1
|
Wang Y, Xu W, Xu H, Jia Q. Preparation of tannic acid and L-cysteine functionalized magnetic composites for synergistic enrichment of N-glycopeptides followed by mass spectrometric analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3260-3269. [PMID: 35968711 DOI: 10.1039/d2ay01169g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycoprotein is involved in a variety of biological activities and has been linked to a number of diseases. Glycopeptide enrichment prior to mass spectrometry (MS) detection is crucial to reduce interference, improve detection efficiency, and analyze proteomics deeply and comprehensively. Here, we prepared a novel magnetic hydrophilic material combining tannic acid (TA) and L-cysteine (L-Cys) through a simple and fast procedure. Owing to the synergistic hydrophilic interaction of TA and L-Cys, the obtained adsorbent material shows excellent enrichment performance toward N-glycopeptides with low detection limit, high selectivity, and good reusability. Besides, the material can also be utilized for the enrichment of N-glycopeptides in human serum and saliva, which shows its application prospect in complex biological samples.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Wenhui Xu
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Hai Xu
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
How dendritic cells sense and respond to viral infections. Clin Sci (Lond) 2021; 135:2217-2242. [PMID: 34623425 DOI: 10.1042/cs20210577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.
Collapse
|
3
|
Chakroun K, Taouai M, Porkolab V, Luczkowiak J, Sommer R, Cheneau C, Mathiron D, Ben Maaouia MA, Pilard S, Abidi R, Mullié C, Fieschi F, Cragg PJ, Halary F, Delgado R, Benazza M. Low-Valent Calix[4]arene Glycoconjugates Based on Hydroxamic Acid Bearing Linkers as Potent Inhibitors in a Model of Ebola Virus Cis-Infection and HCMV-gB-Recombinant Glycoprotein Interaction with MDDC Cells by Blocking DC-SIGN. J Med Chem 2021; 64:14332-14343. [PMID: 34524803 DOI: 10.1021/acs.jmedchem.1c00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.
Collapse
Affiliation(s)
- Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, GrenobleF-38044, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken66123, Germany
| | - Coraline Cheneau
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Immunology UMR1064, ITUN, Nantes44093, France
| | - David Mathiron
- UFR des Sciences Bâtiment Serres-Transfert Rue Dallery, Passage du sourire d'Avril, Amiens 80039 Cedex 1, France
| | - Mohamed Amine Ben Maaouia
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Serge Pilard
- UFR des Sciences Bâtiment Serres-Transfert Rue Dallery, Passage du sourire d'Avril, Amiens 80039 Cedex 1, France
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Catherine Mullié
- Laboratoire AGIR-UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens80037, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, GrenobleF-38044, France
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, U.K
| | - Franck Halary
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Immunology UMR1064, ITUN, Nantes44093, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France
| |
Collapse
|
4
|
Czech-Kowalska J, Jedlińska-Pijanowska D, Pleskaczyńska AK, Niezgoda A, Gradowska K, Pietrzyk A, Jurkiewicz E, Jaworski M, Kasztelewicz B. Single Nucleotide Polymorphisms of Interleukins and Toll-like Receptors and Neuroimaging Results in Newborns with Congenital HCMV Infection. Viruses 2021; 13:1783. [PMID: 34578364 PMCID: PMC8473223 DOI: 10.3390/v13091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital cytomegalovirus infection (cCMV) is the most common intrauterine infection with central nervous system (CNS) involvement. There is limited data on the associations between Single Nucleotide Polymorphisms (SNPs) in genes involving the first-line defense mechanism and the risk of CNS damage during cCMV. We investigated the associations between neuroimaging findings and SNPs in genes encoding the following cytokines and cytokine receptors in 92 infants with cCMV: interleukins (IL1B rs16944, IL12B rs3212227, IL28B rs12979860), C-C motif chemokine ligand 2 (CCL2 rs1024611), dendritic cell-specific intercellular adhesion grabbing non-integrin (DC-SIGN rs735240), Toll-like receptors (TLR2 rs5743708, TLR4 rs4986791, TLR9 rs352140). The SNP of IL1B rs16944 (G/A) was associated with a reduced risk of ventriculomegaly on MRI (OR = 0.46, 95% CI, 0.22-0.95; p = 0.03) and cUS (OR = 0.38, 95% CI, 0.0-0.93; p = 0.034). Infants carrying heterozygous (T/C) genotype at IL28B rs12979860 had an increased risk of cystic lesions on cUS (OR = 3.31, 95% CI, 1.37-8.01; p = 0.0064) and MRI (OR = 4.97, 95% CI, 1.84-13.43; p = 0.001), and an increased risk of ventriculomegaly on MRI (OR = 2.46, 95% CI, 1.03-5.90; p = 0.04). No other associations between genotyped SNPs and neuroimaging results were found. This is the first study demonstrating new associations between SNPs of IL1B and IL28B and abnormal neuroimaging in infants with cCMV.
Collapse
Affiliation(s)
- Justyna Czech-Kowalska
- Neonatal Intensive Care Unit, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (D.J.-P.); (A.K.P.); (A.N.); (K.G.); (A.P.)
| | - Dominika Jedlińska-Pijanowska
- Neonatal Intensive Care Unit, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (D.J.-P.); (A.K.P.); (A.N.); (K.G.); (A.P.)
| | - Agata K. Pleskaczyńska
- Neonatal Intensive Care Unit, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (D.J.-P.); (A.K.P.); (A.N.); (K.G.); (A.P.)
| | - Anna Niezgoda
- Neonatal Intensive Care Unit, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (D.J.-P.); (A.K.P.); (A.N.); (K.G.); (A.P.)
| | - Kinga Gradowska
- Neonatal Intensive Care Unit, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (D.J.-P.); (A.K.P.); (A.N.); (K.G.); (A.P.)
| | - Aleksandra Pietrzyk
- Neonatal Intensive Care Unit, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (D.J.-P.); (A.K.P.); (A.N.); (K.G.); (A.P.)
| | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Beata Kasztelewicz
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| |
Collapse
|
5
|
Jedlińska-Pijanowska D, Kasztelewicz B, Dobrzańska A, Dzierżanowska-Fangrat K, Jaworski M, Czech-Kowalska J. Association between single nucleotide polymorphisms and viral load in congenital cytomegalovirus infection. JOURNAL OF MOTHER AND CHILD 2021; 24:9-17. [PMID: 33656306 PMCID: PMC8330360 DOI: 10.34763/jmotherandchild.20202404.d-20-00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background There are limited data on factors that determine viral load (VL) in congenital cytomegalovirus (cCMV) infection. Single nucleotide polymorphisms (SNPs) might influence individual host response to infection. This study aimed to investigate the association between SNPs in genes encoding cytokines or cytokine receptors and VL in newborns with cCMV. Material and methods Eight polymorphisms (IL1B rs16944, IL12B rs3212227, IL28B rs12979860, CCL2 rs1024611, DC-SIGN rs735240, TLR2 rs5743708, TLR4 rs4986791 and TLR9 rs352140) were analyzed in study population of 233 newborns, including 92 cCMV-infected newborns (73 symptomatic and 19 asymptomatic) by TaqMan SNP Predesigned Genotyping Assays. The association analysis was performed using SNPStats software and STATISTICA10. Results The association between IL12B polymorphism and viruria was observed (p = 0.029). In multiple comparison tests, heterozygous T/G genotype of IL12B was associated with higher viruria than T/T genotype (p = 0.041) in cCMV-infected newborns. In allele analysis, T allele of IL12B was associated with higher viremia (p = 0.037) in symptomatic newborns. We observed higher VL in symptomatic newborns in comparison to asymptomatic (median viremia: 1.7 × 104 copies/mL vs. 2.0 × 103 copies/mL (p = 0.002), median viruria: 1.0 × 107 copies/mL versus 6.9 × 105 copies/mL (p = 0.001), respectively). Conclusions IL12B rs3212227 was associated with VL in cCMV. Symptomatic newborns had significantly higher viremia and viruria. The role of SNPs in pathogenesis of cCMV warrants further investigations.
Collapse
Affiliation(s)
| | - Beata Kasztelewicz
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Dobrzańska
- Department of Neontology and Neonatal Intensive Care , The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Justyna Czech-Kowalska
- Department of Neontology and Neonatal Intensive Care , The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
6
|
Non-permissive human conventional CD1c+ dendritic cells enable trans-infection of human primary renal tubular epithelial cells and protect BK polyomavirus from neutralization. PLoS Pathog 2021; 17:e1009042. [PMID: 33592065 PMCID: PMC7886149 DOI: 10.1371/journal.ppat.1009042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading. Dr Sylvia Gardner first discovered the BK polyomavirus (BKPyV) in the urine of a kidney-transplant recipient in 1970. In the 1990’s, the widespread use of potent immunosuppressive drugs such as tacrolimus, sirolimus or mycophenolate mofetil led to the emergence of BKPyV nephropathy. Recently, various studies reported a specific influx of myeloid dendritic cells (mDCs) in the renal tissue of kidney-transplant patients who were diagnosed with a BKPyV nephropathy. MDCs are immune cells both residing in tissues and migrating to other organs or compartments like the blood when changes in their environment occur. Their main functions are the detection of danger signals such as pathogens or tumors and the processing of antigens to prime naïve specific effectors of the adaptive immune response. Although anti-BKPyV cellular immune responses have been investigated in post-transplant recipients as well as healthy individuals, supporting an active role of mDCs little is known about how mDCs and BKPyV interact with each other. Our study provides the basis to understand the role played by mDCs in virus capture through an unprecedented endocytic mechanism and possibly in viral protection from neutralization by specific antibodies. Moreover, we showed that mDCs are unable to sense BKPyV particles or BKPyV-infected dying cells as a danger signal, supporting the view that other DC subsets might act as the true antigen presenting cells that promote the adaptive immune response against BKPyV infection.
Collapse
|
7
|
Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic Cells and SARS-CoV-2 Infection: Still an Unclarified Connection. Cells 2020; 9:E2046. [PMID: 32911691 PMCID: PMC7564940 DOI: 10.3390/cells9092046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023] Open
Abstract
The ongoing pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has so far infected about 2.42 × 107 (as at 27 August 2020) subjects with more than 820,000 deaths. It is the third zoonotic coronavirus-dependent outbreak in the last twenty years and represents a major infective threat for public health worldwide. A main aspect of the infection, in analogy to other viral infections, is the so-called "cytokine storm", an inappropriate molecular response to virus spread which plays major roles in tissue and organ damage. Immunological therapies, including vaccines and humanized monoclonal antibodies, have been proposed as major strategies for prevention and treatment of the disease. Accordingly, a detailed mechanistic knowledge of the molecular events with which the virus infects cells and induces an immunological response appears necessary. In this review, we will report details of the initial process of SARS-CoV-2 cellular entry with major emphasis on the maturation of the spike protein. Then, a particular focus will be devoted to describe the possible mechanisms by which dendritic cells, a major cellular component of innate and adaptive immune responses, may play a role in the spread of the virus in the human body and in the clinical evolution of the disease.
Collapse
Affiliation(s)
- Pasquale Campana
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples ‘Federico II’, Via Sergio Pansini 5, 80131 Naples, Italy; (P.C.); (V.P.); (D.L.)
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy;
| |
Collapse
|
8
|
Jedlińska-Pijanowska D, Kasztelewicz B, Czech-Kowalska J, Jaworski M, Charusta-Sienkiewicz K, Dobrzańska A. Association between single nucleotide polymorphisms (SNPs) of IL1, IL12, IL28 and TLR4 and symptoms of congenital cytomegalovirus infection. PLoS One 2020; 15:e0233096. [PMID: 32421725 PMCID: PMC7233583 DOI: 10.1371/journal.pone.0233096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital cytomegalovirus (cCMV) infection is the most common intrauterine infection. A non-specific immune response is the first line of host defense mechanism against human cytomegalovirus (HCMV). There is limited data on associations between Single Nucleotide Polymorphisms (SNPs) in genes involving innate immunity and the risk and clinical manifestation of cCMV infection. The aim of the study was to investigate association between selected SNPs in genes encoding cytokines and cytokine receptors, and predisposition to cCMV infection including symptomatic course of disease and symptoms. A panel of eight SNPs: IL1B rs16944, IL12B rs3212227, IL28B rs12979860, CCL2 rs1024611, DC-SIGN rs735240, TLR2 rs5743708, TLR4 rs4986791, TLR9 rs352140 was analyzed in 233 infants (92 cCMV-infected and 141 healthy controls). Associations between genotyped SNPs and predisposition to cCMV infection and symptoms were analyzed. The association analysis was performed using SNPStats software. No statistically significant association was found between any genotyped SNPs and predisposition to cCMV infection and symptomatic course of disease. In relation to particular symptoms, polymorphism of IL12B rs3212227 was linked to decreased risk of prematurity (OR = 0.37;95%CI,0.14-0.98;p = 0.025), while polymorphism of IL1B rs16944 was linked to reduced risk of splenomegaly (OR = 0.36;95%CI,0.14-0.98; p = 0.034) in infants with cCMV infection. An increased risk of thrombocytopenia was associated with IL28B rs12979860 polymorphism (OR = 2.55;95%CI,1.03-6.32;p = 0.042), while hepatitis was associated with SNP of TLR4rs4986791 (OR = 7.80;95%CI,1.49-40,81; p = 0.024). This is the first study to demonstrate four new associations between SNPs in selected genes (IL1B, IL12B, IL28B, TLR4) and particular symptoms in cCMV disease. Further studies on the role of SNPs in the pathogenesis of cCMV infection and incorporation of selected SNPs in the clinical practice might be considered in the future.
Collapse
Affiliation(s)
| | - Beata Kasztelewicz
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Anna Dobrzańska
- Neonatal Intensive Care Unit, The Children’s Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
9
|
Comparative binding and uptake of liposomes decorated with mannose oligosaccharides by cells expressing the mannose receptor or DC-SIGN. Carbohydr Res 2020; 487:107877. [DOI: 10.1016/j.carres.2019.107877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
|
10
|
Taouai M, Porkolab V, Chakroun K, Cheneau C, Luczkowiak J, Abidi R, Lesur D, Cragg PJ, Halary F, Delgado R, Fieschi F, Benazza M. Unprecedented Thiacalixarene Fucoclusters as Strong Inhibitors of Ebola cis-Cell Infection and HCMV-gB Glycoprotein/DC-SIGN C-type Lectin Interaction. Bioconjug Chem 2019; 30:1114-1126. [DOI: 10.1021/acs.bioconjchem.9b00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Coraline Cheneau
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - David Lesur
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Franck Halary
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| |
Collapse
|