skaff NK, Li L, Cheng Q, Baker JM, Li C, Chen D, Ohringer A, Liang S, Yang C, Hubbard A, Lopman B, Remais JV. Early Evidence of Inactivated Enterovirus 71 Vaccine Impact Against Hand, Foot, and Mouth Disease in a Major Center of Ongoing Transmission in China, 2011-2018: A Longitudinal Surveillance Study. Clin Infect Dis 2020; 71:3088-3095. [PMID: 31879754 PMCID: PMC7819528 DOI: 10.1093/cid/ciz1188] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), associated with severe manifestations of the disease. Pediatric immunization with inactivated EV71 vaccine was initiated in 2016 in the Asia-Pacific region, including China. We analyzed a time series of HFMD cases attributable to EV71, coxsackievirus A16 (CA16), and other enteroviruses in Chengdu, a major transmission center in China, to assess early impacts of immunization. METHODS Reported HFMD cases were obtained from China's notifiable disease surveillance system. We compared observed postvaccination incidence rates during 2017-2018 with counterfactual predictions made from a negative binomial regression and a random forest model fitted to prevaccine years (2011-2015). We fit a change point model to the full time series to evaluate whether the trend of EV71 HFMD changed following vaccination. RESULTS Between 2011 and 2018, 279 352 HFMD cases were reported in the study region. The average incidence rate of EV71 HFMD in 2017-2018 was 60% (95% prediction interval [PI], 41%-72%) lower than predicted in the absence of immunization, corresponding to an estimated 6911 (95% PI, 3246-11 542) EV71 cases averted over 2 years. There were 52% (95% PI, 42%-60%) fewer severe HFMD cases than predicted. However, the incidence rate of non-CA16 and non-EV71 HFMD was elevated in 2018. We identified a significant decline in the trend of EV71 HFMD 4 months into the postvaccine period. CONCLUSIONS We provide the first real-world evidence that programmatic vaccination against EV71 is effective against childhood HFMD and present an approach to detect early vaccine impact or intended consequences from surveillance data.
Collapse
Affiliation(s)
- Jennifer R Head
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Philip A Collender
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Nicholas K Skaff
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ling Li
- Institute for Public Health Information, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Qu Cheng
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Julia M Baker
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Charles Li
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Dehao Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Alison Ohringer
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Changhong Yang
- Institute for Public Health Information, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Benjamin Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
27
|
Han Y, Chen Z, Zheng K, Li X, Kong J, Duan X, Xiao X, Guo B, Luan R, Long L. Epidemiology of Hand, Foot, and Mouth Disease Before and After the Introduction of Enterovirus 71 Vaccines in Chengdu, China, 2009-2018. Pediatr Infect Dis J 2020; 39:969-978. [PMID: 32433221 DOI: 10.1097/inf.0000000000002745] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) has posed a serious threat to children's health. Three inactivated monovalent enterovirus 71 (EV71) vaccines are proved to be highly efficacious in phase III clinical trials and are now available in China. METHODS We analyzed the citywide surveillance data on HFMD cases in Chengdu during 2009-2018, and estimated cumulative first-dose EV71 vaccination coverage among children eligible to EV71 vaccination after August 2016 in Chengdu. Time series susceptible-infected-recovered model was developed to analyze basic reproduction number and herd immunity threshold of HFMD. Overall and serotype-specific HFMD incidences and severity risks were compared before and after the EV71 vaccination. RESULTS Among 3 laboratory-identified serotype categories, i.e. EV71, coxsackievirus A16 (CV-A16), and other enteroviruses, the major serotype attributed to HFMD has been changing across years. The cumulative first-dose EV71 vaccination coverage rate was estimated as 60.8% during the study period in Chengdu. By contrast, herd immunity threshold for EV71-related HFMD was 94.0%. After introduction of EV71 vaccines, the overall incidence of HFMD increased 60.8%, mainly driven by 173.7% and 11.8% increased in HFMD caused by other enteroviruses and CV-A16, respectively, which offset a significant reduction in the incidence of HFMD caused by EV71. The overall case-severity risk decreased from 1.4% to 0.3%, with significantly declined presented in all serotype categories. CONCLUSIONS The incidence and severity of EV71-related HFMD decreased following implementation of EV71 vaccination. Developing multivalent vaccines and strengthening laboratory-based surveillance could further decline burden of HFMD.
Collapse
Affiliation(s)
- Yutong Han
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Zhenhua Chen
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Ke Zheng
- Department of Immunization Planning, Chengdu Municipal Center for Disease Control and Prevention, Sichuan, China
| | - Xianzhi Li
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Jinwang Kong
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Xiaoxia Duan
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Xiong Xiao
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Bing Guo
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Rongsheng Luan
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Lu Long
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
28
|
Liu J, Zhao B, Xue L, Wu J, Xu Y, Liu Y, Qin C. Immunization with a fusion protein vaccine candidate generated from truncated peptides of human enterovirus 71 protects mice from lethal enterovirus 71 infections. Virol J 2020; 17:58. [PMID: 32321526 PMCID: PMC7178760 DOI: 10.1186/s12985-020-01328-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/10/2020] [Indexed: 01/25/2023] Open
Abstract
Background Prophylactic vaccines are critical in preventing hand, foot, and mouth disease (HFMD) primarily caused by human enterovirus 71 (EV71) infection. Children aged less than 5 years are especially susceptible to EV71 infections. In addition to the development of vaccines containing the inactivated virus, those containing virus-like particles (VLPs) with repeated antigens also constitute an effective preventive strategy for EV71 infections, with safety and productivity advantages. We previously developed a fusion protein composed with truncated peptides of the EV71 capsid protein, which assembled into spherical particles. This study aimed to assess the immunoprotective effects of this fusion protein as a vaccine candidate in a mouse model of EV71 infection. Methods To evaluate the protective effect of fusion protein vaccine candidate, neonatal mice born by immunized female mice, as well as normal neonatal mice immunized twice were infected with EV71 virus. Whereafter, the survival rates, clinical scores and viral loads were measured. Results The high dosage and booster immunization helped induce specific serum antibodies with high neutralization titers, which were transferred to neonatal mice, thereby facilitating effective resistance towards EV71 infection. An active immune response was also observed in neonatal mice which generated following immunization. Conclusions The present results suggest that this fusion protein is a suitable vaccine candidate in treating EV71 infections.
Collapse
Affiliation(s)
- Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS&PUMC, Beijing, 100021, People's Republic of China
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS&PUMC, Beijing, 100021, People's Republic of China
| | - Ling Xue
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jing Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS&PUMC, Beijing, 100021, People's Republic of China
| | - Yanfeng Xu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS&PUMC, Beijing, 100021, People's Republic of China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS&PUMC, Beijing, 100021, People's Republic of China.
| |
Collapse
|
29
|
Liu D, Leung K, Jit M, Yu H, Yang J, Liao Q, Liu F, Zheng Y, Wu JT. Cost-effectiveness of bivalent versus monovalent vaccines against hand, foot and mouth disease. Clin Microbiol Infect 2020; 26:373-380. [PMID: 31279839 PMCID: PMC6942242 DOI: 10.1016/j.cmi.2019.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) were responsible for 43.3% (235 123/543 243) and 24.8% (134 607/543 243) of all laboratory-confirmed hand, foot and mouth disease (HFMD) cases during 2010-2015 in China. Three monovalent EV71 vaccines have been licensed in China while bivalent EV71/CA16 vaccines are under development. A comparative cost-effectiveness analysis of bivalent EV71/CA16 versus monovalent EV71 vaccination would be useful for informing the additional value of bivalent HFMD vaccines in China. METHODS We used a static model parameterized with the national HFMD surveillance data during 2010-2013, virological HFMD surveillance records from all 31 provinces in mainland China during 2010-2013 and caregiver survey data of costs and health quality of life during 2012-2013. We estimated the threshold vaccine cost (TVC), defined as the maximum additional cost that could be paid for a cost-effective bivalent EV71/CA16 vaccine over a monovalent EV71 vaccine, as the outcome. The base case analysis was performed from a societal perspective. Several sensitivity analyses were conducted by varying assumptions governing HFMD risk, costs, discounting and vaccine efficacy. RESULTS In the base case, choosing the bivalent EV71/CA16 over monovalent EV71 vaccination would be cost-effective only if the additional cost of the bivalent EV71/CA16 compared with the monovalent EV71 vaccine is less than €4.7 (95% CI 4.2-5.2). Compared with the TVC in the base case, TVC increased by up to €8.9 if all the test-negative cases were CA16-HFMD; decreased by €1.1 with an annual discount rate of 6% and exclusion of the productivity loss; and increased by €0.14 and €0.3 with every 1% increase in bivalent vaccine efficacy against CA16-HFMD and differential vaccine efficacy against EV71-HFMD, respectively. CONCLUSIONS Bivalent EV71/CA16 vaccines can be cost-effective compared with monovalent EV71 vaccines, if suitably priced. Our study provides further evidence for determining the optimal use of HFMD vaccines in routine paediatric vaccination programme in China.
Collapse
Affiliation(s)
- D Liu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - K Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - M Jit
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Modelling and Economics Unit, Public Health England, London, UK; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - H Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - J Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Q Liao
- Key Laboratory of Surveillance and Early-warning on Infectious Disease, Division of Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - F Liu
- Key Laboratory of Surveillance and Early-warning on Infectious Disease, Division of Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Y Zheng
- Key Laboratory of Surveillance and Early-warning on Infectious Disease, Division of Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - J T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
30
|
Wang S, Zeng J, Zhang X, Gan Z, Fan J, Chen Y, Liang Z, Hu X, Zeng G, Lv H. Short-term dynamic changes in neutralizing antibodies against enterovirus 71 after vaccination. Hum Vaccin Immunother 2020; 16:1595-1601. [PMID: 31977278 DOI: 10.1080/21645515.2020.1711678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Short-term dynamic changes in neutralizing antibodies against EV71 and EV71-IgM after inactivated EV71 vaccine injection are unknown. METHODS This study was designed as a randomized, open-label study and was registered at ClinicalTrials.gov (NCT03278132). In total, 120 healthy infants aged 6-35 months were randomized 1:1:1 to provide a second blood sample on day 10, day 20, or day 30 after the first vaccine dose, respectively. RESULTS According to the per-protocol set, a rapid immune response against EV71 was observed 10 days after the first EV71 vaccine dose, with antibody titers ≥1:8 in 89.19% of participants (95% CI: 74.58-96.97%) on day 10, in 80.65% (95% CI: 62.53-92.55%) on day 20, in 66.67% (95% CI: 49.03-81.44%) on day 30, and in 100% (95% CI: 96.52%-.) on day 60. Based on an ELISA, the percentages of participants positive for EV71-IgM on day 0 and day 60 were 1.71% (2 out of 117) and 82.86% (87 out of 105), respectively. CONCLUSIONS The EV71 vaccine could be used for contingency vaccination to further control EV71-associated disease outbreaks. Caution should be taken in using the EV71-IgM test for rapid EV71 infection diagnosis after EV71 vaccine administration. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03278132.
Collapse
Affiliation(s)
- Shenyu Wang
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou, China
| | - Ji Zeng
- Clinical Research Department, Sinovac Biotech Co., Ltd , Beijing, China
| | - Xinpei Zhang
- Shangyu District Center for Disease Control and Prevention , Shaoxing, China
| | - Zhengkai Gan
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou, China.,Department of Immunization Programme, Xiuzhou District Center for Disease Control and Prevention , Jiaxing, China
| | - Jianqiang Fan
- Shangyu District Center for Disease Control and Prevention , Shaoxing, China
| | - Yingping Chen
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou, China
| | - Zhenzhen Liang
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou, China
| | - Xiaosong Hu
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou, China
| | - Gang Zeng
- Clinical Research Department, Sinovac Biotech Co., Ltd , Beijing, China
| | - Huakun Lv
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou, China
| |
Collapse
|
31
|
Wang CR. Pathogenesis of hand-foot-mouth disease caused by enterovirus 71. Shijie Huaren Xiaohua Zazhi 2019; 27:1465-1472. [DOI: 10.11569/wcjd.v27.i24.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hand-foot-mouth disease (HFMD) is a global infectious disease. The infected population is mainly infants and young children. Enterovirus 71 (EV71) is the main pathogen. In addition to HFMD, EV71 infection can also affect the nervous system and other organs, resulting in aseptic meningitis, brainstem encephalitis, and poliomyelitis-like paralysis, causing serious harm to children's health. At present, the pathogenesis of HFMD caused by EV71 is still unclear, and there is no effective treatment. In this paper, we discuss the factors influencing EV71 infection from the aspects of virus gene recombination and spontaneous mutation, host genes, and receptor sites, review the pathogenesis of HFMD caused by EV71 based on the study findings from animal infection models, and explore the main problems in the study of pathogenesis of this condition, in order to provide reference for the prevention and treatment of HFMD and for the development of new drugs or effective vaccines for EV71 infection.
Collapse
Affiliation(s)
- Chun-Rong Wang
- Institute for Viral Disease Detection, Jinan Center for Disease Control and Prevention, Jinan 250021, Shandong Province, China
| |
Collapse
|
32
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
33
|
Lim ZQ, Ng QY, Ng JWQ, Mahendran V, Alonso S. Recent progress and challenges in drug development to fight hand, foot and mouth disease. Expert Opin Drug Discov 2019; 15:359-371. [DOI: 10.1080/17460441.2019.1659241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ze Qin Lim
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qing Yong Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Wei Qing Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Yang Z, Gao F, Wang X, Shi L, Zhou Z, Jiang Y, Ma X, Zhang C, Zhou C, Zeng X, Liu G, Fan J, Mao Q, Shi L. Development and characterization of an enterovirus 71 (EV71) virus-like particles (VLPs) vaccine produced in Pichia pastoris. Hum Vaccin Immunother 2019; 16:1602-1610. [PMID: 31403352 DOI: 10.1080/21645515.2019.1649554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the major causative agents for hand, foot and mouth disease (HFMD) in children. Although there are three inactivated virus-based HFMD vaccines licensed in China, alternative approaches have been taken to produce an effective and safer vaccine that is easier to manufacture in large scale. Among these, a virus-like particles (VLPs) based EV71 vaccine is under active development. For this purpose, an efficient methodology for the production of EV71-VLPs by recombinant technology is needed. We here report the construction and expression of the P1 and 3C genes of EV71 in Pichia pastoris for producing VLP-based EV71 vaccine antigen with a high yield and simple manufacturing process. Based on codon-optimized P1 and 3C genes, EV71-VLPs were efficiently expressed in Pichia pastoris system, and the expression level reached 270 mg/L. Biochemical and biophysical analyses showed that the produced EV71-VLPs consisted of processed VP0, VP1, and VP3 present as ~35nm spherical particles. The immune response as a function of EV71-VLPs and adjuvant dose ratio was investigated for vaccine development. Immunization with EV71-VLPs of 1-5 µg/dose and adjuvant of 225 µg/dose induced robust neutralizing antibody responses in mice and provided effective protection against lethal challenge in both maternally transferred antibody and passive transfer protection mouse models. Therefore, the yeast produced EV71-VLPs antigen is a promising candidate for the development of a vaccine against HFMD.
Collapse
Affiliation(s)
- Zhijian Yang
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Fan Gao
- Division of Hepatitis Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) , Beijing, PR China
| | - Xiaoliang Wang
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Likang Shi
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Zheng Zhou
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | | | - Xinxing Ma
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Chao Zhang
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Chenliang Zhou
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Xianfang Zeng
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Ge Liu
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Jiang Fan
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| | - Qunying Mao
- Division of Hepatitis Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) , Beijing, PR China
| | - Li Shi
- Shanghai Zerun Biotechnology Co., Ltd , Shanghai, PR China
| |
Collapse
|
35
|
Zhang D. A template for EV-A71 vaccine evaluation in the real world. THE LANCET. CHILD & ADOLESCENT HEALTH 2019; 3:665-666. [PMID: 31375311 DOI: 10.1016/s2352-4642(19)30181-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Dingmei Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
36
|
Aw‐Yong KL, NikNadia NMN, Tan CW, Sam I, Chan YF. Immune responses against enterovirus A71 infection: Implications for vaccine success. Rev Med Virol 2019; 29:e2073. [DOI: 10.1002/rmv.2073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Kam Leng Aw‐Yong
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Nik Mohd Nasir NikNadia
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Chee Wah Tan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - I‐Ching Sam
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of MedicineUniversity of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
37
|
Taravilla CN, Pérez-Sebastián I, Salido AG, Serrano CV, Extremera VC, Rodríguez AD, Marín LL, Sanz MA, Traba OMS, González AS. Enterovirus A71 Infection and Neurologic Disease, Madrid, Spain, 2016. Emerg Infect Dis 2019; 25. [PMID: 30560775 PMCID: PMC6302576 DOI: 10.3201/eid2501.181089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
For children with brainstem encephalitis or encephalomyelitis, clinicians should look for enterovirus and not limit testing to cerebrospinal fluid. We conducted an observational study from January 2016 through January 2017 of patients admitted to a reference pediatric hospital in Madrid, Spain, for neurologic symptoms and enterovirus infection. Among the 30 patients, the most common signs and symptoms were fever, lethargy, myoclonic jerks, and ataxia. Real-time PCR detected enterovirus in the cerebrospinal fluid of 8 patients, nasopharyngeal aspirate in 17, and anal swab samples of 5. The enterovirus was genotyped for 25 of 30 patients; enterovirus A71 was the most common serotype (21/25) and the only serotype detected in patients with brainstem encephalitis or encephalomyelitis. Treatment was intravenous immunoglobulins for 21 patients and corticosteroids for 17. Admission to the pediatric intensive care unit was required for 14 patients. All patients survived. At admission, among patients with the most severe disease, leukocytes were elevated. For children with brainstem encephalitis or encephalomyelitis, clinicians should look for enterovirus and not limit testing to cerebrospinal fluid.
Collapse
|
38
|
Callegaro A, Tibaldi F. Assessing correlates of protection in vaccine trials: statistical solutions in the context of high vaccine efficacy. BMC Med Res Methodol 2019; 19:47. [PMID: 30841856 PMCID: PMC6402125 DOI: 10.1186/s12874-019-0687-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/20/2019] [Indexed: 11/24/2022] Open
Abstract
Background The use of correlates of protection (CoPs) in vaccination trials offers significant advantages as useful clinical endpoint substitutes. Vaccines with very high vaccine efficacy (VE) are documented in the literature (VE ≥95%). The rare events (number of infections) observed in the vaccinated groups of these trials posed challenges when applying conventionally-used statistical methods for CoP assessment. In this paper, we describe the nature of these challenges, and propose easy-to-implement and uniquely-tailored statistical solutions for the assessment of CoPs in the specific context of high VE. Methods The Prentice criteria and meta-analytic frameworks are standard statistical methods for assessing vaccine CoPs, but can be problematic in high VE cases due to the rare events data available. As a result, lack of fit and the problem of infinite estimates may arise, in the former and latter methods respectively. The use of flexible models within the Prentice framework, and penalized-likelihood methods to solve the issue of infinite estimates can improve the performance of both methods in high VE settings. Results We have 1) devised flexible non-linear models to counteract the Prentice framework lack of fit, providing sufficient statistical power to the method, and 2) proposed the use of penalised likelihood approaches to make the meta-analytic framework applicable on randomized subgroups, such as regions. The performance of the proposed methods for high VE cases was evaluated by running simulations. Conclusions As vaccines with high efficacy are documented in the literature, there is a need to identify effective statistical solutions to assess CoPs. Our proposed adaptations are straight-forward and improve the performance of conventional statistical methods for high VE data, leading to more reliable CoP assessments in the context of high VE settings.
Collapse
|
39
|
Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy. Viruses 2018; 10:v10120674. [PMID: 30487421 PMCID: PMC6316343 DOI: 10.3390/v10120674] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.
Collapse
|
40
|
Mao Q, Hao X, Hu Y, Du R, Lang S, Bian L, Gao F, Yang C, Cui B, Zhu F, Shen L, Liang Z. A neonatal mouse model of central nervous system infections caused by Coxsackievirus B5. Emerg Microbes Infect 2018; 7:185. [PMID: 30459302 PMCID: PMC6246558 DOI: 10.1038/s41426-018-0186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 01/02/2023]
Abstract
As one of the key members of the coxsackievirus B group, coxsackievirus B5 (CV-B5) can cause many central nervous system diseases, such as viral encephalitis, aseptic meningitis, and acute flaccid paralysis. Notably, epidemiological data indicate that outbreaks of CV-B5-associated central nervous system (CNS) diseases have been reported worldwide throughout history. In this study, which was conducted to promote CV-B5 vaccine and anti-virus drug research, a 3-day-old BALB/c mouse model was established using a CV-B5 clinical isolate (CV-B5/JS417) as the challenge strain. Mice challenged with CV-B5/JS417 exhibited a series of neural clinical symptoms and death with necrosis of neuronal cells in the cerebral cortex and the entire spinal cord, hindlimb muscles, and cardiomyocytes. The viral load of each tissue at various post-challenge time points suggested that CV-B5 replicated in the small intestine and was subsequently transmitted to various organs via viremia; the virus potentially entered the brain through the spinal axons, causing neuronal cell necrosis. In addition, this mouse model was used to evaluate the protective effect of a CV-B5 vaccine. The results indicated that both the inactivated CV-B5 vaccine and anti-CVB5 serum significantly protected mice from a lethal infection of CV-B5/JS417 by producing neutralizing antibodies. In summary, the first CV-B5 neonatal mouse model has been established and can sustain CNS infections in a manner similar to that observed in humans. This model will be a useful tool for studies on pathogenesis, vaccines, and anti-viral drug evaluations.
Collapse
Affiliation(s)
- Qunying Mao
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaotian Hao
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yalin Hu
- Quality Control Department, Hualan Biological Engineering Inc., Henan, China
| | - Ruixiao Du
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Shuhui Lang
- Shandong Xinbo Pharmaceutical Co. Ltd., Dezhou, China
| | - Lianlian Bian
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Ce Yang
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Bopei Cui
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Fengcai Zhu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | | | - Zhenglun Liang
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
41
|
Fang CY, Liu CC. Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Rev Vaccines 2018; 17:819-831. [PMID: 30095317 DOI: 10.1080/14760584.2018.1510326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a childhood illness commonly caused by enterovirus A. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the most commonly identified viruses associated with HFMD. Recently, outbreaks caused by different enterovirus A including CV-A6 and CV-A10 are increasing. Being available now to protect against EV-A71 infection, inactivated EV-A71 vaccines cannot prevent coxsackievirus infections, thus limiting their general application in controlling HFMD. Multivalent HFMD vaccines are suggested to have broad cross-neutralizing responses against these emerging enteroviruses. AREAS COVERED We discuss the recent development of enterovirus A vaccines including the inactivated whole-virion vaccine and virus-like particle vaccine candidates and review the information of neutralization epitopes of these viruses. EXPERT COMMENTARY Evaluation of the efficacy and safety of the coxsackievirus vaccine and the multivalent HFMD vaccine candidates in clinical trials is urgently required. Epitopic analysis showed that common immunodominant sites exist across these enteroviruses. However, variations of amino acid residues in these regions limit the induction of cross-neutralization antibodies, and therefore, a multivalent HFMD vaccine is required for broad protection against HFMD. With the inclusion of major circulating viruses in the development of multivalent HFMD vaccines, an increase in the success in HFMD control is anticipated.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- a Department of Pathology, Wan Fang Hospital , Taipei Medical University , Taipei , Taiwan
| | - Chia-Chyi Liu
- b National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| |
Collapse
|
42
|
Su Y, Chen P, Gao F, Bian L, Sun S, Dong F, Hu Y, Mao Q, Jiang W, Wu X, Liang Z. A surrogate assay for measuring Coxsackievirus A6 neutralizing antibodies. Hum Vaccin Immunother 2018; 14:3034-3040. [PMID: 30060712 DOI: 10.1080/21645515.2018.1504540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) is one of pathogens causing hand, foot and mouth disease (HFMD) and becomes a new challenge to HFMD control. In this study, we first built a single-round pseudovirus infection system for CV-A6, and then developed a pseudovirus luciferase assay (PVLA) for anti-CV-A6 neutralizing antibody (NtAb) quantification. Since cytopahtic effect (CPE) is considered as the gold standard test for anti-enterovirus NtAb detection, a comparison study has been performed using 318 clinical serum samples, as measured both by PVLA and CPE. The sensitivity and specificity of PVLA was 94.9% (95% CI between 90.8-97.5%) and 92.7% (95% CI between 86.6-96.6%), respectively. Statistical analysis revealed that PVLA and CPE were highly correlated (spearman r = 0.931, P < 0.0001) and in good agreement (94.0%, 95% CI between 90.8-96.4%), showing that PVLA could be used as a surrogate assay for anti-CV-A6 NtAb detection and served as a valuable tool for CV-A6 vaccine evaluation and CV-A6 epidemiological surveillance.
Collapse
Affiliation(s)
- Yao Su
- a Division of Hepatitis Virus Vaccines , National Institute for Food and Drug Control , Beijing , China.,b Department of Quality Control , Changchun Institute of Biological Products Co. Ltd , Changchun , China
| | - Pan Chen
- c National Institute of Biological Sciences , Beijing , China
| | - Fan Gao
- a Division of Hepatitis Virus Vaccines , National Institute for Food and Drug Control , Beijing , China
| | - Lianlian Bian
- a Division of Hepatitis Virus Vaccines , National Institute for Food and Drug Control , Beijing , China
| | - Shiyang Sun
- a Division of Hepatitis Virus Vaccines , National Institute for Food and Drug Control , Beijing , China
| | - Fangyu Dong
- a Division of Hepatitis Virus Vaccines , National Institute for Food and Drug Control , Beijing , China
| | - Yalin Hu
- d Department of Quality Control , Hualan Biological Engineering Inc , Xinxiang , China
| | - Qunying Mao
- a Division of Hepatitis Virus Vaccines , National Institute for Food and Drug Control , Beijing , China
| | - Wei Jiang
- b Department of Quality Control , Changchun Institute of Biological Products Co. Ltd , Changchun , China
| | - Xing Wu
- a Division of Hepatitis Virus Vaccines , National Institute for Food and Drug Control , Beijing , China
| | - Zhenglun Liang
- a Division of Hepatitis Virus Vaccines , National Institute for Food and Drug Control , Beijing , China
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The focus of this review is on enterovirus (EV)-associated acute flaccid paralysis (AFP) due to spinal cord anterior horn cell disease. Emphasis is placed on the epidemiology, pathogenesis, diagnosis, treatment, and outcome of AFP caused by polioviruses, vaccine-derived polioviruses, EV-D68, and EV-A71. RECENT FINDINGS Since the launch of The Global Polio Eradication Initiative in 1988, the worldwide incidence of polio has been reduced by 99.9%, with small numbers of poliomyelitis cases being reported only in Afghanistan, Pakistan, and Nigeria. With the planned phaseout of oral polio vaccine, vaccine-associated poliomyelitis is also expected to be eliminated. In their place, other EVs, chiefly EV-D68 and EV-A71, have emerged as the principal causes of AFP. There is evidence that the emergence of EV-D68 as a cause of severe respiratory disease and AFP was due to recent genetic virus evolution. Antiviral medications targeting EV-D68, EV-A71, and other EVs will likely be available in the near future. An effective EV-A71 vaccine has been developed, and preliminary investigations suggest an EV-D68 vaccine could be on the horizon. The eradication of poliomyelitis and vaccine-associated poliomyelitis is near, after which other EVs, presently EV-D68 and EV-A71, will be the principle viral causes of AFP. Moving forward, it is essential that EV outbreaks, in particular those associated with neurologic complications, be investigated carefully and the causal strains identified, so that treatment and prevention efforts can be rapidly developed and implemented.
Collapse
Affiliation(s)
- Ari Bitnun
- Division of Infectious Diseases, The Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| | - E Ann Yeh
- Division of Neurology, The Hospital for Sick Children and Department of Pediatrics, Division of Neurosciences and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Yin D, Zhu Y, Wang K, Wang J, Zhang X, Han M, He Y, Chen Q, Hu G. Development and evaluation of a rapid recombinase polymerase amplification assay for the detection of human enterovirus 71. Arch Virol 2018; 163:2459-2463. [PMID: 29767300 DOI: 10.1007/s00705-018-3859-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/21/2018] [Indexed: 10/16/2022]
Abstract
Enterovirus 71 (EV71) is one of the most common pathogens of hand, foot, and mouth disease (HFMD). A rapid reverse transcription recombinase polymerase amplification (RT-RPA) assay was established to detect EV71 subgenotype C4 (EV71-C4). The 95% detection limit of the RT-RPA was 3.767 log10 genomic copies (LGC)/reaction. The specificity was 100%. In a clinical sample evaluation, this approach demonstrated sufficient clinical performance when compared with a commercial RT-qPCR diagnostic kit. Thus, the RT-RPA assay may be a promising alternative for the detection of EV71-C4.
Collapse
Affiliation(s)
- Dan Yin
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yanan Zhu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Kaifeng Wang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiru Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Min Han
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guifang Hu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
45
|
Song FX, Zhao LQ, Zhu RN, Song QW, Deng J, Tian R, Wang F, Qian Y. Protective effect of an alpha 7 nicotinic acetylcholine receptor agonist against enterovirus 71 infection in neuronal cells. Antiviral Res 2018; 149:106-112. [DOI: 10.1016/j.antiviral.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 12/23/2022]
|
46
|
Production and purification of virus-like particles of different enterovirus subtypes as vaccines. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Gao F, Bian L, Hao X, Hu Y, Yao X, Sun S, Chen P, Yang C, Du R, Li J, Zhu F, Mao Q, Liang Z. Seroepidemiology of coxsackievirus B5 in infants and children in Jiangsu province, China. Hum Vaccin Immunother 2017; 14:74-80. [PMID: 29049009 DOI: 10.1080/21645515.2017.1384107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus B5 (CV-B5) is associated with various human diseases such as viral encephalitis, aseptic meningitis, paralysis, herpangina, and hand, foot and mouth disease (HFMD). However, there is currently no effective vaccine against CV-B5.The seroepidemiologic characteristics of CV-B5 remained unknown. A cohort study was carried out in 176 participants aged 6-35 months from January 2012 to January 2014. The serum samples were collected and tested for CV-B5 neutralizing antibodies (NtAbs) four times during these two years. The confirmed enterovirus cases were recorded through the surveillance system, and their throat or rectal swabs were collected for pathogen detection. According to the changes of CV-B5 NtAbs, two CV-B5 epidemics were detected among these participants during the two-year follow-up. Sixty-seven cases out of all participants had seroconversion in CV-B5 NtAbs. During the first epidemic from March 2012 to September 2012, CV-B5 seropositivity rate increased significantly (6.8%, 12/176 vs. 21.6%, 38/176, P = 0.000). The seroconversion rate and geometric mean fold-increase (GMFI) were 18.2% (32/176) and 55.7, respectively; During the second epidemic from September 2012 to January 2014, CV-B5 seropositivity rate also increased (21.6%, 38/176 vs. 38.6%, 68/176, P = 0.000), and the seroconversion rate and GMFI were 19.9% (35/176) and 46.5, respectively. Only one case had CV-B5 associated HFMD during the two-year follow-up, and CV-B5 from the throat swab isolate was GI.D3 subtype, which belonged to the major pandemic strain in mainland China. CV-B5 infection was common in infants and children in Jiangsu province, China. Therefore, it's necessary to strengthen the surveillance on CV-B5 and to understand the epidemic characteristics of CV-B5 infection.
Collapse
Affiliation(s)
- Fan Gao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Lianlian Bian
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Xiaotian Hao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Yalin Hu
- b Hualan Biological Engineering Inc , Xinxiang , Henan , P. R. China
| | - Xin Yao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Shiyang Sun
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Pan Chen
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Ce Yang
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Ruixiao Du
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Jingxin Li
- c Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , Jiangsu , P. R. China
| | - Fengcai Zhu
- c Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , Jiangsu , P. R. China
| | - Qunying Mao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Zhenglun Liang
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| |
Collapse
|
48
|
Yang T, Li H, Yue L, Song X, Xie T, Ma S, Meng H, Zhang Y, He X, Long R, Yang R, Luo F, Xie Z, Li Q. A comparative study of multiple clinical enterovirus 71 isolates and evaluation of cross protection of inactivated vaccine strain FY-23 K-B in vitro. Virol J 2017; 14:206. [PMID: 29073897 PMCID: PMC5659012 DOI: 10.1186/s12985-017-0872-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022] Open
Abstract
Background Enterovirus 71 (EV71) is one of the causative agents of hand, foot and mouth disease, which mostly affects infants and children and leads to severe neurological diseases. Vaccination offers the best option for disease control. We have screened the virus strain FY-23 K-B, which is used as an inactivated vaccine strain. An important issue in the development of vaccines is whether they provide cross protection against all other strains. Methods We collected and identified 19 clinical EV71 isolates from mainland China, which all belong to the C4 genotype. We established growth curves of the strains in Vero cells, performed genetic analysis, and evaluated the cross protection efficacy through neutralizing assays using antisera from a rabbit, monkey and adult human immunized with the FY-23 K-B vaccine strain. Results The antisera showed broad cross protection among the C4 subgroup strains and homotype strain. Neutralizing indexes (NIs) among the isolates and homotype strain of antisera varied between 56.2–1995.3 for rabbit, 17.8–42,169.7 for monkey and 31.6–17,782.8 for human, whereas NIs against Coxsackievirus A16 or other enteroviruses were below 10. Conclusions These results suggested that FY-23 K-B used as an antigen could elicit broad spectrum neutralizing antibodies with cross protective efficacy among C4 genotype strains.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Xia Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Tianhong Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Huaqing Meng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Ye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Xin He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Runxiang Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Rong Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Fangyu Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Zhongping Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
49
|
Wang W, Song J, Wang J, Li Y, Deng H, Li M, Gao N, Zhai S, Dang S, Zhang X, Jia X. Cost-effectiveness of a national enterovirus 71 vaccination program in China. PLoS Negl Trop Dis 2017; 11:e0005899. [PMID: 28892475 PMCID: PMC5608421 DOI: 10.1371/journal.pntd.0005899] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/21/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Enterovirus 71 (EV71) has caused great morbidity, mortality, and use of health service in children younger than five years in China. Vaccines against EV71 have been proved effective and safe by recent phase 3 trials and are now available in China. The purpose of this study was to evaluate the health impact and cost-effectiveness of a national EV71 vaccination program in China. METHODS Using Microsoft Excel, a decision model was built to calculate the net clinical and economic outcomes of EV71 vaccination compared with no EV71 vaccination in a birth cohort of 1,000,000 Chinese children followed for five years. Model parameters came from published epidemiology, clinical and cost data. RESULTS In the base-case, vaccination would annually avert 37,872 cases of hand, foot and mouth disease (HFMD), 2,629 herpangina cases, 72,900 outpatient visits, 6,363 admissions to hospital, 29 deaths, and 945 disability adjusted life years. The break-even price of the vaccine was $5.2/dose. When the price was less than $8.3 or $14.6/dose, the vaccination program would be highly cost-effective or cost-effective, respectively (incremental cost-effectiveness ratio less than or between one to three times China GDP per capita, respectively). In one-way sensitivity analyses, the HFMD incidence was the only influential parameter at the price of $5/dose. CONCLUSIONS Within the price range of current routine vaccines paid by the government, a national EV71 vaccination program would be cost-saving or highly cost-effective to prevent EV71 related morbidity, mortality, and use of health service among children younger than five years in China. Policy makers should consider including EV71 vaccination as part of China's routine childhood immunization schedule.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianwen Song
- Department of Dermatology, Xi’an Children’s Hospital, Xi’an, China
| | - Jingjing Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huiling Deng
- The Second Department of Infectious Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Mei Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ning Gao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Song Zhai
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
50
|
Zhu W, Jin P, Li JX, Zhu FC, Liu P. Correlates of protection for inactivated enterovirus 71 vaccine: the analysis of immunological surrogate endpoints. Expert Rev Vaccines 2017; 16:945-949. [PMID: 28548626 DOI: 10.1080/14760584.2017.1335603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Inactivated Enterovirus 71 (EV71) vaccines showed significant efficacy against the diseases associated with EV71 and a neutralizing antibody (NTAb) titer of 1:16-1:32 was suggested as the correlates of the vaccine protection. This paper aims to further estimate the immunological surrogate endpoints for the protection of inactivated EV71 vaccines and the effect factors. METHODS Pre-vaccination NTAb against EV71 at baseline (day 0), post-vaccination NTAb against EV71 at day 56, and the occurrence of laboratory-confirmed EV71-associated diseases during a 24-months follow-up period were collected from a phase 3 efficacy trial of an inactivated EV71 vaccine. We used the mixed-scaled logit model and the absolute sigmoid function by some extensions in continuous models to estimate the immunological surrogate endpoint for the EV71 vaccine protection, respectively. RESULTS For children with a negative baseline of EV71 NTAb titers, an antibody level of 26.6 U/ml (1:30) was estimated to provide at least a 50% protection for 12 months, and an antibody level of 36.2 U/ml (1:42) may be needed to achieve a 50% protective level of the population for 24 months. CONCLUSION Both the pre-vaccination NTAb level and the vaccine protective period could affect the estimation of the immunological surrogate for EV71 vaccine. A post-vaccination NTAb titer of 1:42 or more may be needed for long-term protection. CLINICAL TRIAL REGISTRATION NCT01508247.
Collapse
Affiliation(s)
- Wenbo Zhu
- a Department of Public Health , Southeast University , Nanjing , China
| | - Pengfei Jin
- b Vaccine Clinical Trials Institute, Jiangsu Province Center for Disease Control and Prevention , Nanjing , China.,c Zhejiang Province Center for Disease Control and Prevention , Hangzhou , China
| | - Jing-Xin Li
- b Vaccine Clinical Trials Institute, Jiangsu Province Center for Disease Control and Prevention , Nanjing , China
| | - Feng-Cai Zhu
- b Vaccine Clinical Trials Institute, Jiangsu Province Center for Disease Control and Prevention , Nanjing , China
| | - Pei Liu
- a Department of Public Health , Southeast University , Nanjing , China
| |
Collapse
|