1
|
Molecular Assessment of Domain I of Apical Membrane Antigen I Gene in Plasmodium falciparum: Implications in Plasmodium Invasion, Taxonomy, Vaccine Development, and Drug Discovery. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:1419998. [PMID: 36249587 PMCID: PMC9568357 DOI: 10.1155/2022/1419998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022]
Abstract
Given its global morbidity and mortality rates, malaria continues to be a major public health concern. Despite significant progress in the fight against malaria, efforts to control and eradicate the disease globally are in jeopardy due to lack of a universal vaccine. The conserved short peptide sequences found in Domain I of Plasmodium falciparum apical membrane antigen 1 (PfAMA1), which are exposed on the parasite cell surface and in charge of Plasmodium falciparum invasion of host cells, make PfAMA1 a promising vaccine candidate antigen. The precise amino acids that make up these conserved short peptides are still unknown, and it is still difficult to pinpoint the molecular processes by which PfAMA1 interacts with the human host cell during invasion. The creation of a universal malaria vaccine based on the AMA1 antigen is challenging due to these knowledge limitations. This study used genome mining techniques to look for these particular short peptides in PfAMA1. Thirty individuals with Plasmodium falciparum malaria had blood samples taken using Whatman's filter papers. DNA from the parasite was taken out using the Chelex technique. Domain I of the Plasmodium falciparum AMA1 gene was amplified using nested polymerase chain reactions, and the amplified products were removed, purified, and sequenced. The DNA sequence generated was converted into the matching amino acid sequence using bioinformatic techniques. These amino acid sequences were utilized to search for antigenic epitopes, therapeutic targets, and conserved short peptides in Domain I of PfAMA1. The results of this investigation shed important light on the molecular mechanisms behind Plasmodium invasion of host cells, a potential PfAMA1 vaccine antigen sequence, and prospective malaria treatment options in the future. Our work offers fresh information on malaria medication and vaccine research that has not been previously discussed.
Collapse
|
2
|
Trucchi C, Paganino C, Amicizia D, Orsi A, Tisa V, Piazza MF, Icardi G, Ansaldi F. Universal influenza virus vaccines: what needs to happen next? Expert Opin Biol Ther 2019; 19:671-683. [PMID: 30957589 DOI: 10.1080/14712598.2019.1604671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Influenza occurs worldwide and causes significant disease burden in terms of morbidity, associated complications, hospitalizations, and deaths. Vaccination constitutes the primary approach for controlling influenza. Current influenza vaccines elicit a strain-specific response yet occasionally exhibit suboptimal effectiveness. This review describes the limits of available immunization tools and the future prospects and potentiality of universal influenza vaccines. AREAS COVERED New 'universal' vaccines, which are presently under development, are expected to overcome the problems related to the high variability of influenza viruses, such as the need for seasonal vaccine updates and re-vaccination. Here, we explore vaccines based on the highly conserved epitopes of the HA, NA, or extracellular domain of the influenza M2 protein, along with those based on the internal proteins such as NP and M1. EXPERT OPINION The development of a universal influenza vaccine that confers protection against homologous, drifted, and shifted influenza virus strains could obviate the need for annual reformulation and mitigate disease burden. The scientific community has long been awaiting the advent of universal influenza vaccines; these are currently under development in laboratories worldwide. If such vaccines are immunogenic, efficacious, and able to confer long-lasting immunity, they might be integrated with or supplant traditional influenza vaccines.
Collapse
Affiliation(s)
- Cecilia Trucchi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy
| | - Chiara Paganino
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy
| | - Daniela Amicizia
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Andrea Orsi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Valentino Tisa
- c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Maria Francesca Piazza
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Giancarlo Icardi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Filippo Ansaldi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| |
Collapse
|
3
|
The quest for a nanoparticle-based vaccine inducing broad protection to influenza viruses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2563-2574. [DOI: 10.1016/j.nano.2018.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
|