1
|
Achan J, Barry A, Leroy D, Kamara G, Duparc S, Kaszubska W, Gandhi P, Buffet B, Tshilab P, Ogutu B, Taylor T, Krishna S, Richardson N, Ramachandruni H, Rietveld H. Defining the next generation of severe malaria treatment: a target product profile. Malar J 2024; 23:174. [PMID: 38835069 DOI: 10.1186/s12936-024-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Collapse
Affiliation(s)
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - George Kamara
- Médecins Sans Frontières, Magburaka District Hospital, Freetown, Sierra Leone
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bénédicte Buffet
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Terrie Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sanjeev Krishna
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (Dzif), Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| | - Hans Rietveld
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| |
Collapse
|
2
|
Saralamba S, Simpson JA, Choosri N, White L, Pan-Ngum W, Dondorp AM, White NJ. An artesunate pharmacometric model to explain therapeutic responses in falciparum malaria. J Antimicrob Chemother 2023; 78:2192-2202. [PMID: 37473441 PMCID: PMC10477127 DOI: 10.1093/jac/dkad219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The artemisinins are potent and widely used antimalarial drugs that are eliminated rapidly. A simple concentration-effect pharmacometric model does not explain why dosing more frequently than once daily fails to augment parasite clearance and improve therapeutic responses in vivo. Artemisinins can induce a temporary non-replicative or 'dormant' drug refractory state in Plasmodium falciparum malaria parasites which may explain recrudescences observed in clinical trials despite full drug susceptibility, but whether it explains the dosing-response relationship is uncertain. OBJECTIVES To propose a revised model of antimalarial pharmacodynamics that incorporates reversible asexual parasite injury and temporary drug refractoriness in order to explain the failure of frequent dosing to augment therapeutic efficacy in falciparum malaria. METHODS The model was fitted using a Bayesian Markov Chain Monte Carlo approach with the parasite clearance data from 39 patients with uncomplicated falciparum malaria treated with artesunate from western Cambodia and 40 patients from northwestern Thailand reported previously. RESULTS The revised model captured the dynamics of parasite clearance data. Its predictions are consistent with observed therapeutic responses. CONCLUSIONS A within-host pharmacometric model is proposed in which it is hypothesized that some malaria parasites enter a temporary drug refractory state after exposure to artemisinin antimalarials, which is followed by delayed parasite death or reactivation. The model fitted the observed sequential parasite density data from patients with acute P. falciparum malaria, and it supported reduced ring stage activity in artemisinin-resistant infections.
Collapse
Affiliation(s)
- Sompob Saralamba
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Noppon Choosri
- Center of Data Analytics and Knowledge Synthesis for Healthcare, Chiang Mai University, Chiang Mai, Thailand
| | - Lisa White
- Department of Biology, University of Oxford, Oxford, UK
| | - Wirichada Pan-Ngum
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Zaloumis SG, Whyte JM, Tarning J, Krishna S, McCaw JM, Cao P, White MT, Dini S, Fowkes FJI, Maude RJ, Kremsner P, Dondorp A, Price RN, White NJ, Simpson JA. Development and Validation of an In Silico Decision Tool To Guide Optimization of Intravenous Artesunate Dosing Regimens for Severe Falciparum Malaria Patients. Antimicrob Agents Chemother 2021; 65:e02346-20. [PMID: 33685888 PMCID: PMC8316083 DOI: 10.1128/aac.02346-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Most deaths from severe falciparum malaria occur within 24 h of presentation to a hospital. Intravenous (i.v.) artesunate is the first-line treatment for severe falciparum malaria, but its efficacy may be compromised by delayed parasitological responses. In patients with severe malaria, the life-saving benefit of the artemisinin derivatives is their ability to clear circulating parasites rapidly, before they can sequester and obstruct the microcirculation. To evaluate the dosing of i.v. artesunate for the treatment of artemisinin-sensitive and reduced ring stage sensitivity to artemisinin severe falciparum malaria infections, Bayesian pharmacokinetic-pharmacodynamic modeling of data from 94 patients with severe malaria (80 children from Africa and 14 adults from Southeast Asia) was performed. Assuming that delayed parasite clearance reflects a loss of ring stage sensitivity to artemisinin derivatives, the median (95% credible interval) percentage of patients clearing ≥99% of parasites within 24 h (PC24≥99%) for standard (2.4 mg/kg body weight i.v. artesunate at 0 and 12 h) and simplified (4 mg/kg i.v. artesunate at 0 h) regimens was 65% (52.5% to 74.5%) versus 44% (25% to 61.5%) for adults, 62% (51.5% to 74.5%) versus 39% (20.5% to 58.5%) for larger children (≥20 kg), and 60% (48.5% to 70%) versus 36% (20% to 53.5%) for smaller children (<20 kg). The upper limit of the credible intervals for all regimens was below a PC24≥99% of 80%, a threshold achieved on average in clinical studies of severe falciparum malaria infections. In severe falciparum malaria caused by parasites with reduced ring stage susceptibility to artemisinin, parasite clearance is predicted to be slower with both the currently recommended and proposed simplified i.v. artesunate dosing regimens.
Collapse
Affiliation(s)
- Sophie G Zaloumis
- Centre for Epidemiology & Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jason M Whyte
- Centre of Excellence for Biosecurity Risk Analysis, School of BioSciences, University of Melbourne, Melbourne, Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sanjeev Krishna
- Institute for Infection and Immunity, St. George's Hospital, University of London, London, United Kingdom
| | - James M McCaw
- Centre for Epidemiology & Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Pengxing Cao
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Michael T White
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Saber Dini
- Centre for Epidemiology & Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Centre for Epidemiology & Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Disease Elimination Program, Burnet Institute, Melbourne, Australia
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Harvard TH Chan School of P`ublic Health, Harvard University, Boston, Massachusetts, USA
| | - Peter Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Gabon and Institut für Tropenmedizin, University of Tübingen, Tübingen, Germany
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N Price
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie A Simpson
- Centre for Epidemiology & Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Hill KS, McDowell A, McCorkle JR, Schuler E, Ellingson SR, Plattner R, Kolesar JM. KEAP1 Is Required for Artesunate Anticancer Activity in Non-Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13081885. [PMID: 33920029 PMCID: PMC8070990 DOI: 10.3390/cancers13081885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which regulates cellular response to oxidative stress, are mutated in approximately 30% of non-small-cell lung cancers (NSCLC); therefore, we tested the hypothesis that KEAP1 is required for artesunate sensitivity in NSCLC. Dose response assays identified A549 cells, which have a G333C-inactivating mutation in KEAP1, as resistant to artesunate, with an IC50 of 23.6 µM, while H1299 and H1563 cells were sensitive to artesunate, with a 10-fold lower IC50. Knockdown of KEAP1 through siRNA caused increased resistance to artesunate in H1299 cells. Alternatively, the pharmacological inhibition of NRF2, which is activated downstream of KEAP1 loss, by ML385 partially restored sensitivity of A549 cells to artesunate, and the combination of artesunate and ML385 was synergistic in both A549 and H1299 cells. These findings demonstrate that KEAP1 is required for the anticancer activity of artesunate and support the further development of NRF2 inhibitors to target patients with mutations in the KEAP1/NRF2 pathway.
Collapse
Affiliation(s)
- Kristen S. Hill
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (K.S.H.); (J.R.M.)
| | - Anthony McDowell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - J. Robert McCorkle
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (K.S.H.); (J.R.M.)
| | - Erin Schuler
- Department of Pathology, College of Medicine, University of Kentucky, Lexington, KY 40508, USA;
| | - Sally R. Ellingson
- Division of Biomedical Informatics, College of Medicine, University of Kentucky, Lexington, KY 40506, USA;
| | - Rina Plattner
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40508, USA;
| | - Jill M. Kolesar
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (K.S.H.); (J.R.M.)
- Department of Pharmacy Practice and Research, College of Pharmacy, University of Kentucky, Lexington, KY 40508, USA
- Correspondence: ; Tel.: +1-(859)-323-4978
| |
Collapse
|
5
|
Zech J, Salaymeh N, Hunt NH, Mäder K, Golenser J. Efficient Treatment of Experimental Cerebral Malaria by an Artemisone-SMEDDS System: Impact of Application Route and Dosing Frequency. Antimicrob Agents Chemother 2021; 65:e02106-20. [PMID: 33558284 PMCID: PMC8097435 DOI: 10.1128/aac.02106-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
Artemisone (ART) has been successfully tested in vitro and in animal models against several diseases. However, its poor aqueous solubility and limited chemical stability are serious challenges. We developed a self-microemulsifying drug delivery system (SMEDDS) that overcomes these limitations. Here, we demonstrate the efficacy of this formulation against experimental cerebral malaria in mice and the impact of its administration using different routes (gavage, intranasal delivery, and parenteral injections) and frequency on the efficacy of the treatment. The minimal effective daily oral dose was 20 mg/kg. We found that splitting a dose of 20 mg/kg ART given every 24 h, by administering two doses of 10 mg/kg each every 12 h, was highly effective and gave far superior results compared to 20 mg/kg once daily. We obtained the best results with nasal treatment; oral treatment was ranked second, and the least effective route of administration was intraperitoneal injection. A complete cure of experimental cerebral malaria could be achieved through choosing the optimal route of application, dose, and dosing interval. Altogether, the developed formulation combines easy manufacturing with high stability and could be a successful and very versatile carrier for the delivery of ART in the treatment of human severe malaria.
Collapse
Affiliation(s)
- Johanna Zech
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nadeen Salaymeh
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nicholas H Hunt
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Rebelo M, Pawliw R, Gower J, Webb L, Mitchell H, Pava Z, Watts RE, Davenport MP, McCarthy JS, Khoury DS. Parasite Viability as a Superior Measure of Antimalarial Drug Activity in Humans. J Infect Dis 2020; 223:2154-2163. [PMID: 33119072 DOI: 10.1093/infdis/jiaa678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Artemisinin derivatives are the leading class of antimalarial drugs due to their rapid onset of action and rapid clearance of circulating parasites. The parasite clearance half-life measures the rate of loss of parasites from blood after treatment, and this is currently used to assess antimalarial activity of novel agents and to monitor resistance. However, a number of recent studies have challenged the use of parasite clearance to measure drug activity, arguing that many circulating parasites may be nonviable. METHODS Plasmodium falciparum-infected subjects (n = 10) in a malaria volunteer infection study were administered a single dose of artesunate (2 mg/kg). Circulating parasite concentration was assessed by means of quantitative polymerase chain reaction (qPCR). Parasite viability after artesunate administration was estimated by mathematical modeling of the ex vivo growth of parasites collected from subjects. RESULTS We showed that in artemisinin-sensitive infection, viable parasites declined to <0.1% of baseline within 8 hours after artesunate administration, while the total number of circulating parasites measured with quantitative polymerase chain reaction remained unchanged. In artemisinin-resistant infections over the same interval, viable parasites declined to 51.4% (standard error of the mean, 4.6%) of baseline. CONCLUSIONS These results demonstrate that in vivo drug activity of artesunate is faster than is indicated by the parasite clearance half-life.
Collapse
Affiliation(s)
- Maria Rebelo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca Pawliw
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jeremy Gower
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hayley Mitchell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca E Watts
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales (Sydney), Sydney, New South Wales, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales (Sydney), Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Karbwang J, Na‐Bangchang K. The Role of Clinical Pharmacology in Chemotherapy of Multidrug‐Resistant
Plasmodium falciparum. J Clin Pharmacol 2020; 60:830-847. [DOI: 10.1002/jcph.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Juntra Karbwang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
- Department of Clinical Product developmentNagasaki Institute of Tropical MedicineNagasaki University Nagasaki Japan
| | - Kesara Na‐Bangchang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
| |
Collapse
|