1
|
Li W, Yan ZF, Teng TS, Xiang XH. Mycobacterium tuberculosis Rv1043c regulates the inflammatory response by inhibiting the phosphorylation of TAK1. Int Microbiol 2024; 27:743-752. [PMID: 37676442 DOI: 10.1007/s10123-023-00428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Mycobacterium tuberculosis can manipulate the host immunity through its effectors to ensure intracellular survival and colonization. Rv1043c has been identified as an effector potentially involved in M. tuberculosis pathogenicity. To explore the function of M. tuberculosis Rv1043c during infection, we overexpressed this protein in M. smegmatis, a non-pathogenic surrogate model in tuberculosis research. Here, we reported that Rv1043c enhanced mycobacterial survival and down-regulated the release of pro-inflammatory cytokines in macrophages and mice. In addition, Rv1043c inhibited the activation of MAPK and NF-κB signaling by preventing the phosphorylation of TAK1 indirectly. In conclusion, these data suggest that Rv1043c regulates the immune response and enhances the survival of recombinant M. smegmatis in vitro and in vivo.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, 641100, People's Republic of China
| | - Zi-Fei Yan
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, 641100, People's Republic of China
| | - Tie-Shan Teng
- School of Medical Sciences, College of Medicine, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Xiao-Hong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
2
|
López-López S, Romero de Ávila MJ, González-Gómez MJ, Nueda ML, Baladrón V, Monsalve EM, García-Ramírez JJ, Díaz-Guerra MJM. NOTCH4 potentiates the IL-13 induced genetic program in M2 alternative macrophages through the AP1 and IRF4-JMJD3 axis. Int Immunol 2023; 35:497-509. [PMID: 37478314 DOI: 10.1093/intimm/dxad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
IL-13 signaling polarizes macrophages to an M2 alternatively activated phenotype, which regulates tissue repair and anti-inflammatory responses. However, an excessive activation of this pathway leads to severe pathologies, such as allergic airway inflammation and asthma. In this work, we identified NOTCH4 receptor as an important modulator of M2 macrophage activation. We show that the expression of NOTCH4 is induced by IL-13, mediated by Janus kinases and AP1 activity, probably mediated by the IL-13Rα1 and IL-13Rα2 signaling pathway. Furthermore, we demonstrate an important role for NOTCH4 signaling in the IL-13 induced gene expression program in macrophages, including various genes that contribute to pathogenesis of the airways in asthma, such as ARG1, YM1, CCL24, IL-10, or CD-163. We also demonstrate that NOTCH4 signaling modulates IL-13-induced gene expression by increasing IRF4 activity, mediated, at least in part, by the expression of the histone H3K27me3 demethylase JMJD3, and by increasing AP1-dependent transcription. In summary, our results provide evidence for an important role of NOTCH4 signaling in alternative activation of macrophages by IL-13 and suggest that NOTCH4 may contribute to the increased severity of lesions in M2 inflammatory responses, such as allergic asthma, which points to NOTCH4 as a potential new target for the treatment of these pathologies.
Collapse
Affiliation(s)
- Susana López-López
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
- Research Unit, Complejo Hospitalario Universitario de Albacete, C/Laurel, s/n, 02008 Albacete, Spain
| | - María José Romero de Ávila
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - María Julia González-Gómez
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - María Luisa Nueda
- Biochemistry and Molecular Biology Branch, School of Pharmacy/CRIB/Biomedicine Unit, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - Victoriano Baladrón
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - Eva M Monsalve
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - José Javier García-Ramírez
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - María José M Díaz-Guerra
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| |
Collapse
|
3
|
Fang W, Liu H, Qin L, Wang J, Huang X, Pan S, Zheng R. Polymorphisms and gene expression of Notch4 in pulmonary tuberculosis. Front Immunol 2023; 14:1081483. [PMID: 36817473 PMCID: PMC9933242 DOI: 10.3389/fimmu.2023.1081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Tuberculosis (TB) is a serious public health problem to human health, but the pathogenesis of TB remains elusive. Methods To identify novel candidate genes associated with TB susceptibility, we performed a population-based case control study to genotype 41SNPs spanning 21 genes in 435 pulmonary TB patients and 375 health donors from China. Results We found Notch4 gene rs206018 and rs422951 polymorphisms were associated with susceptibility to pulmonary tuberculosis. The association was validated in another independent cohort including 790 TB patients and 1,190 healthy controls. Moreover, we identified that the rs206018 C allele was associated with higher level of Notch4 in PBMCs from pulmonary TB patients. Furthermore, Notch4 expression increased in TB patients and higher Notch4 expression correlated with the severer pulmonary TB. Finally, we explored the origin and signaling pathways involved in the regulation of Notch4 expression in response to Mycobacterium tuberculosis (Mtb) infection. We determine that Mtb induced Notch4 and its ligand Jagged1expression in macrophages, and Notch4 through TLR2/P38 signaling pathway and Jagged1 through TLR2/ERK signaling pathway. Conclusion Our work further strengthens that Notch4 underlay an increased risk of TB in humans and is involved in the occurrence and development of TB, which could serve as a novel target for the host-targeted therapy of TB.
Collapse
Affiliation(s)
- Weijun Fang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianhua Qin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sha Pan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Ruijuan Zheng
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
马 沁, 刘 莉, 于 嘉, 宫 照, 王 晓, 吴 晓, 邓 光. [TRAF6 promotes Bacillus Calmette- Guérin-induced macrophage apoptosis through the intrinsic apoptosis pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1279-1287. [PMID: 36210699 PMCID: PMC9550557 DOI: 10.12122/j.issn.1673-4254.2022.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the role of tumor necrosis factor receptor-associated factor 6 (TRAF6) in regulating Bacillus Calmette-Guérin (BCG)-induced macrophage apoptosis. METHODS The expression of TRAF6 in peripheral blood samples of 50 patients with active tuberculosis (TB) and 50 healthy individuals were detected using quantitative real-time PCR (qPCR). RAW264.7 macrophages were infected with BCG at different MOI and for different lengths of time, and the changes in expressions of Caspase 3 and TRAF6 were detected with Western blotting and qPCR. In a RAW264.7 cell model of BCG infection with TRAF6 knockdown established using RNA interference technique, the bacterial load was measured and cell apoptotic rate and mitochondrial membrane potential (MMP) were determined with flow cytometry. The expression levels of TRAF6, Caspase 3, PARP, BAX and Bcl-2 in the cells were detected using Western blotting, and the expressions of TRAF6 and Caspase 3 were also examined with immunofluorescence assay. RESULTS The expression of TRAF6 was significantly upregulated in the peripheral blood of patients with active TB as compared with healthy subjects (P < 0.001). In RAW264.7 cells, BCG infection significantly increased the expressions of Caspase 3 and TRAF6, which were the highest in cells infected for 18 h and at the MOI of 15. TRAF6 knockdown caused a significant increase of bacterial load in BCG-infected macrophages (P=0.05), lowered the cell apoptotic rate (P < 0.001) and reduced the expressions of Caspase 3 (P=0.002) and PARP (P < 0.001). BCG-infected RAW264.7 cells showed a significantly increased MMP (P < 0.001), which was lowered by TRAF6 knockdown (P < 0.001); the cells with both TRAF6 knockdown and BCG infection showed a lowered BAX expression (P=0.005) and an increased expression of Bcl-2 (P=0.04). CONCLUSION TRAF6 promotes BCG-induced macrophage apoptosis by regulating the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- 沁梅 马
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 莉 刘
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 嘉霖 于
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 照乾 宫
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 晓平 王
- 宁夏回族自治区第四人民医院,宁夏 银川 750021Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - 晓玲 吴
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 光存 邓
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Ochsner SA, Pillich RT, Rawool D, Grethe JS, McKenna NJ. Transcriptional regulatory networks of circulating immune cells in type 1 diabetes: A community knowledgebase. iScience 2022; 25:104581. [PMID: 35832893 PMCID: PMC9272393 DOI: 10.1016/j.isci.2022.104581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Investigator-generated transcriptomic datasets interrogating circulating immune cell (CIC) gene expression in clinical type 1 diabetes (T1D) have underappreciated re-use value. Here, we repurposed these datasets to create an open science environment for the generation of hypotheses around CIC signaling pathways whose gain or loss of function contributes to T1D pathogenesis. We firstly computed sets of genes that were preferentially induced or repressed in T1D CICs and validated these against community benchmarks. We then inferred and validated signaling node networks regulating expression of these gene sets, as well as differentially expressed genes in the original underlying T1D case:control datasets. In a set of three use cases, we demonstrated how informed integration of these networks with complementary digital resources supports substantive, actionable hypotheses around signaling pathway dysfunction in T1D CICs. Finally, we developed a federated, cloud-based web resource that exposes the entire data matrix for unrestricted access and re-use by the research community. Re-use of transcriptomic type 1 diabetes (T1D) circulating immune cells (CICs) datasets We generated transcriptional regulatory networks for T1D CICs Use cases generate substantive hypotheses around signaling pathway dysfunction in T1D CICs Networks are freely accessible on the web for re-use by the research community
Collapse
Affiliation(s)
- Scott A. Ochsner
- Department of Molecular, Baylor College of Medicine, Houston, TX 77030, USA
- Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rudolf T. Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Deepali Rawool
- Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey S. Grethe
- Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093, USA
| | - Neil J. McKenna
- Department of Molecular, Baylor College of Medicine, Houston, TX 77030, USA
- Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author
| |
Collapse
|
6
|
Toxocara canis Infection Alters mRNA Expression Profiles of Peripheral Blood Mononuclear Cells in Beagle Dogs at the Lung Infection Period. Animals (Basel) 2022; 12:ani12121517. [PMID: 35739856 PMCID: PMC9219457 DOI: 10.3390/ani12121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Toxocariasis is one of the most neglected zoonoses in the world. Toxocara canis is the main pathogen causing toxocariasis in humans and animals, threatening public health. To date, the mechanism by which the larvae of T. canis escape the attack of immune cells in the blood is still poorly understood. Using RNA-seq technology, the transcriptional alterations of Beagle dog peripheral blood mononuclear cells (PBMCs) between the presence and absence of T. canis infection were analyzed during the lung infection period, and 1066 upregulated genes and 1076 downregulated genes were identified (padj < 0.05 and |log2 (FoldChange)| > 1). In addition, many immune- or inflammation-related GO terms and KEGG signaling pathways were significantly altered during T. canis infection by GO annotation and KEGG enrichment analysis. The present study revealed that T. canis infection can alter the mRNA profiles of PBMCs in Beagle dogs during the lung infection period, which has important implications for a better understanding of the interaction mechanism between T. canis and host immune cells. Abstract Toxocara canis is a neglected zoonotic roundworm distributed all over the world, causing toxocariasis in humans and animals. However, so far, the immune mechanism of T. canis infection in definitive hosts remains to be clarified. In this study, the transcriptional alterations of Beagle dogs’ peripheral blood mononuclear cells (PBMCs) induced by T. canis infection during the lung infection period were analyzed using RNA-seq technology. A total of 2142 differentially expressed genes were identified, with 1066 upregulated genes and 1076 downregulated genes. Many differentially expressed genes participated in the biological process of intracellular signal transduction, as well as the immune- or inflammation-related KEGG signaling pathway, such as the Notch signaling pathway, Toll-like receptor signaling pathway, and NF-kappa B signaling pathway, through KEGG enrichment analysis. This study indicated that T. canis infection could suppress the biological function of Beagle dogs’ PMBCs and provided basic data to further clarify the interaction mechanism between T. canis and host immune cells.
Collapse
|
7
|
Borbora SM, Rajmani RS, Balaji KN. PRMT5 epigenetically regulates the E3 ubiquitin ligase ITCH to influence lipid accumulation during mycobacterial infection. PLoS Pathog 2022; 18:e1010095. [PMID: 35658060 PMCID: PMC9200362 DOI: 10.1371/journal.ppat.1010095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/15/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), triggers enhanced accumulation of lipids to generate foamy macrophages (FMs). This process has been often attributed to the surge in the expression of lipid influx genes with a concomitant decrease in those involved in lipid efflux. Here, we define an Mtb-orchestrated modulation of the ubiquitination of lipid accumulation markers to enhance lipid accretion during infection. We find that Mtb infection represses the expression of the E3 ubiquitin ligase, ITCH, resulting in the sustenance of key lipid accrual molecules viz. ADRP and CD36, that are otherwise targeted by ITCH for proteasomal degradation. In line, overexpressing ITCH in Mtb-infected cells was found to suppress Mtb-induced lipid accumulation. Molecular analyses including loss-of-function and ChIP assays demonstrated a role for the concerted action of the transcription factor YY1 and the arginine methyl transferase PRMT5 in restricting the expression of Itch gene by conferring repressive symmetrical H4R3me2 marks on its promoter. Consequently, siRNA-mediated depletion of YY1 or PRMT5 rescued ITCH expression, thereby compromising the levels of Mtb-induced ADRP and CD36 and limiting FM formation during infection. Accumulation of lipids within the host has been implicated as a pro-mycobacterial process that aids in pathogen persistence and dormancy. In line, we found that perturbation of PRMT5 enzyme activity resulted in compromised lipid levels and reduced mycobacterial survival in mouse peritoneal macrophages (ex vivo) and in a therapeutic mouse model of TB infection (in vivo). These findings provide new insights into the role of PRMT5 and YY1 in augmenting mycobacterial pathogenesis. Thus, we posit that our observations could help design novel adjunct therapies and combinatorial drug regimen for effective anti-TB strategies. Mycobacterium tuberculosis infection leads to the formation of lipid-laden cells (foamy macrophages-FMs) that offer a favorable shelter for its persistence. During infection, we observe a significant reduction in the expression of the E3 ubiquitin ligase, ITCH. This repression allows the sustenance of key lipid accretion molecules (ADRP and CD36), by curbing their proteasomal degradation. Further, we show the repression of ITCH to be dependent on the concerted action of the bifunctional transcription factor, YY1 and the arginine methyl transferase, PRMT5. NOTCH signaling pathway was identified as a master-regulator of YY1 expression. In vitro and in vivo analyses revealed the significance of PRMT5 in regulating FM formation and consequently mycobacterial burden.
Collapse
Affiliation(s)
- Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
8
|
López-López S, Romero de Ávila MJ, Hernández de León NC, Ruiz-Marcos F, Baladrón V, Nueda ML, Laborda J, García-Ramírez JJ, Monsalve EM, Díaz-Guerra MJM. NOTCH4 Exhibits Anti-Inflammatory Activity in Activated Macrophages by Interfering With Interferon-γ and TLR4 Signaling. Front Immunol 2021; 12:734966. [PMID: 34925319 PMCID: PMC8671160 DOI: 10.3389/fimmu.2021.734966] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/11/2021] [Indexed: 01/14/2023] Open
Abstract
NOTCH4 is a member of the NOTCH family of receptors whose expression is intensively induced in macrophages after their activation by Toll-like receptors (TLR) and/or interferon-γ (IFN-γ). In this work, we show that this receptor acts as a negative regulator of macrophage activation by diminishing the expression of proinflammatory cytokines, such as IL-6 and IL-12, and costimulatory proteins, such as CD80 and CD86. We have observed that NOTCH4 inhibits IFN-γ signaling by interfering with STAT1-dependent transcription. Our results show that NOTCH4 reprograms the macrophage response to IFN-γ by favoring STAT3 versus STAT1 phosphorylation without affecting their expression levels. This lower activation of STAT1 results in diminished transcriptional activity and expression of STAT1-dependent genes, including IRF1, SOCS1 and CXCL10. In macrophages, NOTCH4 inhibits the canonical NOTCH signaling pathway induced by LPS; however, it can reverse the inhibition exerted by IFN-γ on NOTCH signaling, favoring the expression of NOTCH-target genes, such as Hes1. Indeed, HES1 seems to mediate, at least in part, the enhancement of STAT3 activation by NOTCH4. NOTCH4 also affects TLR signaling by interfering with NF-κB transcriptional activity. This effect could be mediated by the diminished activation of STAT1. These results provide new insights into the mechanisms by which NOTCH, TLR and IFN-γ signal pathways are integrated to modulate macrophage-specific effector functions and reveal NOTCH4 acting as a new regulatory element in the control of macrophage activation that could be used as a target for the treatment of pathologies caused by an excess of inflammation.
Collapse
Affiliation(s)
- Susana López-López
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - María José Romero de Ávila
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | | | | | - Victoriano Baladrón
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - María Luisa Nueda
- Pharmacy School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - Jorge Laborda
- Pharmacy School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - José Javier García-Ramírez
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - Eva M Monsalve
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - María José M Díaz-Guerra
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| |
Collapse
|
9
|
Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. Cell Discov 2021; 7:90. [PMID: 34608123 PMCID: PMC8490369 DOI: 10.1038/s41421-021-00301-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
Pathogenic mycobacteria induce the formation of hypoxic granulomas during latent tuberculosis (TB) infection, in which the immune system contains, but fails to eliminate the mycobacteria. Fatty acid metabolism-related genes are relatively overrepresented in the mycobacterial genome and mycobacteria favor host-derived fatty acids as nutrient sources. However, whether and how mycobacteria modulate host fatty acid metabolism to drive granuloma progression remains unknown. Here, we report that mycobacteria under hypoxia markedly secrete the protein Rv0859/MMAR_4677 (Fatty-acid degradation A, FadA), which is also enriched in tuberculous granulomas. FadA acts as an acetyltransferase that converts host acetyl-CoA to acetoacetyl-CoA. The reduced acetyl-CoA level suppresses H3K9Ac-mediated expression of the host proinflammatory cytokine Il6, thus promoting granuloma progression. Moreover, supplementation of acetate increases the level of acetyl-CoA and inhibits the formation of granulomas. Our findings suggest an unexpected mechanism of a hypoxia-induced mycobacterial protein suppressing host immunity via modulation of host fatty acid metabolism and raise the possibility of a novel therapeutic strategy for TB infection.
Collapse
|
10
|
Xia A, Li X, Quan J, Chen X, Xu Z, Jiao X. Mycobacterium tuberculosis Rv0927c Inhibits NF-κB Pathway by Downregulating the Phosphorylation Level of IκBα and Enhances Mycobacterial Survival. Front Immunol 2021; 12:721370. [PMID: 34531869 PMCID: PMC8438533 DOI: 10.3389/fimmu.2021.721370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/17/2021] [Indexed: 11/14/2022] Open
Abstract
Through long-term coevolution with its host, Mycobacterium tuberculosis (M. tuberculosis) uses multiple strategies to escape host defenses. The M. tuberculosis Rv0927c protein is predicted to be a short-chain dehydrogenase/reductase related to bacterial metabolism. However, the role of Rv0927c during M. tuberculosis infection remains unclear. Here, we observed that Rv0927c inhibited the expression of IL-6, TNF-α, and IL-1β, an effect dependent on NF-κB and p38 pathways. Western blot analysis of macrophages infected with recombinant Mycobacterium smegmatis strains showed that Rv0927c attenuated NF-κB activation by downregulating the phosphorylation of IκBα. Additionally, Rv0927c enhanced intracellular survival of M. smegmatis and pathological effects in mice. In conclusion, our findings demonstrate that Rv0927c functions as a regulator of inflammatory genes and enhances the survival of M. smegmatis.
Collapse
Affiliation(s)
- Aihong Xia
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xin Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Juanjuan Quan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, Zhang L, Chen L, Yan B, Yang H, Wang Y, Li F, Zhang J, Wang F, Wang L, Cao Y, Ma M, Liu Z, Chen J, Huang X, Wang J, Jin R, Wang P, Sun Q, Sha W, Lyu L, Moura‐Alves P, Dorhoi A, Pei G, Zhang P, Chen J, Gao S, Randow F, Zeng G, Chen C, Ye X, Kaufmann SHE, Liu H, Ge B. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep 2021; 22:e51678. [PMID: 33987949 PMCID: PMC8256295 DOI: 10.15252/embr.202051678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor β-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.
Collapse
|
12
|
Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H. Migraine and neuroinflammation: the inflammasome perspective. J Headache Pain 2021; 22:55. [PMID: 34112082 PMCID: PMC8192049 DOI: 10.1186/s10194-021-01271-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuroinflammation has an important role in the pathophysiology of migraine, which is a complex neuro-glio-vascular disorder. The main aim of this review is to highlight findings of cortical spreading depolarization (CSD)-induced neuroinflammatory signaling in brain parenchyma from the inflammasome perspective. In addition, we discuss the limited data of the contribution of inflammasomes to other aspects of migraine pathophysiology, foremost the activation of the trigeminovascular system and thereby the generation of migraine pain. MAIN BODY Inflammasomes are signaling multiprotein complexes and key components of the innate immune system. Their activation causes the production of inflammatory cytokines that can stimulate trigeminal neurons and are thus relevant to the generation of migraine pain. The contribution of inflammasome activation to pain signaling has attracted considerable attention in recent years. Nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome and there is emerging evidence of its role in a variety of inflammatory pain conditions, including migraine. In this review, we discuss, from an inflammasome point of view, cortical spreading depolarization (CSD)-induced neuroinflammatory signaling in brain parenchyma, the connection with genetic factors that make the brain vulnerable to CSD, and the relation of the inflammasome with diseases that are co-morbid with migraine, including stroke, epilepsy, and the possible links with COVID-19 infection. CONCLUSION Neuroinflammatory pathways, specifically those involving inflammasome proteins, seem promising candidates as treatment targets, and perhaps even biomarkers, in migraine.
Collapse
Affiliation(s)
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Cross RW, Bornholdt ZA, Prasad AN, Borisevich V, Agans KN, Deer DJ, Abelson DM, Kim DH, Shestowsky WS, Campbell LA, Bunyan E, Geisbert JB, Fenton KA, Zeitlin L, Porter DP, Geisbert TW. Combination therapy protects macaques against advanced Marburg virus disease. Nat Commun 2021; 12:1891. [PMID: 33767178 PMCID: PMC7994808 DOI: 10.1038/s41467-021-22132-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 11/08/2022] Open
Abstract
Monoclonal antibodies (mAbs) and remdesivir, a small-molecule antiviral, are promising monotherapies for many viruses, including members of the genera Marburgvirus and Ebolavirus (family Filoviridae), and more recently, SARS-CoV-2. One of the major challenges of acute viral infections is the treatment of advanced disease. Thus, extending the window of therapeutic intervention is critical. Here, we explore the benefit of combination therapy with a mAb and remdesivir in a non-human primate model of Marburg virus (MARV) disease. While rhesus monkeys are protected against lethal infection when treatment with either a human mAb (MR186-YTE; 100%), or remdesivir (80%), is initiated 5 days post-inoculation (dpi) with MARV, no animals survive when either treatment is initiated alone beginning 6 dpi. However, by combining MR186-YTE with remdesivir beginning 6 dpi, significant protection (80%) is achieved, thereby extending the therapeutic window. These results suggest value in exploring combination therapy in patients presenting with advanced filovirus disease.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | | | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Dafna M Abelson
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd Ste C200, San Diego, CA, USA
| | - Do H Kim
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd Ste C200, San Diego, CA, USA
| | | | | | - Elaine Bunyan
- Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, USA
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., 6160 Lusk Blvd Ste C200, San Diego, CA, USA.
| | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA.
| |
Collapse
|
14
|
Li J, Zhang Y, Jilg AL, Wolk DM, Khara HS, Kolinovsky A, Rolston DDK, Hontecillas R, Bassaganya-Riera J, Williams MS, Abedi V, Lee MTM. Variants at the MHC Region Associate With Susceptibility to Clostridioides difficile Infection: A Genome-Wide Association Study Using Comprehensive Electronic Health Records. Front Immunol 2021; 12:638913. [PMID: 33841421 PMCID: PMC8026859 DOI: 10.3389/fimmu.2021.638913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
Background Clostridioides difficile is a major cause of healthcare-associated and community-acquired diarrhea. Host genetic susceptibility to Clostridioides difficile infection has not been studied on a large-scale. Methods A total of 1,160 Clostridioides difficile infection cases and 15,304 controls were identified by applying the eMERGE Clostridioides difficile infection algorithm to electronic health record data. A genome-wide association study was performed using a linear mixed model, adjusted for significant covariates in the full dataset and the antibiotic subgroup. Colocalization and MetaXcan were performed to identify potential target genes in Clostridioides difficile infection - relevant tissue types. Results No significant genome-wide association was found in the meta-analyses of the full Clostridioides difficile infection dataset. One genome-wide significant variant, rs114751021, was identified (OR = 2.42; 95%CI = 1.84-3.11; p=4.50 x 10-8) at the major histocompatibility complex region associated with Clostridioides difficile infection in the antibiotic group. Colocalization and MetaXcan identified MICA, C4A/C4B, and NOTCH4 as potential target genes. Down-regulation of MICA, upregulation of C4A and NOTCH4 was associated with a higher risk for Clostridioides difficile infection. Conclusions Leveraging the EHR and genetic data, genome-wide association, and fine-mapping techniques, this study identified variants and genes associated with Clostridioides difficile infection, provided insights into host immune mechanisms, and described the potential for novel treatment strategies for Clostridioides difficile infection. Future replication and functional validation are needed.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, United States
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger, Danville, PA, United States
| | - Alexandria L Jilg
- Department of Internal Medicine, Geisinger, Danville, PA, United States
| | - Donna M Wolk
- Diagnostic Medicine Institute, Department of Laboratory Medicine, Geisinger, Danville, PA, United States
| | - Harshit S Khara
- Department of Gastroenterology and Hepatology, Geisinger, Danville, PA, United States
| | | | - David D K Rolston
- Department of Internal Medicine, Geisinger, Danville, PA, United States
| | | | | | - Marc S Williams
- Genomic Medicine Institute, Geisinger, Danville, PA, United States
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, United States
| | | |
Collapse
|
15
|
Gao X, Chan PKS, Lui GCY, Hui DSC, Chu IMT, Sun X, Tsang MSM, Chan BCL, Lam CWK, Wong CK. Interleukin-38 ameliorates poly(I:C) induced lung inflammation: therapeutic implications in respiratory viral infections. Cell Death Dis 2021; 12:53. [PMID: 33414457 PMCID: PMC7790341 DOI: 10.1038/s41419-020-03283-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-38 has recently been shown to have anti-inflammatory properties in lung inflammatory diseases. However, the effects of IL-38 in viral pneumonia remains unknown. In the present study, we demonstrate that circulating IL-38 concentrations together with IL-36α increased significantly in influenza and COVID-19 patients, and the level of IL-38 and IL-36α correlated negatively and positively with disease severity and inflammation, respectively. In the co-cultured human respiratory epithelial cells with macrophages to mimic lung microenvironment in vitro, IL-38 was able to alleviate inflammatory responses by inhibiting poly(I:C)-induced overproduction of pro-inflammatory cytokines and chemokines through intracellular STAT1, STAT3, p38 MAPK, ERK1/2, MEK, and NF-κB signaling pathways. Intriguingly, transcriptomic profiling revealed that IL-38 targeted genes were associated with the host innate immune response to virus. We also found that IL-38 counteracts the biological processes induced by IL-36α in the co-culture. Furthermore, the administration of recombinant IL-38 could mitigate poly I:C-induced lung injury, with reduced early accumulation of neutrophils and macrophages in bronchoalveolar lavage fluid, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines and permeability of the alveolar-epithelial barrier. Taken together, our study indicates that IL-38 plays a crucial role in protection from exaggerated pulmonary inflammation during poly(I:C)-induced pneumonia, thereby providing the basis of a novel therapeutic target for respiratory viral infections.
Collapse
Affiliation(s)
- Xun Gao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Chung Yan Lui
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - David Shu Cheong Hui
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China. .,Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China. .,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Fu Y, Liu T, Song J, Jiao L, Zhou J, Bai H, Zhao Z, Chen H, Wu T, Lyv M, Zhou Y, Ying B, Xu Y. Genetic Polymorphisms of Delta-Like 1 Homolog Influence the Susceptibility to Antituberculosis Drug-Induced Hepatotoxicity. DNA Cell Biol 2020; 40:231-238. [PMID: 33297832 DOI: 10.1089/dna.2020.6080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study was designed to investigate the relationship between Delta-like 1 homolog (DLK1) polymorphisms and the occurrence of antituberculosis drug-induced hepatotoxicity (ATDH) in the Western Chinese Han population. A total of 746 tuberculosis patients including 118 ATDH cases and 628 non-ATDH cases were enrolled from West China Hospital of Sichuan University during 2016-2018. Ten single nucleotide polymorphisms (rs11160604, rs7149242, rs7141210, rs7155375, rs876374, rs57098752, rs2400940, rs12431758, rs4900472, and rs6575802) within DLK1 were studied by the improved multiplex ligation detection reaction method genotyping technology assay. It was found that G allele of rs11160604 was associated with an increased risk for ATDH (p = 0.001) and G allele of rs4900472 showed a protective effect for ATDH (p = 0.030). Recessive model and dominant model of rs11160604 were observed as a risk factor for ATDH predisposition, whereas the recessive model of rs4900472 was a protective one. Moreover, the interaction genetic model composed of rs11160604, rs57098752, and rs12431758 showed a combined effect for the occurrence of ATDH. Our finding was a novel one indicating that the G allele of DLK1 rs11160604 might serve as a hazard for the development of ATDH in the Western Chinese Han population.
Collapse
Affiliation(s)
- Yang Fu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyuan Lyv
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Notch-1 Signaling Modulates Macrophage Polarization and Immune Defense against Mycobacterium avium paratuberculosis Infection in Inflammatory Diseases. Microorganisms 2020; 8:microorganisms8071006. [PMID: 32635645 PMCID: PMC7409363 DOI: 10.3390/microorganisms8071006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the extensive research on Notch signaling involvement in inflammation, its specific role in macrophage response in autoimmune disease and defense mechanisms against bacterial infection, such as Mycobacterium avium paratuberculosis (MAP), remains unknown. In this study, we investigated the molecular role of Notch-1 signaling in the macrophage response during MAP infection. In particular, we measured the in vitro effect of MAP on Notch-1 signaling and downstream influence on interleukin (IL)-6 and myeloid cell leukemia sequence-1 (MCL-1) and consequent cellular apoptosis, MAP viability, and macrophage polarization. Overall, the data show significant upregulation in Notch-1, IL-6, and MCL-1 in MAP-infected macrophages, parallel with a decrease in apoptosis and elevated pro-inflammatory response in these infected cells. On the contrary, blocking Notch signaling with γ-secretase inhibitor (DAPT) decreased MAP survival and burden, increased apoptosis, and diminished the pro-inflammatory response. In particular, the treatment of infected macrophages with DAPT shifted macrophage polarization toward M2 anti-inflammatory phenotypic response. The outcome of this study clearly demonstrates the critical role of Notch signaling in macrophage response during infection. We conclude that MAP infection in macrophages activates Notch-1 signaling and downstream influence on IL-6 which hijack MCL-1 dependent inhibition of apoptosis leading to its chronic persistence, and further inflammation. This study supports Notch-1 signaling as a therapeutic target to combat infection in autoimmune diseases such as Crohn’s disease and Rheumatoid Arthritis.
Collapse
|
18
|
Zhou X, Zhang L, Lie L, Zhang Z, Zhu B, Yang J, Gao Y, Li P, Huang Y, Xu H, Li Y, Du X, Zhou C, Hu S, Wen Q, Zhong XP, Ma L. MxA suppresses TAK1-IKKα/β-NF-κB mediated inflammatory cytokine production to facilitate Mycobacterium tuberculosis infection. J Infect 2020; 81:231-241. [PMID: 32445727 DOI: 10.1016/j.jinf.2020.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Interferons (IFNs) play multifunctional roles in host defense against infectious diseases by inducing IFN-stimulated genes (ISGs). However, little is known about how ISGs regulate host immune response to Mycobacterium tuberculosis (Mtb) infection, the major cause of tuberculosis (TB). METHODS We thus profiled the potential effects and mechanisms of eight Mtb-induced ISGs on Mtb infection by RNA interference in human macrophages (Mφs) derived from peripheral blood monocytes (hMDMs) and THP-1 cell line derived Mφs (THP-1-Mφs). RESULTS MxA silencing significantly decreased intracellular Mtb infection in Mφs. Mechanistically, MxA silencing promoted inflammatory cytokines IL-1β, IL-6 and TNF-α production, and induced NF-κB p65 activation. Pharmacological inhibition of NF-κB p65 activation or gene silencing of NF-κB p65 blocked the increased production of IL-1β, IL-6 and TNF-α and restored Mtb infection by MxA silencing. Furthermore, pharmacological inhibition of TAK1 and IKKα/β blocked NF-κB p65 activation and subsequent production of pro-inflammatory cytokines by MxA silencing. Isoniazid (INH) treatment and MxA silencing could promote TAK1-IKKα/β-NF-κB signaling pathway activation and combat Mtb infection independently. CONCLUSIONS Our results reveal a novel role of MxA in regulating TAK1-IKKα/β-NF-κB signaling activation and production of antimicrobial inflammatory cytokines upon Mtb infection, providing a potential target for clinical treatment of TB.
Collapse
Affiliation(s)
- Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Lijie Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zelin Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuchi Gao
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yanfen Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Ping Zhong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Amman BR, Bird BH, Bakarr IA, Bangura J, Schuh AJ, Johnny J, Sealy TK, Conteh I, Koroma AH, Foday I, Amara E, Bangura AA, Gbakima AA, Tremeau-Bravard A, Belaganahalli M, Dhanota J, Chow A, Ontiveros V, Gibson A, Turay J, Patel K, Graziano J, Bangura C, Kamanda ES, Osborne A, Saidu E, Musa J, Bangura D, Williams SMT, Wadsworth R, Turay M, Edwin L, Mereweather-Thompson V, Kargbo D, Bairoh FV, Kanu M, Robert W, Lungai V, Guetiya Wadoum RE, Coomber M, Kanu O, Jambai A, Kamara SM, Taboy CH, Singh T, Mazet JAK, Nichol ST, Goldstein T, Towner JS, Lebbie A. Isolation of Angola-like Marburg virus from Egyptian rousette bats from West Africa. Nat Commun 2020; 11:510. [PMID: 31980636 PMCID: PMC6981187 DOI: 10.1038/s41467-020-14327-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/19/2019] [Indexed: 11/22/2022] Open
Abstract
Marburg virus (MARV) causes sporadic outbreaks of severe Marburg virus disease (MVD). Most MVD outbreaks originated in East Africa and field studies in East Africa, South Africa, Zambia, and Gabon identified the Egyptian rousette bat (ERB; Rousettus aegyptiacus) as a natural reservoir. However, the largest recorded MVD outbreak with the highest case-fatality ratio happened in 2005 in Angola, where direct spillover from bats was not shown. Here, collaborative studies by the Centers for Disease Control and Prevention, Njala University, University of California, Davis USAID-PREDICT, and the University of Makeni identify MARV circulating in ERBs in Sierra Leone. PCR, antibody and virus isolation data from 1755 bats of 42 species shows active MARV infection in approximately 2.5% of ERBs. Phylogenetic analysis identifies MARVs that are similar to the Angola strain. These results provide evidence of MARV circulation in West Africa and demonstrate the value of pathogen surveillance to identify previously undetected threats.
Collapse
Affiliation(s)
- Brian R Amman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Ibrahim A Bakarr
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - James Bangura
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
- University of Makeni, Makeni, Sierra Leone
| | - Amy J Schuh
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Jonathan Johnny
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Tara K Sealy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Immah Conteh
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Alusine H Koroma
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Ibrahim Foday
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | | | | | - Aiah A Gbakima
- Ministry of Technical and Higher Education, New England Ville, Freetown, Sierra Leone
| | | | | | - Jasjeet Dhanota
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Andrew Chow
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Victoria Ontiveros
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Alexandra Gibson
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | | | - Ketan Patel
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - James Graziano
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Camilla Bangura
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Emmanuel S Kamanda
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Augustus Osborne
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Emmanuel Saidu
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Jonathan Musa
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Doris Bangura
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | | | - Richard Wadsworth
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | | | | | | | | | | | | | | | | | | | | | - Osman Kanu
- University of Makeni, Makeni, Sierra Leone
| | - Amara Jambai
- Ministry of Health and Sanitation, Brookfields, Freetown, Sierra Leone
| | - Sorie M Kamara
- Ministry of Agriculture and Forestry, Brookfields, Freetown, Sierra Leone
| | - Celine H Taboy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Tushar Singh
- Center for Global Health, Centers for Disease Control and Prevention, Freetown, Sierra Leone
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA.
| | - Aiah Lebbie
- Department of Biological Sciences, Njala University, Njala, Sierra Leone.
| |
Collapse
|
20
|
Wang L, Wu J, Li J, Yang H, Tang T, Liang H, Zuo M, Wang J, Liu H, Liu F, Chen J, Liu Z, Wang Y, Peng C, Wu X, Zheng R, Huang X, Ran Y, Rao Z, Ge B. Host-mediated ubiquitination of a mycobacterial protein suppresses immunity. Nature 2020; 577:682-688. [PMID: 31942069 DOI: 10.1038/s41586-019-1915-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/21/2019] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that uses several strategies to interfere with the signalling functions of host immune molecules. Many other bacterial pathogens exploit the host ubiquitination system to promote pathogenesis1,2, but whether this same system modulates the ubiquitination of M. tuberculosis proteins is unknown. Here we report that the host E3 ubiquitin ligase ANAPC2-a core subunit of the anaphase-promoting complex/cyclosome-interacts with the mycobacterial protein Rv0222 and promotes the attachment of lysine-11-linked ubiquitin chains to lysine 76 of Rv0222 in order to suppress the expression of proinflammatory cytokines. Inhibition of ANAPC2 by specific short hairpin RNA abolishes the inhibitory effect of Rv0222 on proinflammatory responses. Moreover, mutation of the ubiquitination site on Rv0222 impairs the inhibition of proinflammatory cytokines by Rv0222 and reduces virulence during infection in mice. Mechanistically, lysine-11-linked ubiquitination of Rv0222 by ANAPC2 facilitates the recruitment of the protein tyrosine phosphatase SHP1 to the adaptor protein TRAF6, preventing the lysine-63-linked ubiquitination and activation of TRAF6. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.
Collapse
Affiliation(s)
- Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juehui Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianqi Tang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Haijiao Liang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Mianyong Zuo
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Cheng Peng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Xiangyang Wu
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yajun Ran
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,Laboratory of Structural Biology, Tsinghua University, Beijing, China. .,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China. .,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China. .,Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Keewan E, Naser SA. The Role of Notch Signaling in Macrophages during Inflammation and Infection: Implication in Rheumatoid Arthritis? Cells 2020; 9:cells9010111. [PMID: 31906482 PMCID: PMC7016800 DOI: 10.3390/cells9010111] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Notch signaling coordinates numerous cellular processes and has been implicated in many pathological conditions, including rheumatoid arthritis (RA). Although the role of Notch signaling in development, maturation, differentiation, and activation of lymphocytes has been comprehensively reported, less is known about its role in myeloid cells. Certainly, limited data are available about the role of Notch signaling in macrophages during inflammation and infection. In this review, we discuss the recent advances pertaining to the role of Notch signaling in differentiation, activation, and metabolism of macrophages during inflammation and infection. We also highlight the reciprocal interplay between Notch signaling and other signaling pathways in macrophages under different inflammatory and infectious conditions including pathogenesis of RA. Finally, we discuss approaches that could consider Notch signaling as a potential therapeutic target against infection- and inflammation-driven diseases.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Correspondence: ; Tel.: +1-407-823-0955; Fax: +1-407-823-0956
| |
Collapse
|
22
|
A Notch4 missense mutation is associated with susceptibility to tuberculosis in Chinese population. INFECTION GENETICS AND EVOLUTION 2019; 78:104145. [PMID: 31838262 DOI: 10.1016/j.meegid.2019.104145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The infection process of tuberculosis is related to the interactions between Mycobacterium tuberculosis (MTB) and the host immune system. Polymorphisms in genes involved in the host immune system are related to susceptibility to tuberculosis. The Notch signalling pathway regulates innate and adaptive immunity. Notch4 is a member of the Notch receptor family and may be a negative regulator of Mtb-induced inflammation. However, little is known about the association between Notch4 genetic polymorphisms and susceptibility to tuberculosis; therefore, we explored the association between Notch4 variants and susceptibility to tuberculosis in China. MATERIALS AND METHODS A total of 900 tuberculosis patients and 1534 healthy people serving as controls were enrolled consecutively at West China Hospital between January 2014 and February 2016 Twelve selected SNPs (rs2071277, rs2071285, rs206016, rs438475, rs2256594, rs429853, rs422951, rs415929, rs915895, rs443198, rs3830041 and rs375244) were genotyped by a custom-by-design 2 48-plex SNP scan TM kit. The frequencies of the alleles, genotypes and genetic models of the variants were compared between the two groups, while the SNP-SNP interactions were analysed by Multifactor Dimensionality Reduction (MDR) software. The odds ratio (OR) with a corresponding 95% confidence interval (CI) was calculated. RESULTS The G allele rs2071277 of Notch4 was associated with a decreased risk for tuberculosis (OR 0.844; 95% CI 0.748-0.954, p = .006). The G allele rs422951 of Notch4 was associated with a decreased risk for tuberculosis (OR 0.818; 95% CI 0.703-0.950, p = .008). These findings were consistent with the results from both the dominant model and additive model. The allele, genotype and genetic model frequencies for the other SNPs were similar in the two groups (all P > .05). One haplotype (GTG) consisting of rs2071277, rs2071285 and rs206016 was associated with tuberculosis risk (p = .011). CONCLUSION Ours is the first study implies that the G allele variants of rs2071277 and rs422951 in Notch4 influence susceptibility to tuberculosis in a Chinese population, suggesting that Notch signalling is involved in the pathogenesis of tuberculosis. More studies with functional verification will refine our understanding of the role of Notch signalling and provide novel avenues for therapeutic intervention.
Collapse
|
23
|
Sun J, Shi Q, Chen X, Liu R. Decoding the similarities and specific differences between latent and active tuberculosis infections based on consistently differential expression networks. Brief Bioinform 2019; 21:2084-2098. [PMID: 31724702 DOI: 10.1093/bib/bbz127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/21/2019] [Accepted: 09/06/2019] [Indexed: 11/14/2022] Open
Abstract
Although intensive efforts have been devoted to investigating latent tuberculosis (LTB) and active tuberculosis (PTB) infections, the similarities and differences in the host responses to these two closely associated stages remain elusive, probably due to the difficulty in identifying informative genes related to LTB using traditional methods. Herein, we developed a framework known as the consistently differential expression network to identify tuberculosis (TB)-related gene pairs by combining microarray profiles and protein-protein interactions. We thus obtained 774 and 693 pairs corresponding to the PTB and LTB stages, respectively. The PTB-specific genes showed higher expression values and fold-changes than the LTB-specific genes. Furthermore, the PTB-related pairs generally had higher expression correlations and would be more activated compared to their LTB-related counterparts. The module analysis implied that the detected gene pairs tended to cluster in the topological and functional modules. Functional analysis indicated that the LTB- and PTB-specific genes were enriched in different pathways and had remarkably different locations in the NF-κB signaling pathway. Finally, we showed that the identified genes and gene pairs had the potential to distinguish TB patients in different disease stages and could be considered as drug targets for the specific treatment of patients with LTB or PTB.
Collapse
Affiliation(s)
- Jun Sun
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Shi
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Jin B, Liang Y, Liu Y, Zhang LX, Xi FY, Wu WJ, Li Y, Liu GH. Notch signaling pathway regulates T cell dysfunction in septic patients. Int Immunopharmacol 2019; 76:105907. [PMID: 31525636 DOI: 10.1016/j.intimp.2019.105907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/21/2023]
Abstract
Sepsis disrupts innate and adaptive immune response, and immune disorders may also impact clinical course of sepsis. Notch signaling pathway plays a vital role in T cell modulation and differentiation. The aim of current study was to investigate the immunoregulatory function of Notch signaling pathway to T cells in patients with sepsis and septic shock. Twenty-seven sepsis patients, twenty-five septic shock patients, and twenty-one normal controls (NCs) were enrolled. Notch receptors mRNA levels were semi-quantified by real-time PCR. The absolute numbers of CD3+, CD4+, and CD8+ T cells were measured by flow cytometry. Key transcriptional factors of CD4+ T cells, cytotoxic molecules in CD8+ T cells, and cytotoxicity of CD8+ T cells were investigated. The regulatory activities of Notch signaling inhibition by γ-secretase inhibitor (GSI) on purified CD4+ and CD8+ T cells from sepsis and septic shock patients were also assessed. Notch1 mRNA relative level was significantly elevated in sepsis and septic shock patients when compared with NCs. CD4+ and CD8+ T cells were dysfunctional in sepsis and septic shock, which presented as decreased cell accounts, down-regulation of Th1/Th17 transcriptional factors and cytotoxic molecules (perforin, granzyme B, and FasL), and reduced cytotoxicity of CD8+ T cells. Notch signaling inhibition by GSI increased Th1 and Th17 differentiation of CD4+ T cells. Moreover, GSI stimulation not only promoted perforin, granzyme B, and FasL mRNA expression in CD8+ T cells, but also elevated CD8+ T cell-induced target cell death and IFN-γ/TNF-α production in sepsis and septic shock. The current data suggest that Notch signaling pathway contributes to T cell dysfunction and limited immune response in sepsis.
Collapse
Affiliation(s)
- Bo Jin
- Department of Emergency Surgery, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Yuan Liang
- Department of Anesthesiology, 964th Hospital of PLA, Changchun, Jilin Province 130000, China
| | - Ye Liu
- Intensive Care Unit, 964th Hospital of PLA, Changchun, Jilin Province 130000, China
| | - Li-Xia Zhang
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710068, China
| | - Feng-Yu Xi
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710068, China
| | - Wu-Jun Wu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710068, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province 710068, China.
| | - Guo-Hui Liu
- Department of Emergency Surgery, First Hospital of Jilin University, Changchun, Jilin Province 130021, China.
| |
Collapse
|
25
|
Oxidization of TGFβ-activated kinase by MPT53 is required for immunity to Mycobacterium tuberculosis. Nat Microbiol 2019; 4:1378-1388. [PMID: 31110366 DOI: 10.1038/s41564-019-0436-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb)-derived components are usually recognized by pattern recognition receptors to initiate a cascade of innate immune responses. One striking characteristic of Mtb is their utilization of different type VII secretion systems to secrete numerous proteins across their hydrophobic and highly impermeable cell walls, but whether and how these Mtb-secreted proteins are sensed by host immune system remains largely unknown. Here, we report that MPT53 (Rv2878c), a secreted disulfide-bond-forming-like protein of Mtb, directly interacts with TGF-β-activated kinase 1 (TAK1) and activates TAK1 in a TLR2- or MyD88-independent manner. MPT53 induces disulfide bond formation at C210 on TAK1 to facilitate its interaction with TRAFs and TAB1, thus activating TAK1 to induce the expression of pro-inflammatory cytokines. Furthermore, MPT53 and its disulfide oxidoreductase activity is required for Mtb to induce the host inflammatory responses via TAK1. Our findings provide an alternative pathway for host signalling proteins to sense Mtb infection and may favour the improvement of current vaccination strategies.
Collapse
|
26
|
Wang Z, Kawaguchi K, Honda M, Hashimoto S, Shirasaki T, Okada H, Orita N, Shimakami T, Yamashita T, Sakai Y, Mizukoshi E, Murakami S, Kaneko S. Notch signaling facilitates hepatitis B virus covalently closed circular DNA transcription via cAMP response element-binding protein with E3 ubiquitin ligase-modulation. Sci Rep 2019; 9:1621. [PMID: 30733490 PMCID: PMC6367350 DOI: 10.1038/s41598-018-38139-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Notch1 is regulated by E3 ubiquitin ligases, with proteasomal degradation of the Notch intracellular domain affecting the transcription of target genes. cAMP response element-binding protein (CREB) mediates the transcription of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA). We assessed the relationship between HBV cccDNA and Notch signaling activities. HBV cccDNA levels and relative gene expression were evaluated in HBV-replicating cells treated with Jagged1 shRNA and a γ-secretase inhibitor. The effects of these factors in surgically resected clinical samples were also assessed. Notch inhibition suppressed HBV cccDNA and CREB-related expression but increased ITCH and NUMB levels. Proteasome inhibitor augmented HBV cccDNA, restored Notch and CREB expression, and inhibited ITCH and NUMB function. Increased HBV cccDNA was observed after ITCH and NUMB blockage, even after treatment with the adenylate cyclase activator forskolin; protein kinase A (PKA) inhibitor had the opposite effect. Notch activation and E3 ligase inactivation were observed in HBV-positive cells in clinical liver tissue. Collectively, these findings reveal that Notch signaling activity facilitates HBV cccDNA transcription via CREB to trigger the downstream PKA-phospho-CREB cascade and is regulated by E3 ubiquitin ligase-modulation of the Notch intracellular domain.
Collapse
Affiliation(s)
- Zijing Wang
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shinichi Hashimoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Noriaki Orita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Seishi Murakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
27
|
MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun 2018; 9:4295. [PMID: 30327467 PMCID: PMC6191460 DOI: 10.1038/s41467-018-06836-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/27/2018] [Indexed: 01/20/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) kills millions every year, and there is urgent need to develop novel anti-TB agents due to the fast-growing of drug-resistant TB. Although autophagy regulates the intracellular survival of Mtb, the role of calcium (Ca2+) signaling in modulating autophagy during Mtb infection remains largely unknown. Here, we show that microRNA miR-27a is abundantly expressed in active TB patients, Mtb-infected mice and macrophages. The target of miR-27a is the ER-located Ca2+ transporter CACNA2D3. Targeting of this transporter leads to the downregulation of Ca2+ signaling, thus inhibiting autophagosome formation and promoting the intracellular survival of Mtb. Mice lacking of miR-27a and mice treated with an antagomir to miR-27a are more resistant to Mtb infection. Our findings reveal a strategy for Mtb to increase intracellular survival by manipulating the Ca2+-associated autophagy, and may also support the development of host-directed anti-TB therapeutic approaches. How Mycobacterium tuberculosis (Mtb) escapes autophagy-mediated clearance is poorly understood. Here, Liu et al. show that Mtb-induced MicroRNA-27a targets the ER-associated calcium transporter CACNA2D3, leading to suppression of antimicrobial autophagy and to enhanced intracellular survival of Mtb.
Collapse
|