1
|
Volk CF, Proctor RA, Rose WE. The Complex Intracellular Lifecycle of Staphylococcus aureus Contributes to Reduced Antibiotic Efficacy and Persistent Bacteremia. Int J Mol Sci 2024; 25:6486. [PMID: 38928191 PMCID: PMC11203666 DOI: 10.3390/ijms25126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Staphylococcus aureus bacteremia continues to be associated with significant morbidity and mortality, despite improvements in diagnostics and management. Persistent infections pose a major challenge to clinicians and have been consistently shown to increase the risk of mortality and other infectious complications. S. aureus, while typically not considered an intracellular pathogen, has been proven to utilize an intracellular niche, through several phenotypes including small colony variants, as a means for survival that has been linked to chronic, persistent, and recurrent infections. This intracellular persistence allows for protection from the host immune system and leads to reduced antibiotic efficacy through a variety of mechanisms. These include antimicrobial resistance, tolerance, and/or persistence in S. aureus that contribute to persistent bacteremia. This review will discuss the challenges associated with treating these complicated infections and the various methods that S. aureus uses to persist within the intracellular space.
Collapse
Affiliation(s)
- Cecilia F. Volk
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Richard A. Proctor
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Schwartbeck B, Rumpf CH, Hait RJ, Janssen T, Deiwick S, Schwierzeck V, Mellmann A, Kahl BC. Various mutations in icaR, the repressor of the icaADBC locus, occur in mucoid Staphylococcus aureus isolates recovered from the airways of people with cystic fibrosis. Microbes Infect 2024; 26:105306. [PMID: 38316375 DOI: 10.1016/j.micinf.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Staphylococcus aureus is one of the major pathogens isolated from the airways of people with cystic fibrosis (pwCF). Recently, we described a mucoid S. aureus phenotype from respiratory specimens of pwCF, which constitutively overproduced biofilm that consisted of polysaccharide intercellular adhesin (PIA) due to a 5bp-deletion (5bp-del) in the intergenic region of the intercellular adhesin (ica) locus. Since we were not able to identify the 5bp-del in mucoid isolates of two pwCF with long-term S. aureus persistence and in a number of mucoid isolates of pwCF from a prospective multicenter study, these strains were (i) characterized phenotypically, (ii) investigated for biofilm formation, and (iii) molecular typed by spa-sequence typing. To screen for mutations responsible for mucoidy, the ica operon of all mucoid isolates was analyzed by Sanger sequencing. Whole genome sequencing was performed for selected isolates. For all mucoid isolates without the 5 bp-del, various mutations in icaR, which is the transcriptional repressor of the icaADBC operon. Mucoid and non-mucoid strains belonged to the same spa-type. Transformation of PIA-overproducing S. aureus with a vector expressing the intact icaR gene restored the non-mucoid phenotype. Altogether, we demonstrated a new mechanism for the emergence of mucoid S. aureus isolates of pwCF.
Collapse
Affiliation(s)
- Bianca Schwartbeck
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | - Christine H Rumpf
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | | | - Timo Janssen
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | - Susanne Deiwick
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | | | | | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Muenster, Germany.
| |
Collapse
|
3
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
4
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
5
|
Graf AC, Striesow J, Pané-Farré J, Sura T, Wurster M, Lalk M, Pieper DH, Becher D, Kahl BC, Riedel K. An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum. Front Cell Infect Microbiol 2021; 11:724569. [PMID: 34513734 PMCID: PMC8432295 DOI: 10.3389/fcimb.2021.724569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Hallmarks of cystic fibrosis (CF) are increased viscosity of mucus and impaired mucociliary clearance within the airways due to mutations of the cystic fibrosis conductance regulator gene. This facilitates the colonization of the lung by microbial pathogens and the concomitant establishment of chronic infections leading to tissue damage, reduced lung function, and decreased life expectancy. Although the interplay between key CF pathogens plays a major role during disease progression, the pathophysiology of the microbial community in CF lungs remains poorly understood. Particular challenges in the analysis of the microbial population present in CF sputum is (I) the inhomogeneous, viscous, and slimy consistence of CF sputum, and (II) the high number of human proteins masking comparably low abundant microbial proteins. To address these challenges, we used 21 CF sputum samples to develop a reliable, reproducible and widely applicable protocol for sputum processing, microbial enrichment, cell disruption, protein extraction and subsequent metaproteomic analyses. As a proof of concept, we selected three sputum samples for detailed metaproteome analyses and complemented and validated metaproteome data by 16S sequencing, metabolomic as well as microscopic analyses. Applying our protocol, the number of bacterial proteins/protein groups increased from 199-425 to 392-868 in enriched samples compared to nonenriched controls. These early microbial metaproteome data suggest that the arginine deiminase pathway and multiple proteases and peptidases identified from various bacterial genera could so far be underappreciated in their contribution to the CF pathophysiology. By providing a standardized and effective protocol for sputum processing and microbial enrichment, our study represents an important basis for future studies investigating the physiology of microbial pathogens in CF in vivo – an important prerequisite for the development of novel antimicrobial therapies to combat chronic recurrent airway infection in CF.
Collapse
Affiliation(s)
- Alexander C Graf
- Institute of Microbiology, Department of Microbial Physiology & Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Johanna Striesow
- Research Group ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Thomas Sura
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Martina Wurster
- Institute of Biochemistry, Department of Cellular Biochemistry & Metabolomics, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, Department of Cellular Biochemistry & Metabolomics, University of Greifswald, Greifswald, Germany
| | - Dietmar H Pieper
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology & Molecular Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Monteiro R, Magalhães AP, Pereira MO, Sousa AM. Long-term coexistence of Pseudomonas aeruginosa and Staphylococcus aureus using an in vitro cystic fibrosis model. Future Microbiol 2021; 16:879-893. [PMID: 34319132 DOI: 10.2217/fmb-2021-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role of pre-established Staphylococcus aureus on Pseudomonas aeruginosa adaptation and antibiotic tolerance. Materials & methods: Bacteria were cultured mimicking the sequential pattern of lung colonization and exposure to ciprofloxacin. Results: In the absence of ciprofloxacin exposure, S. aureus and P. aeruginosa coexisted supported by the physicochemical characteristics of the artificial sputum medium. S. aureus had no role in P. aeruginosa tolerance against ciprofloxacin and did not select P. aeruginosa small-colony variants during antibiotic treatment. rhlR and psqE were downregulated after the contact with S. aureus indicating that P. aeruginosa attenuated its virulence potential. Conclusion: P. aeruginosa and S. aureus can cohabit in cystic fibrosis airway environment for long-term without significant impact on P. aeruginosa adaptation and antibiotic tolerance.
Collapse
Affiliation(s)
- Rosana Monteiro
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Patrícia Magalhães
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
7
|
Association of Diverse Staphylococcus aureus Populations with Pseudomonas aeruginosa Coinfection and Inflammation in Cystic Fibrosis Airway Infection. mSphere 2021; 6:e0035821. [PMID: 34160233 PMCID: PMC8265651 DOI: 10.1128/msphere.00358-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is one of the most common pathogens isolated from the airways of cystic fibrosis (CF) patients and often persists for extended periods. There is limited knowledge about the diversity of S. aureus in CF. We hypothesized that increased diversity of S. aureus would impact CF lung disease. Therefore, we conducted a 1-year observational prospective study with 14 patients with long-term S. aureus infection. From every sputum, 40 S. aureus isolates were chosen and characterized in terms of phenotypic appearance (size, hemolysis, mucoidy, and pigmentation), important virulence traits such as nuclease activity, biofilm formation, and molecular typing by spa sequence typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood (C-reactive protein [CRP], interleukin 6 [IL-6], and S100A8/9 [calprotectin]) were collected. From 58 visits of 14 patients, 2,319 S. aureus isolates were distinguished into 32 phenotypes (PTs) and 50 spa types. The Simpson diversity index (SDI) was used to calculate the phenotypic and genotypic diversity, revealing a high diversity of PTs ranging from 0.19 to 0.87 among patients, while the diversity of spa types of isolates was less pronounced. The SDI of PTs was positively associated with P. aeruginosa coinfection and inflammatory parameters, with IL-6 being the most sensitive parameter. Also, coinfection with P. aeruginosa was associated with mucoid S. aureus and S. aureus with high nuclease activity. Our analyses showed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was present and associated with P. aeruginosa coinfection and inflammation. IMPORTANCE Staphylococcus aureus can persist for extended periods in the airways of people with cystic fibrosis (CF) in spite of antibiotic therapy and high numbers of neutrophils, which fail to eradicate this pathogen. Therefore, S. aureus needs to adapt to this hostile niche. There is only limited knowledge about the diversity of S. aureus in respiratory specimens. We conducted a 1-year prospective study with 14 patients with long-term S. aureus infection and investigated 40 S. aureus isolates from every sputum in terms of phenotypic appearance, nuclease activity, biofilm formation, and molecular typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood were collected. Thirty-two phenotypes (PTs) and 50 spa types were distinguished. Our analyses revealed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was associated with P. aeruginosa coinfection and inflammation.
Collapse
|
8
|
Camus L, Briaud P, Vandenesch F, Moreau K. How Bacterial Adaptation to Cystic Fibrosis Environment Shapes Interactions Between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 2021; 12:617784. [PMID: 33746915 PMCID: PMC7966511 DOI: 10.3389/fmicb.2021.617784] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the two most prevalent bacteria species in the lungs of cystic fibrosis (CF) patients and are associated with poor clinical outcomes. Co-infection by the two species is a frequent situation that promotes their interaction. The ability of P. aeruginosa to outperform S. aureus has been widely described, and this competitive interaction was, for a long time, the only one considered. More recently, several studies have described that the two species are able to coexist. This change in relationship is linked to the evolution of bacterial strains in the lungs. This review attempts to decipher how bacterial adaptation to the CF environment can induce a change in the type of interaction and promote coexisting interaction between P. aeruginosa and S. aureus. The impact of coexistence on the establishment and maintenance of a chronic infection will also be presented, by considering the latest research on the subject.
Collapse
Affiliation(s)
- Laura Camus
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - Paul Briaud
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| |
Collapse
|
9
|
Haim MS, Zaheer R, Bharat A, Di Gregorio S, Di Conza J, Galanternik L, Lubovich S, Golding GR, Graham MR, Van Domselaar G, Cardona ST, Mollerach M. Comparative genomics of ST5 and ST30 methicillin-resistant Staphylococcus aureus sequential isolates recovered from paediatric patients with cystic fibrosis. Microb Genom 2021; 7:mgen000510. [PMID: 33599606 PMCID: PMC8190608 DOI: 10.1099/mgen.0.000510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus chronic airway infection in patients with cystic fibrosis (CF) allows this pathogen to adapt over time in response to different selection pressures. We have previously shown that the main sequence types related to community-acquired methicillin-resistant S. aureus (MRSA) infections in Argentina - ST5 and ST30 - are also frequently isolated from the sputum of patients with CF, but in these patients they usually display multi-drug antimicrobial resistance. In this study, we sequenced the genomes of MRSA from four paediatric CF patients with the goal of identifying mutations among sequential isolates, especially those possibly related to antimicrobial resistance and virulence, which might contribute to the adaptation of the pathogen in the airways of patients with CF. Our results revealed genetic differences in sequential MRSA strains isolated from patients with CF in both their core and accessory genomes. Although the genetic adaptation of S. aureus was distinct in different hosts, we detected independent mutations in thyA, htrA, rpsJ and gyrA - which are known to have crucial roles in S. aureus virulence and antimicrobial resistance - in isolates recovered from multiple patients. Moreover, we identified allelic variants that were detected in all of the isolates recovered after a certain time point; these non-synonymous mutations were in genes associated with antimicrobial resistance, virulence, iron scavenging and oxidative stress resistance. In conclusion, our results provide evidence of genetic variability among sequential MRSA isolates that could be implicated in the adaptation of these strains during chronic CF airway infection.
Collapse
Affiliation(s)
- María Sol Haim
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rahat Zaheer
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Sabrina Di Gregorio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Silvina Lubovich
- Hospital de Niños 'Dr Ricardo Gutiérrez', Buenos Aires, Argentina
| | - George R. Golding
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Morag R. Graham
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Silvia T. Cardona
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Linzner N, Loi VV, Fritsch VN, Antelmann H. Thiol-based redox switches in the major pathogen Staphylococcus aureus. Biol Chem 2020; 402:333-361. [PMID: 33544504 DOI: 10.1515/hsz-2020-0272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which encounters reactive oxygen, nitrogen, chlorine, electrophile and sulfur species (ROS, RNS, RCS, RES and RSS) by the host immune system, during cellular metabolism or antibiotics treatments. To defend against redox active species and antibiotics, S. aureus is equipped with redox sensing regulators that often use thiol switches to control the expression of specific detoxification pathways. In addition, the maintenance of the redox balance is crucial for survival of S. aureus under redox stress during infections, which is accomplished by the low molecular weight (LMW) thiol bacillithiol (BSH) and the associated bacilliredoxin (Brx)/BSH/bacillithiol disulfide reductase (YpdA)/NADPH pathway. Here, we present an overview of thiol-based redox sensors, its associated enzymatic detoxification systems and BSH-related regulatory mechanisms in S. aureus, which are important for the defense under redox stress conditions. Application of the novel Brx-roGFP2 biosensor provides new insights on the impact of these systems on the BSH redox potential. These thiol switches of S. aureus function in protection against redox active desinfectants and antimicrobials, including HOCl, the AGXX® antimicrobial surface coating, allicin from garlic and the naphthoquinone lapachol. Thus, thiol switches could be novel drug targets for the development of alternative redox-based therapies to combat multi-drug resistant S. aureus isolates.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| |
Collapse
|
11
|
Tan X, Coureuil M, Ramond E, Euphrasie D, Dupuis M, Tros F, Meyer J, Nemazanyy I, Chhuon C, Guerrera IC, Ferroni A, Sermet-Gaudelus I, Nassif X, Charbit A, Jamet A. Chronic Staphylococcus aureus Lung Infection Correlates With Proteogenomic and Metabolic Adaptations Leading to an Increased Intracellular Persistence. Clin Infect Dis 2020; 69:1937-1945. [PMID: 30753350 DOI: 10.1093/cid/ciz106] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lung infection in cystic fibrosis (CF) patients by Staphylococcus aureus is a well-established epidemiological fact. Indeed, S. aureus is the most commonly identified pathogen in the lungs of CF patients. Improving our understanding of the mechanisms associated with the persistence of S. aureus is therefore an important issue. METHODS We selected pairs of sequential S. aureus isolates from 3 patients with CF and from 1 patient with non-CF chronic lung disease. We used a combination of genomic, proteomic, and metabolomic approaches with functional assays for in-depth characterization of S. aureus long-term persistence. RESULTS In this study, we show that late S. aureus isolates from CF patients have an increased ability for intracellular survival in CF bronchial epithelial-F508del cells compared to ancestral early isolates. Importantly, the increased ability to persist intracellularly was confirmed for S. aureus isolates within the own-patient F508del epithelial cells. An increased ability to form biofilm was also demonstrated. Furthermore, we identified the underlying genetic modifications that induce altered protein expression profiles and notable metabolic changes. These modifications affect several metabolic pathways and virulence regulators that could constitute therapeutic targets. CONCLUSIONS Our results strongly suggest that the intracellular environment might constitute an important niche of persistence and relapse necessitating adapted antibiotic treatments.
Collapse
Affiliation(s)
- Xin Tan
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Mathieu Coureuil
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Elodie Ramond
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Daniel Euphrasie
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Fabiola Tros
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Julie Meyer
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Ivan Nemazanyy
- Plateforme d'étude du métabolisme, Structure Fédérative de Recherche INSERM US24/CNRS UMS3633, Paris, France
| | - Cerina Chhuon
- Plateforme Protéome Institut Necker-Enfants Malades, PPN, Structure Fédérative de Recherche SFR Necker, University Paris Descartes, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Agnes Ferroni
- Laboratoire de Microbiologie de l'hopital Necker, University Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Canalopathies épithéliales: la mucoviscidose et autres maladies, Paris, France
| | - Xavier Nassif
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Alain Charbit
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Anne Jamet
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| |
Collapse
|
12
|
Lange J, Heidenreich K, Higelin K, Dyck K, Marx V, Reichel C, van Wamel W, den Reijer M, Görlich D, Kahl BC. Staphylococcus aureus Pathogenicity in Cystic Fibrosis Patients-Results from an Observational Prospective Multicenter Study Concerning Virulence Genes, Phylogeny, and Gene Plasticity. Toxins (Basel) 2020; 12:toxins12050279. [PMID: 32357453 PMCID: PMC7290773 DOI: 10.3390/toxins12050279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus and cystic fibrosis (CF) are closely interlinked. To date, however, the impact of S. aureus culture in CF airways on lung function and disease progression has only been elucidated to a limited degree. This analysis aims to identify bacterial factors associated to clinical deterioration. Data were collected during an observational prospective multi-center study following 195 patients from 17 centers. The average follow-up time was 80 weeks. S. aureus isolates (n = 3180) were scanned for the presence of 25 virulence genes and agr-types using single and multiplex PCR. The presence of specific virulence genes was not associated to clinical deterioration. For the agr-types 1 and 4, however, a link to the subjects’ clinical status became evident. Furthermore, a significant longitudinal decrease in the virulence gene quantity was observed. Analyses of the plasticity of the virulence genes revealed significantly increased plasticity rates in the presence of environmental stress. The results suggest that the phylogenetic background defines S. aureus pathogenicity rather than specific virulence genes. The longitudinal loss of virulence genes most likely reflects the adaptation process directed towards a persistent and colonizing rather than infecting lifestyle.
Collapse
Affiliation(s)
- Jonas Lange
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Kathrin Heidenreich
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Katharina Higelin
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Kristina Dyck
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Vanessa Marx
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Christian Reichel
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Willem van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (W.v.W.); (M.d.R.)
| | - Martijn den Reijer
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (W.v.W.); (M.d.R.)
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, 48149 Münster, Germany;
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
- Correspondence: ; Tel.: +49-251-8355358
| |
Collapse
|
13
|
Gabryszewski SJ, Wong Fok Lung T, Annavajhala MK, Tomlinson KL, Riquelme SA, Khan IN, Noguera LP, Wickersham M, Zhao A, Mulenos AM, Peaper D, Koff JL, Uhlemann AC, Prince A. Metabolic Adaptation in Methicillin-Resistant Staphylococcus aureus Pneumonia. Am J Respir Cell Mol Biol 2020; 61:185-197. [PMID: 30742488 PMCID: PMC6670030 DOI: 10.1165/rcmb.2018-0389oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a versatile human pathogen that is associated with diverse types of infections ranging from benign colonization to sepsis. We postulated that MRSA must undergo specific genotypic and phenotypic changes to cause chronic pulmonary disease. We investigated how MRSA adapts to the human airway to establish chronic infection, as occurs during cystic fibrosis (CF). MRSA isolates from patients with CF that were collected over a 4-year period were analyzed by whole-genome sequencing, transcriptional analysis, and metabolic studies. Persistent MRSA infection was associated with staphylococcal metabolic adaptation, but not changes in immunogenicity. Adaptation was characterized by selective use of the tricarboxylic acid cycle cycle and generation of biofilm, a means of limiting oxidant stress. Increased transcription of specific metabolic genes was conserved in all host-adapted strains, most notably a 10,000-fold increase in fumC, which catalyzes the interconversion of fumarate and malate. Elevated fumarate levels promoted in vitro biofilm production in clinical isolates. Host-adapted strains preferred to assimilate glucose polymers and pyruvate, which can be metabolized to generate N-acetylglucosamine polymers that comprise biofilm. MRSA undergoes substantial metabolic adaptation to the human airway to cause chronic pulmonary infection, and selected metabolites may be useful therapeutically to inhibit infection.
Collapse
Affiliation(s)
| | | | - Medini K Annavajhala
- 2Department of Medicine, and.,3Microbiome and Pathogen Genomics Core, Department of Medicine, Columbia University Irving Medical Center, New York, New York; and
| | | | | | | | | | | | | | | | - David Peaper
- 5Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Anne-Catrin Uhlemann
- 2Department of Medicine, and.,3Microbiome and Pathogen Genomics Core, Department of Medicine, Columbia University Irving Medical Center, New York, New York; and
| | | |
Collapse
|
14
|
Treffon J, Chaves-Moreno D, Niemann S, Pieper DH, Vogl T, Roth J, Kahl BC. Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cell Microbiol 2020; 22:e13158. [PMID: 31895486 DOI: 10.1111/cmi.13158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is one of the earliest pathogens that persists the airways of cystic fibrosis (CF) patients and contributes to increased inflammation and decreased lung function. In contrast to other staphylococci, S. aureus possesses two superoxide dismutases (SODs), SodA and SodM, with SodM being unique to S. aureus. Both SODs arm S. aureus for its fight against oxidative stress, a by-product of inflammatory reactions. Despite complex investigations, it is still unclear if both enzymes are crucial for the special pathogenicity of S. aureus. To investigate the role of both SODs during staphylococcal persistence in CF airways, we analysed survival and gene expression of S. aureus CF isolates and laboratory strains in different CF-related in vitro and ex vivo settings. Bacteria located in inflammatory and oxidised CF sputum transcribed high levels of sodA and sodM. Especially expression values of sodM were remarkably higher in CF sputum than in bacterial in vitro cultures. Interestingly, also S. aureus located in airway epithelial cells expressed elevated transcript numbers of both SODs, indicating that S. aureus is exposed to oxidative stress at various sites within CF airways. Both enzymes promoted survival of S. aureus during polymorphonuclear leukocyte killing and seem to act compensatory, thereby giving evidence that the interwoven interaction of SodA and SodM contributes to S. aureus virulence and facilitates S. aureus persistence within CF airways.
Collapse
Affiliation(s)
- Janina Treffon
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Dietmar Helmut Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
15
|
Herzog S, Dach F, de Buhr N, Niemann S, Schlagowski J, Chaves-Moreno D, Neumann C, Goretzko J, Schwierzeck V, Mellmann A, Dübbers A, Küster P, Schültingkemper H, Rescher U, Pieper DH, von Köckritz-Blickwede M, Kahl BC. High Nuclease Activity of Long Persisting Staphylococcus aureus Isolates Within the Airways of Cystic Fibrosis Patients Protects Against NET-Mediated Killing. Front Immunol 2019; 10:2552. [PMID: 31772562 PMCID: PMC6849659 DOI: 10.3389/fimmu.2019.02552] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is one of the first and most prevalent pathogens cultured from the airways of cystic fibrosis (CF) patients, which can persist there for extended periods. Airway infections in CF patients are characterized by a strong inflammatory response of highly recruited neutrophils. One killing mechanism of neutrophils is the formation of neutrophil extracellular traps (NETs), which capture and eradicate bacteria by extracellular fibers of neutrophil chromatin decorated with antimicrobial granule proteins. S. aureus secretes nuclease, which can degrade NETs. We hypothesized, that S. aureus adapts to the airways of CF patients during persistent infection by escaping from NET-mediated killing via an increase of nuclease activity. Sputum samples of CF patients with chronic S. aureus infection were visualized by confocal microscopy after immuno-fluorescence staining for NET-specific markers, S. aureus bacteria and overall DNA structures. Nuclease activity was analyzed in sequential isogenic long persisting S. aureus isolates, as confirmed by whole genome sequencing, from an individual CF patient using a FRET-based nuclease activity assay. Additionally, some of these isolates were selected and analyzed by qRT-PCR to determine the expression of nuc1 and regulators of interest. NET-killing assays were performed with clinical S. aureus isolates to evaluate killing and bacterial survival depending on nuclease activity. To confirm the role of nuclease during NET-mediated killing, a clinical isolate with low nuclease activity was transformed with a nuclease expression vector (pCM28nuc). Furthermore, two sputa from an individual CF patient were subjected to RNA-sequence analysis to evaluate the activity of nuclease in vivo. In sputa, S. aureus was associated to extracellular DNA structures. Nuclease activity in clinical S. aureus isolates increased in a time-and phenotype-dependent manner. In the clinical isolates, the expression of nuc1 was inversely correlated to the activity of agr and was independent of saeS. NET-mediated killing was significantly higher in S. aureus isolates with low compared to isolates with high nuclease activity. Importantly, transformation of the clinical isolate with low nuclease activity with pCM28nuc conferred protection against NET-mediated killing confirming the beneficial role of nuclease for protection against NETs. Also, nuclease expression in in vivo sputa was high, which underlines the important role of nuclease within the highly inflamed CF airways. In conclusion, our data show that S. aureus adapts to the neutrophil-rich environment of CF airways with increasing nuclease expression most likely to avoid NET-killing during long-term persistence.
Collapse
Affiliation(s)
- Susann Herzog
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| | - Felix Dach
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| | - Nicole de Buhr
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jannik Schlagowski
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Diego Chaves-Moreno
- Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZ), Brunswick, Germany
| | - Claudia Neumann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jonas Goretzko
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany
| | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | | | - Angelika Dübbers
- Department of Pediatrics, University Hospital Münster, Münster, Germany
| | - Peter Küster
- Department of Pediatrics, Clemenshospital, Münster, Germany
| | | | - Ursula Rescher
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany
| | - Dietmar H. Pieper
- Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZ), Brunswick, Germany
| | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| |
Collapse
|
16
|
Limoli DH, Hoffman LR. Help, hinder, hide and harm: what can we learn from the interactions between Pseudomonas aeruginosa and Staphylococcus aureus during respiratory infections? Thorax 2019; 74:684-692. [PMID: 30777898 PMCID: PMC6585302 DOI: 10.1136/thoraxjnl-2018-212616] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
Recent studies of human respiratory secretions using culture-independent techniques have found a surprisingly diverse array of microbes. Interactions among these community members can profoundly impact microbial survival, persistence and antibiotic susceptibility and, consequently, disease progression. Studies of polymicrobial interactions in the human microbiota have shown that the taxonomic and structural compositions, and resulting behaviours, of microbial communities differ substantially from those of the individual constituent species and in ways of clinical importance. These studies primarily involved oral and gastrointestinal microbiomes. While the field of polymicrobial respiratory disease is relatively young, early findings suggest that respiratory tract microbiota members also compete and cooperate in ways that may influence disease outcomes. Ongoing efforts therefore focus on how these findings can inform more 'enlightened', rational approaches to combat respiratory infections. Among the most common respiratory diseases involving polymicrobial infections are cystic fibrosis (CF), non-CF bronchiectasis, COPD and ventilator-associated pneumonia. While respiratory microbiota can be diverse, two of the most common and best-studied members are Staphylococcus aureus and Pseudomonas aeruginosa, which exhibit a range of competitive and cooperative interactions. Here, we review the state of research on pulmonary coinfection with these pathogens, including their prevalence, combined and independent associations with patient outcomes, and mechanisms of those interactions that could influence lung health. Because P. aeruginosa-S. aureus coinfection is common and well studied in CF, this disease serves as the paradigm for our discussions on these two organisms and inform our recommendations for future studies of polymicrobial interactions in pulmonary disease.
Collapse
Affiliation(s)
- Dominique Hope Limoli
- Microbiology and Immunology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Lucas R Hoffman
- Departments of Pediatrics and Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|