1
|
Lanz AL, Erdem S, Ozcan A, Ceylaner G, Cansever M, Ceylaner S, Conca R, Magg T, Acuto O, Latour S, Klein C, Patiroglu T, Unal E, Eken A, Hauck F. A Novel Biallelic LCK Variant Resulting in Profound T-Cell Immune Deficiency and Review of the Literature. J Clin Immunol 2023; 44:1. [PMID: 38100037 PMCID: PMC10724324 DOI: 10.1007/s10875-023-01602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023]
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is an SRC-family kinase critical for initiation and propagation of T-cell antigen receptor (TCR) signaling through phosphorylation of TCR-associated CD3 chains and recruited downstream molecules. Until now, only one case of profound T-cell immune deficiency with complete LCK deficiency [1] caused by a biallelic missense mutation (c.1022T>C, p.L341P) and three cases of incomplete LCK deficiency [2] caused by a biallelic splice site mutation (c.188-2A>G) have been described. Additionally, deregulated LCK expression has been associated with genetically undefined immune deficiencies and hematological malignancies. Here, we describe the second case of complete LCK deficiency in a 6-month-old girl born to consanguineous parents presenting with profound T-cell immune deficiency. Whole exome sequencing (WES) revealed a novel pathogenic biallelic missense mutation in LCK (c.1393T>C, p.C465R), which led to the absence of LCK protein expression and phosphorylation, and a consecutive decrease in proximal TCR signaling. Loss of conventional CD4+ and CD8+ αβT-cells and homeostatic T-cell expansion was accompanied by increased γδT-cell and Treg percentages. Surface CD4 and CD8 co-receptor expression was reduced in the patient T-cells, while the heterozygous mother had impaired CD4 and CD8 surface expression to a lesser extent. We conclude that complete LCK deficiency is characterized by profound T-cell immune deficiency, reduced CD4 and CD8 surface expression, and a characteristic TCR signaling disorder. CD4 and CD8 surface expression may be of value for early detection of mono- and/or biallelic LCK deficiency.
Collapse
Affiliation(s)
- Anna-Lisa Lanz
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38030, Kayseri, Turkey
- Molecular Biology and Genetics Department, Gevher Nesibe Genome and Stem Cell Institute, Betul-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Alper Ozcan
- Molecular Biology and Genetics Department, Gevher Nesibe Genome and Stem Cell Institute, Betul-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | | | - Murat Cansever
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Raffaele Conca
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, OX2 3RE, UK
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France
| | - Christoph Klein
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Turkan Patiroglu
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Molecular Biology and Genetics Department, Gevher Nesibe Genome and Stem Cell Institute, Betul-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Intergen, Ankara, Turkey
- Hasan Kalyoncu University, Faculty of Health Sciences, Medical Point Hospital, Gaziantep, Türkiye
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38030, Kayseri, Turkey.
- Molecular Biology and Genetics Department, Gevher Nesibe Genome and Stem Cell Institute, Betul-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstrasse 4, 80337, Munich, Germany.
- Munich Centre for Rare Diseases (M-ZSELMU), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
3
|
Perez-Diez A, Wong CS, Liu X, Mystakelis H, Song J, Lu Y, Sheikh V, Bourgeois JS, Lisco A, Laidlaw E, Cudrici C, Zhu C, Li QZ, Freeman AF, Williamson PR, Anderson M, Roby G, Tsang JS, Siegel R, Sereti I. Prevalence and pathogenicity of autoantibodies in patients with idiopathic CD4 lymphopenia. J Clin Invest 2021; 130:5326-5337. [PMID: 32634122 DOI: 10.1172/jci136254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDIdiopathic CD4 lymphopenia (ICL) is defined by persistently low CD4+ cell counts (<300 cells/μL) in the absence of a causal infection or immune deficiency and can manifest with opportunistic infections. Approximately 30% of ICL patients develop autoimmune disease. The prevalence and breadth of their autoantibodies, however, and their potential contribution to pathogenesis of ICL remain unclear.METHODSWe hybridized 34 and 51 ICL patients' sera to a 9,000-human-proteome array and to a 128-known-autoantigen array, respectively. Using a flow-based method, we characterized the presence of anti-lymphocyte Abs in the whole cohort of 72 patients, as well as the Ab functional capability of inducing Ab-dependent cell-mediated cytotoxicity (ADCC), complement deposition, and complement-dependent cytotoxicity (CDC). We tested ex vivo the activation of the classical complement pathway on ICL CD4+ T cells.RESULTSAll ICL patients had a multitude of autoantibodies mostly directed against private (not shared) targets and unrelated quantitatively or qualitatively to the patients' autoimmune disease status. The targets included lymphocyte intracellular and membrane antigens, confirmed by the detection by flow of IgM and IgG (mostly IgG1 and IgG4) anti-CD4+ cell Abs in 50% of the patients, with half of these cases triggering lysis of CD4+ T cells. We also detected in vivo classical complement activation on CD4+ T cells in 14% of the whole cohort.CONCLUSIONOur data demonstrate that a high prevalence of autoantibodies in ICL, some of which are specific for CD4+ T cells, may contribute to pathogenesis, and may represent a potentially novel therapeutic target.TRIAL REGISTRATIONClinicalTrials.gov NCT00867269.FUNDINGNIAID and National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH.
Collapse
Affiliation(s)
| | - Chun-Shu Wong
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | - Xiangdong Liu
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | | | - Jian Song
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), and
| | - Yong Lu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), and
| | - Virginia Sheikh
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | | | - Andrea Lisco
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | | | - Cornelia Cudrici
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | - Quan-Zhen Li
- Microarray Core Facility and.,Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Peter R Williamson
- Translational Mycology Section, Laboratory of Clinical and Molecular Immunology, NIAID, and
| | - Megan Anderson
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | - Gregg Roby
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), and.,Trans-NIH Center for Human Immunology, NIH, Bethesda, Maryland, USA
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| |
Collapse
|
4
|
Idiopathic CD4 T Cell Lymphocytopenia: A Case of Overexpression of PD-1/PDL-1 and CTLA-4. Infect Dis Rep 2021; 13:72-81. [PMID: 33450836 PMCID: PMC7839055 DOI: 10.3390/idr13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/29/2022] Open
Abstract
Idiopathic CD4 T cell lymphocytopenia (ICL) is a rare entity characterized by CD4 T cell count of <300 cells/mm3 along with opportunistic infection for which T cell marker expression remains to be fully explored. We report an ICL case for which T lymphocyte phenotype and its costimulatory molecules expression was analyzed both ex vivo and after overnight stimulation through CD3/CD28. The ICL patient was compared to five healthy controls. We observed higher expression of inhibitory molecules PD-1/PDL-1 and CTLA-4 on CD4 T cells and increased regulatory T cells in ICL, along with high activation and low proliferation of CD4 T cells. The alteration in the expression of both the costimulatory pathway and the apoptotic pathway might participate to down-regulate both CD4 T cell functions and numbers observed in ICL.
Collapse
|
5
|
Iqbal MA, Hong K, Kim JH, Choi Y. Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines. BMB Rep 2020. [PMID: 31722780 PMCID: PMC6889892 DOI: 10.5483/bmbrep.2019.52.11.267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell−/B cell−/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T−B+NK− cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.
Collapse
Affiliation(s)
- Muhammad Arsalan Iqbal
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
6
|
Shimizu H, Hara S, Nishioka H. Disseminated cryptococcosis with granuloma formation in idiopathic CD4 lymphocytopenia. J Infect Chemother 2019; 26:257-260. [PMID: 31345742 DOI: 10.1016/j.jiac.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 01/20/2023]
Abstract
Idiopathic CD4 lymphocytopenia (ICL) is a rare disease characterized by marked loss of CD4 T-cells without human immunodeficiency virus infection. CD4 T-cells play an important role in granuloma formation in cryptococcal infection. Thus far, among ICL patients, it has not been concluded definitely whether granuloma is formed or not. We report the case of a 39-year-old woman with ICL and disseminated cryptococcal infection with granuloma formation. She was referred to our department because of a lung mass, osteolytic lesion, and a subcutaneous mass identified on a computed tomography scan, and an elevated C-reactive protein level. Cryptococcus neoformans was isolated from the tissues. She also had marked CD4 lymphocytopenia (33 cells/μL), without human immunodeficiency virus infection. In a biopsy specimen of the lung mass, granulomas containing CD4 T-cells were observed. The cryptococcosis was treated with liposomal amphotericin B followed by fluconazole and she was found to be cured. The CD4 T-cell count was persistently low. This case showed that granulomas containing CD4 T-cells can be formed in ICL patients with cryptococcal infection despite very low CD4 T-cell counts.
Collapse
Affiliation(s)
- Hayato Shimizu
- Department of General Internal Medicine, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Shigeo Hara
- Department of Pathology, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Hiroaki Nishioka
- Department of General Internal Medicine, Kobe City Medical Center General Hospital, Hyogo, Japan.
| |
Collapse
|
7
|
3D-QSAR and molecular docking studies of aminopyrimidine derivatives as novel three-targeted Lck/Src/KDR inhibitors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
|
8
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
9
|
Farag AK, Elkamhawy A, Londhe AM, Lee KT, Pae AN, Roh EJ. Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders. Eur J Med Chem 2017; 141:657-675. [PMID: 29107425 DOI: 10.1016/j.ejmech.2017.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 01/24/2023]
Abstract
Tyrosine kinases including LCK and FMS are involved in inflammatory disorders as well as many types of cancer. Our team has designed and synthesized thirty novel pyrimidine based inhibitors targeting LCK, classified into four different series (amides, ureas, imines (Schiff base) and benzylamines). Twelve of them showed nanomolar IC50 values. Compound 7g showed excellent selectivity profile and was selectively potent over FMS kinase (IC50 value of 4.6 nM). Molecular docking study was performed to help us rationalize the obtained results and predict the possible binding mode for our compounds in both LCK and FMS. Based on the obtained biological assay data and modelling results, a detailed SAR study was discussed. As a further testing regarding the anti-inflammatory effect of the new compounds, in vitro cellular assay over RAW 264.7 macrophages was performed. Compound 7g exhibited excellent anti-inflammatory effect. Therefore, we report the design of novel phenoxypyrimidine derivatives as potent and selective LCK inhibitors and the discovery of 7g as potent and selective FMS/LCK dual inhibitor for the potential application in inflammatory disorders including rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ashwini M Londhe
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ae Nim Pae
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
10
|
|
11
|
Progressive Multifocal Leukoencephalopathy in a HIV Negative, Immunocompetent Patient. Case Rep Neurol Med 2016; 2016:7050613. [PMID: 27529042 PMCID: PMC4978838 DOI: 10.1155/2016/7050613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 11/17/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disease most common in immunodeficient patients. It occurs due to reactivation of the John Cunningham Virus (JCV) and carries a poor prognosis, with a median life expectancy of 6 months. We report a case of a 66-year-old man with a history of HCV related cirrhosis (HCV) and hepatocellular carcinoma (HCC) who was found to have PML in the setting of a negative viral load in the CSF and a CD4+ >200. He initially presented with two weeks of mild confusion and word-finding difficulty concerning for hepatic encephalopathy. An MRI was notable for extensive T2/FLAIR hyperintensity signal in the left temporal lobe. Brain biopsy was positive for JCV. PML is rare in immunocompetent individuals, especially in the setting of a negative viral load. It is possible, however, that transient states of immunosuppression may have been responsible in this case. Although viral load was reported as negative, virus may still have been detected but was below the quantifiable threshold. It is important for clinicians to note that a negative result does not necessarily exclude the possibility of PML, and care should be taken to review lab values on viral load in closer detail.
Collapse
|
12
|
Azizi G, Ghanavatinejad A, Abolhassani H, Yazdani R, Rezaei N, Mirshafiey A, Aghamohammadi A. Autoimmunity in primary T-cell immunodeficiencies. Expert Rev Clin Immunol 2016; 12:989-1006. [PMID: 27063703 DOI: 10.1080/1744666x.2016.1177458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency diseases (PID) are a genetically heterogeneous group of more than 270 disorders that affect distinct components of both humoral and cellular arms of the immune system. Primary T cell immunodeficiencies affect subjects at the early age of life. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Patients with T-cell PID are prone to life-threatening infections. On the other hand, non-infectious complications such as lymphoproliferative diseases, cancers and autoimmunity seem to be associated with the primary T-cell immunodeficiencies. Autoimmune disorders of all kinds (organ specific or systemic ones) could be subjected to this class of PIDs; however, the most frequent autoimmune disorders are immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA). In this review, we discuss the proposed mechanisms of autoimmunity and review the literature reported on autoimmune disorder in each type of primary T-cell immunodeficiencies.
Collapse
Affiliation(s)
- Gholamreza Azizi
- a Department of Laboratory Medicine , Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences , Karaj , Iran.,b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Ghanavatinejad
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Reza Yazdani
- e Department of Immunology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Idiopathic CD4⁺ lymphocytopenia (ICL) is defined by the reduction of the main lymphocyte subtype in peripheral blood and CD4⁺ T cells below 300/μl in the absence of any secondary known causes of lymphopenia, including viral causes. The present review aims to state the latest available data on clinical, pathological and therapeutic aspects related to ICL, published from 1990 to 2014. The last observed clinical presentation and complications of ICL patients are described. The latest findings and possible mechanisms involved in the development of ICL features are included in the present review; however, pathogenesis of ICL has remained mainly obscured. Finally, recent therapeutic efforts considered in ICL patients are discussed. RECENT FINDINGS In spite of the serious complications ICL has on the patients' quality of life, data on clinical, etiopathological and therapeutic behavior for ICL are very limited. On one side, an abnormal blood cell count may be the sole presentation; however, occurrence of disseminated malignant tumors is not uncommon in patients. Recent findings highlight the role of cytokines, especially interleukin-2, on features such as phenotype severity and responsiveness of the condition to therapy. In addition, some studies have suggested that a defect in hematopoietic stem cells may be involved in disease progression, an idea that is supported by the success of bone marrow transplantation in acquiring persistent remissions in ICL patients. SUMMARY ICL is a hematologic condition of increasing importance due to its diverse clinical and pathological spectrum. Molecular studies have shown the presence of mutations involved in lymphocyte development as potential factors that may contribute to ICL occurrence. ICL patients could present either with common infections or really serious malignant conditions. The role of cytokines, especially interleukin-2, has emerged as one of the main possible mechanisms involved in clinical and pathological behavior of ICL. Today, the main therapeutic approaches are controlling life-threatening infections and underlying disorders along with efforts to cure ICL through rising CD4⁺ cell counts using cytokine interventions and transplantation.
Collapse
|
14
|
DUSP4-mediated accelerated T-cell senescence in idiopathic CD4 lymphopenia. Blood 2015; 125:2507-18. [PMID: 25733583 DOI: 10.1182/blood-2014-08-598565] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2014] [Accepted: 02/19/2015] [Indexed: 11/20/2022] Open
Abstract
Idiopathic CD4 lymphopenia (ICL) is a rare heterogeneous immunological syndrome of unclear etiology. ICL predisposes patients to severe opportunistic infections and frequently leads to poor vaccination effectiveness. Chronic immune activation, expansion of memory T cells, and impaired T-cell receptor (TCR) signaling have been reported in ICL, but the mechanistic and causative links remain unclear. We show that late-differentiated T cells in 20 patients with ICL displayed defective TCR responses and aging markers similar to those found in T cells from elderly subjects. Intrinsic T-cell defects were caused by increased expression of dual-specific phosphatase 4 (DUSP4). Normalization of DUSP4 expression using a specific siRNA improved CD4(+) T-cell activity in ICL, as this restored TCR-induced extracellular signal-regulated kinase activation and increased the expression of the costimulatory molecules CD27 and CD40L. Conversely, repeated TCR stimulation led to defective signaling and DUSP4 overexpression in control CD4(+) T cells. This was associated with gradual acquisition of a memory phenotype and was curtailed by DUSP4 silencing. These findings identify a premature T-cell senescence in ICL that might be caused by chronic T-cell activation and a consequential DUSP4-dependent dampening of TCR signaling.
Collapse
|
15
|
Abstract
The field of immunology has undergone recent discoveries of genetic causes for many primary immunodeficiency diseases (PIDD). The ever-expanding knowledge has led to increased understanding behind the pathophysiology of these diseases. Since these diseases are rare, the patients are frequently misdiagnosed early in the presentation of their illnesses. The identification of new genes has increased our opportunities for recognizing and making the diagnosis in patients with PIDD before they succumb to infections that may result secondary to their PIDD. Some mutations lead to a variety of presentations of severe combined immunodeficiency (SCID). The myriad and ever-growing genetic mutations which lead to SCID phenotypes have been identified in recent years. Other mutations associated with some genetic syndromes have associated immunodeficiency and are important for making the diagnosis of primary immunodeficiency in patients with some syndromes, who may otherwise be missed within the larger context of their syndromes. A variety of mutations also lead to increased susceptibility to infections due to particular organisms. These patterns of infections due to specific organisms are important keys in properly identifying the part of the immune system which is affected in these patients. This review will discuss recent genetic discoveries that enhance our understanding of these complex diseases.
Collapse
|
16
|
Denu RA, Rush PS, Ahrens SE, Westergaard RP. Idiopathic CD4 lymphocytopenia with giant cell arteritis and pulmonary mucormycosis. Med Mycol Case Rep 2014; 6:73-5. [PMID: 25473601 PMCID: PMC4246401 DOI: 10.1016/j.mmcr.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2014] [Accepted: 10/27/2014] [Indexed: 10/30/2022] Open
Abstract
Idiopathic CD4 lymphocytopenia (ICL) is characterized by a low CD4+ lymphocyte count in the absence of HIV or other underlying etiologies. We report a case of a 57-year old man with ICL and giant cell arteritis (GCA) who developed pulmonary mucormycosis, which, to our knowledge, is the first report of these occurring in a patient with ICL. Abnormally low total lymphocyte or CD4+ cell counts occurring in patients with autoimmune disorders should alert clinicians to the possibility of ICL. Immunosuppressive treatment should be used with caution in this context.
Collapse
Affiliation(s)
- Ryan A Denu
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Patrick S Rush
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Sarah E Ahrens
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ryan P Westergaard
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA ; Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
17
|
Régent A, Autran B, Carcelain G, Cheynier R, Terrier B, Charmeteau-De Muylder B, Krivitzky A, Oksenhendler E, Costedoat-Chalumeau N, Hubert P, Lortholary O, Dupin N, Debré P, Guillevin L, Mouthon L. Idiopathic CD4 lymphocytopenia: clinical and immunologic characteristics and follow-up of 40 patients. Medicine (Baltimore) 2014; 93:61-72. [PMID: 24646462 PMCID: PMC4616307 DOI: 10.1097/md.0000000000000017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
Abstract
Idiopathic CD4 T lymphocytopenia (ICL) is a rare and severe condition with limited available data. We conducted a French multicenter study to analyze the clinical and immunologic characteristics of a cohort of patients with ICL according to the Centers for Disease Control criteria.We recruited 40 patients (24 female) of mean age 44.2 ± 12.2 (19-70) years. Patients underwent T-lymphocyte phenotyping and lymphoproliferation assay at diagnosis, and experiments related to thymic function and interferon (IFN)-γ release by natural killer (NK) cell were performed. Mean follow-up was 6.9 ± 6.7 (0.14-24.3) years. Infectious, autoimmune, and neoplastic events were recorded, as were outcomes of interleukin 2 therapy.In all, 25 patients had opportunistic infections (12 with human papillomavirus infection), 14 had autoimmune symptoms, 5 had malignancies, and 8 had mild or no symptoms. At the time of diagnosis, the mean cell counts were as follows: mean CD4 cell count: 127/mm (range, 4-294); mean CD8: 236/mm (range, 1-1293); mean CD19: 113/mm (range, 3-547); and mean NK cell count: 122/mm (range, 5-416). Most patients had deficiency in CD8, CD19, and/or NK cells. Cytotoxic function of NK cells was normal, and patients with infections had a significantly lower NK cell count than those without (p = 0.01). Patients with autoimmune manifestations had increased CD8 T-cell count. Proliferation of thymic precursors, as assessed by T-cell rearrangement excision circles, was increased. Six patients died (15%). CD4 T-cell count <150/mm and NK cell count <100/mm were predictors of death.In conclusion, ICL is a heterogeneous disorder often associated with deficiencies in CD8, CD19, and/or NK cells. Long-term prognosis may be related to initial CD4 and NK cell deficiency.
Collapse
Affiliation(s)
- Alexis Régent
- From the Université Paris Descartes and Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Service de Médecine Interne, Paris (AR, BT, LG, LM); Institut Cochin, U016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité 22, Paris (AR, RC, BC-DM, LM); UPMC, Université Paris 6 and INSERM, UMR945, AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire d'Immunologie Cellulaire et Tissulaire, Paris (BA, GC, PH, PD); Université Paris 13 and AP-HP, Département de Médecine Interne, Hôpital Avicenne, Bobigny (AK); Université Paris Diderot and AP-HP, Département d'Immunologie Clinique, Hôpital Saint-Louis, Paris (EO); UPMC, Université Paris 6 and AP-HP, Hôpital Pitié-Salpêtrière, Service de Médecine Interne, Paris (NC-C); Université Paris Descartes and AP-HP, Service de Maladies Infectieuses, Hôpital Necker-Enfants Malades, Paris (OL); and Université Paris Descartes and AP-HP, Service de Dermatologie, Hôpital Cochin, Paris (ND); France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Piccin A, Eisendle K, Rovigatti U, Steurer M, Tauber M, Corvetta D, Mazzoleni G, Svaldi M, Gastl G, Cortelazzo S. Transition of idiopathic CD4 + lymphocytopenia into mycosis fungoides? Leuk Lymphoma 2013; 55:1649-51. [PMID: 24033108 DOI: 10.3109/10428194.2013.840779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
|
19
|
Ahmad DS, Esmadi M, Steinmann WC. Idiopathic CD4 Lymphocytopenia: Spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J Med 2013; 3:37-47. [PMID: 23930241 PMCID: PMC3734630 DOI: 10.4103/2231-0770.114121] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
Abstract
Idiopathic CD4 lymphocytopenia (ICL) was first defined in 1992 by the US Centers for Disease Control and Prevention (CDC) as the repeated presence of a CD4+ T lymphocyte count of fewer than 300 cells per cubic millimeter or of less than 20% of total T cells with no evidence of human immunodeficiency virus (HIV) infection and no condition that might cause depressed CD4 counts. Most of our knowledge about ICL comes from scattered case reports. The aim of this study was to collect comprehensive data from the previously published cases to understand the characteristics of this rare condition. We searched the PubMed database and Science Direct for case reports since 1989 for Idiopathic CD4 lymphocytopenia cases. We found 258 cases diagnosed with ICL in 143 published papers. We collected data about age, sex, pathogens, site of infections, CD4 count, CD8 count, CD4:CD8 ratio, presence of HIV risk factors, malignancies, autoimmune diseases and whether the patients survived or died. The mean age at diagnosis of first opportunistic infection (or ICL if no opportunistic infection reported) was 40.7 ± 19.2 years (standard deviation), with a range of 1 to 85. One-sixty (62%) patients were males, 91 (35.2%) were females, and 7 (2.7%) patients were not identified whether males or females. Risk factors for HIV were documented in 36 (13.9%) patients. The mean initial CD4 count was 142.6 ± 103.9/mm3 (standard deviation). The mean initial CD8 count was 295 ± 273.6/mm3 (standard deviation). The mean initial CD4:CD8 ratio was 0.6 ± 0.7 (standard deviation). The mean lowest CD4 count was 115.4 ± 87.1/mm3 (standard deviation). The majority of patients 226 (87.6%) had at least one infection. Cryptococcal infections were the most prevalent infections in ICL patients (26.6%), followed by mycobacterial infections (17%), candidal infections (16.2%), and VZV infections (13.1%). Malignancies were reported in 47 (18.1%) patients. Autoimmune diseases were reported in 37 (14.2%) patients.
Collapse
Affiliation(s)
- Dina S Ahmad
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | | | | |
Collapse
|
20
|
Primary immunodeficiencies: a rapidly evolving story. J Allergy Clin Immunol 2013; 131:314-23. [PMID: 23374262 DOI: 10.1016/j.jaci.2012.11.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/28/2022]
Abstract
The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.
Collapse
|
21
|
Notarangelo LD. Partial defects of T-cell development associated with poor T-cell function. J Allergy Clin Immunol 2013; 131:1297-305. [PMID: 23465662 PMCID: PMC3640792 DOI: 10.1016/j.jaci.2013.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
For many years, severe combined immune deficiency diseases, which are characterized by virtual lack of circulating T cells and severe predisposition to infections since early in life, have been considered the prototypic forms of genetic defects of T-cell development. More recently, advances in genome sequencing have allowed identification of a growing number of gene defects that cause severe but incomplete defects in T-cell development, function, or both. Along with recurrent and severe infections, especially cutaneous viral infections, the clinical phenotype of these conditions is characterized by prominent immune dysregulation.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Division of Immunology and the Manton Center for Orphan Disease Research, Children's Hospital Boston, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Gorska MM, Alam R. Consequences of a mutation in the UNC119 gene for T cell function in idiopathic CD4 lymphopenia. Curr Allergy Asthma Rep 2013; 12:396-401. [PMID: 22729960 DOI: 10.1007/s11882-012-0281-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Abstract
The activation of a T cell through T cell receptor (TCR) is fundamental to adaptive immune responses. The lymphocyte specific kinase (LCK) plays a central role in the initiation of signaling from the TCR. TCR activates LCK through the adaptor protein uncoordinated 119 (UNC119). A mutation of human UNC119 impairs LCK activation and is associated with inadequate signaling, diminished T cell responses to TCR stimulation, CD4 lymphopenia, and infections of viral, bacterial, and fungal origin. The above clinical and immunological findings meet the criteria of the idiopathic CD4 lymphopenia (ICL). The discovery of the UNC119 defect provides a molecular mechanism for a subset of patients with this previously unexplained disease. Here we review our recent findings on the UNC119 mutation in ICL.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.
| | | |
Collapse
|
23
|
Bugault F, Benati D, Mouthon L, Landires I, Rohrlich P, Pestre V, Thèze J, Lortholary O, Chakrabarti LA. Altered responses to homeostatic cytokines in patients with idiopathic CD4 lymphocytopenia. PLoS One 2013; 8:e55570. [PMID: 23383227 PMCID: PMC3559496 DOI: 10.1371/journal.pone.0055570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2012] [Accepted: 12/27/2012] [Indexed: 01/22/2023] Open
Abstract
Idiopathic CD4 lymphocytopenia (ICL) is a rare immune deficiency characterized by a protracted CD4(+) T cell loss of unknown etiology and by the occurrence of opportunistic infections similar to those seen in AIDS. We investigated whether a defect in responses to cytokines that control CD4(+) T cell homeostasis could play a role in ICL. Immunophenotype and signaling responses to interleukin-7 (IL-7), IL-2, and thymic stromal lymphopoietin (TSLP) were analyzed by flow cytometry in CD4(+) T cells from 15 ICL patients and 15 healthy blood donors. The induction of phospho-STAT5 after IL-7 stimulation was decreased in memory CD4(+) T cells of some ICL patients, which correlated with a decreased expression of the IL-7Rα receptor chain (R = 0.74, p<0.005) and with lower CD4(+) T cell counts (R = 0.69, p<0.005). IL-2 responses were also impaired, both in the Treg and conventional memory subsets. Decreased IL-2 responses correlated with decreased IL-7 responses (R = 0.75, p<0.005), pointing to combined defects that may significantly perturb CD4(+) T cell homeostasis in a subset of ICL patients. Unexpectedly, responses to the IL-7-related cytokine TSLP were increased in ICL patients, while they remained barely detectable in healthy controls. TSLP responses correlated inversely with IL-7 responses (R = -0.41; p<0.05), suggesting a cross-regulation between the two cytokine systems. In conclusion, IL-7 and IL-2 signaling are impaired in ICL, which may account for the loss of CD4(+) T cell homeostasis. Increased TSLP responses point to a compensatory homeostatic mechanism that may mitigate defects in γc cytokine responses.
Collapse
Affiliation(s)
- Florence Bugault
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | - Daniela Benati
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | - Luc Mouthon
- Université Paris Descartes, Pôle de Médecine Interne, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ivan Landires
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | - Pierre Rohrlich
- INSERM U645, Besançon, France
- Université de Besançon, Besançon, France
- Service de Pédiatrie, Centre Hospitalo-Universitaire de Besançon, Besançon, France
| | - Vincent Pestre
- Université Paris Descartes, Pôle de Médecine Interne, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jacques Thèze
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | - Olivier Lortholary
- Unité de Mycologie Moléculaire, Institut Pasteur, Paris, France
- CNRS URA 3012, Paris, France
- Université Paris Descartes, Service des Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker-Pasteur, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Lisa A. Chakrabarti
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Hirschhorn R, Hirschhorn K, Notarangelo LD. Immunodeficiency Disorders. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS 2013:1-30. [DOI: 10.1016/b978-0-12-383834-6.00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
25
|
Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Progress towards the development of SH2 domain inhibitors. Chem Soc Rev 2013; 42:3337-70. [DOI: 10.1039/c3cs35449k] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
|
26
|
Hauck F, Randriamampita C, Martin E, Gerart S, Lambert N, Lim A, Soulier J, Maciorowski Z, Touzot F, Moshous D, Quartier P, Heritier S, Blanche S, Rieux-Laucat F, Brousse N, Callebaut I, Veillette A, Hivroz C, Fischer A, Latour S, Picard C. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol 2012; 130:1144-1152.e11. [PMID: 22985903 DOI: 10.1016/j.jaci.2012.07.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Signals emanating from the antigen T-cell receptor (TCR) are required for T-cell development and function. The T lymphocyte-specific protein tyrosine kinase (Lck) is a key component of the TCR signaling machinery. On the basis of its function, we considered LCK a candidate gene in patients with combined immunodeficiency. OBJECTIVE We identify and describe a child with a T-cell immunodeficiency caused by a homozygous missense mutation of the LCK gene (c.1022T>C) resulting from uniparental disomy. METHODS Genetic, molecular, and functional analyses were performed to characterize the Lck deficiency, and the associated clinical and immunologic phenotypes are reported. RESULTS The mutant LCK protein (p.L341P) was weakly expressed with no kinase activity and failed to reconstitute TCR signaling in LCK-deficient T cells. The patient presented with recurrent respiratory tract infections together with predominant early-onset inflammatory and autoimmune manifestations. The patient displayed CD4(+) T-cell lymphopenia and low levels of CD4 and CD8 expression on the T-cell surface. The residual T lymphocytes had an oligoclonal T-cell repertoire and exhibited a profound TCR signaling defect, with only weak tyrosine phosphorylation signals and no Ca(2+) mobilization in response to TCR stimulation. CONCLUSION We report a new form of T-cell immunodeficiency caused by a LCK gene defect, highlighting the essential role of Lck in human T-cell development and responses. Our results also point out that defects in the TCR signaling cascade often result in abnormal T-cell differentiation and functions, leading to an important risk factor for inflammation and autoimmunity.
Collapse
Affiliation(s)
- Fabian Hauck
- INSERM 768, Laboratoire du Développement Normal et Pathologique du Système Immunitaire, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zonios D, Sheikh V, Sereti I. Idiopathic CD4 lymphocytopenia: a case of missing, wandering or ineffective T cells. Arthritis Res Ther 2012; 14:222. [PMID: 22971990 PMCID: PMC3580591 DOI: 10.1186/ar4027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/04/2022] Open
Abstract
Idiopathic CD4 lymphocytopenia (ICL) is a presumed heterogenous syndrome with key element low CD4 T-cell counts (below 300/mm3) without evidence of HIV infection or other known immunodeficiency. The etiology, pathogenesis, and management of ICL remain poorly understood and inadequately defined. The clinical presentation can range from serious opportunistic infections to incidentally diagnosed asymptomatic individuals. Cryptococcal and non-tuberculous mycobacterial infections and progressive multifocal leukoencephalopathy are the most significant presenting infections, although the spectrum of opportunistic diseases can be similar to that in patients with lymphopenia and HIV infection. Malignancy is common and related to opportunistic pathogens with an oncogenic potential. Autoimmune diseases are also seen in ICL with an increased incidence. The etiology of ICL is unknown. Mechanisms implicated in CD4 reduction may include decreased production, increased destruction, and tissue sequestration. New distinct genetic defects have been identified in certain patients with ICL, supporting the hypothesis of the lack of a common etiology in this syndrome. The management of ICL is focused on the treatment of opportunistic infections, appropriate prophylactic antibiotics, and close monitoring. In selected patients with life-threatening infections or profound immunodeficiency, strategies to increase T-cell counts or enhance immune function could be considered and have included interleukin-2, interferon-gamma, interleukin-7, and hematopoietic stem cell transplantation. The prognosis is influenced by the accompanying opportunistic infections and may be affected by publication bias of severe cases with unfavorable outcomes. As newer laboratory investigation techniques are being developed and targeted experimental treatments become available, our comprehension and prognosis of this rare syndrome could be significantly improved.
Collapse
|
28
|
Régent A, Kluger N, Bérezné A, Lassoued K, Mouthon L. [Lymphocytopenia: aetiology and diagnosis, when to think about idiopathic CD4(+) lymphocytopenia?]. Rev Med Interne 2012; 33:628-34. [PMID: 22658164 PMCID: PMC7115373 DOI: 10.1016/j.revmed.2012.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2012] [Accepted: 04/24/2012] [Indexed: 11/16/2022]
Abstract
Une lymphopénie est définie par un nombre de lymphocytes circulants inférieur à 1500/mm3 chez l’adulte et 4500/mm3 chez l’enfant avant huit mois. La lymphopénie peut être globale ou sélective, affectant une population lymphocytaire particulière. Le diagnostic étiologique doit tenir compte de l’âge, du contexte, des manifestations clinicobiologiques associées et des thérapeutiques reçues. Les lymphopénies de l’adulte peuvent être liées schématiquement à : (1) une insuffisance de production (carence en zinc, corticothérapie, déficits immunitaires primitifs…), (2) un excès de catabolisme (radiothérapie, chimiothérapie, traitements immunosuppresseurs, infection par le VIH ou lupus systémique, etc.), (3) une modification de la répartition des lymphocytes (infections virales, choc septique, brûlures étendues, hypersplénisme, granulomatoses, etc.), (4) les étiologies multifactorielles ou non identifiées (insuffisance rénale chronique, certaines hémopathies lymphoïdes, tumeur solide, causes ethniques, etc.). Chez l’enfant, à ces étiologies s’ajoutent d’autres déficits immunitaires primitifs d’expression sévère (défaut des précurseurs thymiques, déficit cytokinique, défaut de synthèse des récepteurs des lymphocytes B et T et défaut de la transduction du signal ou des interactions cellulaires). La lymphopénie CD4+ idiopathique de l’adulte est un diagnostic d’élimination. Cette affection rare se définit par une lymphopénie T CD4+ inférieure ou égale à 300/mm3 ou inférieure ou égale à 20 % des lymphocytes totaux, persistante en l’absence de diagnostic alternatif. Elle peut être asymptomatique, s’associer à des infections à germes opportunistes, ou se compliquer de symptômes auto-immuns (en particulier cytopénies) ainsi que de néoplasies. Le traitement, calqué sur la prise en charge des patients infectés par le VIH, peut nécessiter le recours à une immunothérapie spécifique dont le bénéfice clinique reste à évaluer.
Collapse
Affiliation(s)
- A Régent
- Université Paris Descartes, 12, rue de l'École de médecine, 75270 Paris cedex 06, France
| | | | | | | | | |
Collapse
|
29
|
A mutation in the human Uncoordinated 119 gene impairs TCR signaling and is associated with CD4 lymphopenia. Blood 2011; 119:1399-406. [PMID: 22184408 DOI: 10.1182/blood-2011-04-350686] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Idiopathic CD4 lymphopenia (ICL) is an immunodeficiency disorder of unclear etiology. Here we describe a heterozygous dominant-negative missense mutation (codon 22 GGC→GTC; V22G) of the signaling adaptor protein Uncoordinated 119 (Unc119) in an ICL patient. The patient is a 32-year-old female with < 300 CD4 T cells/μL and with a history of recurrent sinusitis/otitis media, frequent episodes of shingles, a widespread fungal nail infection, fungal dermatitis, oral herpetic lesions, and bronchiolitis obliterans organizing pneumonia after 2 episodes of bacterial pneumonia. The patient's cells have reduced response to TCR stimulation, with impairment in both localization and enzymatic activation of the lymphocyte-specific kinase (Lck) resulting in decreased cell proliferation. Transduction of the mutant Unc119 but not wild-type Unc119 into normal T cells reproduces the signaling and proliferation defects. The mutation disrupts the Unc119-Lck interaction which is normally needed for stimulation of the Lck catalytic activity by TCR. The mutant protein also causes mislocalization of Lck to Rab11(+) perinuclear endosomes. The mutation is not present in 2 other patients with ICL, patients with secondary CD4 lymphopenia or 60 healthy subjects. The V22G mutation of Unc119 represents a novel genetic defect in ICL.
Collapse
|
30
|
Cervera C, Fernández-Avilés F, de la Calle-Martin O, Bosch X, Rovira M, Plana M, Moreno A, García F, Miró JM, Martínez A, Gallart T, Carreras E, Blade J, Gatell JM. Non-myeloablative hematopoietic stem cell transplantation in the treatment of severe idiopathic CD4+ lymphocytopenia. Eur J Haematol 2011; 87:87-91. [DOI: 10.1111/j.1600-0609.2011.01619.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
31
|
Abstract
Human SCID (Severe Combined Immunodeficiency) is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile) and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning).Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features) aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms.This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.
Collapse
Affiliation(s)
- Fausto Cossu
- Pediatric HSCT Unit, 2 Pediatric Clinic of University, Ospedale Microcitemico, Via Jenner s/n, 09121 Cagliari, Sardinia, Italy.
| |
Collapse
|
32
|
Abstract
IMPORTANCE OF THE FIELD Lck (p56(lck) or lymphocyte specific kinase) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence from knockout mice and human mutations demonstrates that Lck kinase activity is critical for T cell receptor (TCR)-mediated signaling, leading to normal T-cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. AREAS COVERED IN THIS REVIEW This review covers the patents, patent applications and associated publications for small molecule kinase inhibitors of Lck since 2005 and attempts to place them in context from a structural point of view. WHAT THE READER WILL GAIN Readers will gain an overview of the structural classes and binding modes of Lck inhibitors, the major players in this area and an insight into the current state of the field. TAKE HOME MESSAGE The search for a potent and orally active inhibitor of Lck has been an intense area of research for a number of years. Despite tremendous efforts, the identification of a highly selective and potent Lck inhibitor suitable for use as an immunosuppressive agent remains elusive.
Collapse
Affiliation(s)
- Matthew W Martin
- Amgen, Inc., Department of Medicinal Chemistry, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
33
|
Abstract
IMPORTANCE OF THE FIELD Inflammatory diseases are one of the major health issues and have become a major focus in the pharmaceutical and biotech industries. To date, drugs prescribed for treatment of these diseases target enzymes that are not specific to the immune system resulting in adverse effects. The main challenge of this research field is, therefore, identifying targets that act specifically on the diseased tissue. AREAS COVERED IN THIS REVIEW This review summarizes drug discovery efforts on kinases that have been identified as key players mediating inflammation and autoimmune disorders. In particular, we discuss recent developments on well-established targets such as mammalian target of rapamycin, JAK3, spleen tyrosine kinase, p38α and lymphocyte specific kinase but provide also a perspective on emerging targets. WHAT THE READER WILL GAIN The reader will obtain an overview of drug discovery efforts on kinases in inflammation, recent clinical and preclinical data and developed inhibitor scaffolds. In addition, the reader will be updated on issues in target validation of current drug targets and the potential of selected novel kinase targets in this important disease area. TAKE HOME MESSAGE Cellular signaling networks that regulate inflammatory response are still poorly understood making rational selection of targets challenging. Recent data suggest that kinase targets that are specific to the immune system and mediate signals immediately downstream of surface receptors are most efficacious in the clinic.
Collapse
Affiliation(s)
- Susanne Müller
- University of Oxford, Structural Genomics Consortium (SGC), Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, UK + 44 1865 617584 ; + 44 1865 617575 ;
| | | |
Collapse
|
34
|
|
35
|
Holland SM, Rosenzweig SD, Schumacher RF, Notarangelo L. Immunodeficiencies. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022] Open
|
36
|
|
37
|
Meeks C, Levy J, Crawford P, Farina L, Origgi F, Alleman R, Seddon O, Salcedo A, Hirsch B, Hirsch S. Chronic DisseminatedMycobacterium xenopiInfection in a Cat with Idiopathic CD4+ T Lymphocytopenia. J Vet Intern Med 2008; 22:1043-7. [DOI: 10.1111/j.1939-1676.2008.0108.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022] Open
|
38
|
Böhm M, Luger TA, Bonsmann G. Disseminated giant molluscum contagiosum in a patient with idiopathic CD4+ lymphocytopenia. Successful eradication with systemic interferon. Dermatology 2008; 217:196-8. [PMID: 18583911 DOI: 10.1159/000141649] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2007] [Accepted: 01/06/2008] [Indexed: 11/19/2022] Open
Abstract
Idiopathic CD4+ lymphocytopenia is a rare disease without HIV infection or any other underlying immunodeficiency. Patients with this condition are predisposed to various opportunistic infections. We describe a 31-year-old woman with giant molluscum contagiosum disseminated over nearly the whole body. Immunologic analysis disclosed very low numbers of CD4+ lymphocytes (<11/microl, normal range: 240-3,100), an abnormal proliferative response of the patient's lymphocytes to artificial mitogens and specific antigens, and an anergic delayed-type hypersensitivity skin response. HIV serology was repetitively negative. The diagnosis of idiopathic CD4+ lymphocytopenia was established. Systemic treatment with pegylated interferon-alpha2b (50 microg/week) for 16 months resulted in complete eradication of her disseminated giant molluscum contagiosum. In this report we will further describe the nature of idiopathic CD4+ lymphocytopenia and emphasize its relevance to clinical dermatology.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany.
| | | | | |
Collapse
|
39
|
DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Chai L, Chaffee SC, Deak HL, Epstein LF, Faust T, Gallant P, Gore A, Gu Y, Henkle B, Hsieh F, Huang X, Kim JL, Lee JH, Martin MW, McGowan DC, Metz D, Mohn D, Morgenstern KA, Oliveira-dos-Santos A, Patel VF, Powers D, Rose PE, Schneider S, Tomlinson SA, Tudor YY, Turci SM, Welcher AA, Zhao H, Zhu L, Zhu X. Structure-Guided Design of Aminopyrimidine Amides as Potent, Selective Inhibitors of Lymphocyte Specific Kinase: Synthesis, Structure–Activity Relationships, and Inhibition of in Vivo T Cell Activation. J Med Chem 2008; 51:1681-94. [DOI: 10.1021/jm7010996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Affiliation(s)
- Erin F. DiMauro
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - John Newcomb
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Joseph J. Nunes
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Jean E. Bemis
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Christina Boucher
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Lilly Chai
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Stuart C. Chaffee
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Holly L. Deak
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Linda F. Epstein
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Ted Faust
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Paul Gallant
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Anu Gore
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Yan Gu
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Brad Henkle
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Faye Hsieh
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Xin Huang
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Joseph L. Kim
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Josie H. Lee
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Matthew W. Martin
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - David C. McGowan
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Daniela Metz
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Deanna Mohn
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Kurt A. Morgenstern
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Antonio Oliveira-dos-Santos
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Vinod F. Patel
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - David Powers
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Paul E. Rose
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Stephen Schneider
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Susan A. Tomlinson
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Yan-Yan Tudor
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Susan M. Turci
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Andrew A. Welcher
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Huilin Zhao
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Li Zhu
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Xiaotian Zhu
- Department of Medicinal Chemistry, Department of Molecular Structure, and Department of HTS and Molecular Pharmacology, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, and Department of HTS and Molecular Pharmacology, Department of Inflammation, Department of Pharmaceutics, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| |
Collapse
|
40
|
Martin MW, Newcomb J, Nunes JJ, Boucher C, Chai L, Epstein LF, Faust T, Flores S, Gallant P, Gore A, Gu Y, Hsieh F, Huang X, Kim JL, Middleton S, Morgenstern K, Oliveira-dos-Santos A, Patel VF, Powers D, Rose P, Tudor Y, Turci SM, Welcher AA, Zack D, Zhao H, Zhu L, Zhu X, Ghiron C, Ermann M, Johnston D, Saluste CGP. Structure-based design of novel 2-amino-6-phenyl-pyrimido[5',4':5,6]pyrimido[1,2-a]benzimidazol-5(6H)-ones as potent and orally active inhibitors of lymphocyte specific kinase (Lck): synthesis, SAR, and in vivo anti-inflammatory activity. J Med Chem 2008; 51:1637-48. [PMID: 18278858 DOI: 10.1021/jm701095m] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Lck, or lymphocyte specific kinase, is a cytoplasmic tyrosine kinase of the Src family expressed in T-cells and NK cells. Genetic evidence from knockout mice and human mutations demonstrates that Lck kinase activity is critical for T-cell receptor-mediated signaling, leading to normal T-cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T-cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. In this paper, we describe the structure-guided design, synthesis, structure-activity relationships, and pharmacological characterization of 2-amino-6-phenylpyrimido[5',4':5,6]pyrimido[1,2- a]benzimidazol-5(6 H)-ones, a new class of compounds that are potent inhibitors of Lck. The most promising compound of this series, 6-(2,6-dimethylphenyl)-2-((4-(4-methyl-1-piperazinyl)phenyl)amino)pyrimido[5',4':5,6]pyrimido-[1,2- a]benzimidazol-5(6 H)-one ( 25), exhibits potent inhibition of Lck kinase activity. This activity translates into inhibition of in vitro cell-based assays and in vivo models of T-cell activation and arthritis, respectively.
Collapse
Affiliation(s)
- Matthew W Martin
- Department of Medicinal Chemistry, Amgen Inc., One Kendall Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Deak HL, Newcomb JR, Nunes JJ, Boucher C, Cheng AC, DiMauro EF, Epstein LF, Gallant P, Hodous BL, Huang X, Lee JH, Patel VF, Schneider S, Turci SM, Zhu X. N-(3-(Phenylcarbamoyl)arylpyrimidine)-5-carboxamides as potent and selective inhibitors of Lck: Structure, synthesis and SAR. Bioorg Med Chem Lett 2008; 18:1172-6. [DOI: 10.1016/j.bmcl.2007.11.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 12/11/2022]
|
42
|
Salit RB, Hankey KG, Yi R, Rapoport AP, Mann DL. Detection of CD4(+) T-cell antibodies in a patient with idiopathic CD4 T lymphocytopenia and cryptococcal meningitis. Br J Haematol 2007; 139:133-7. [PMID: 17854318 DOI: 10.1111/j.1365-2141.2007.06781.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Idiopathic CD4(+) T lymphocytopenia (ICL) is defined as a CD4(+) T-cell count <0.3 x 10(9)/l or <20% of the total T-cell count on two occasions in the absence of any immunodeficiency disorder or therapy associated with reduced CD4(+) T-cell count. Although several mechanisms of ICL have been reported, the pathophysiology is still largely unknown. This case report describes a patient who presented with cryptococcal meningitis and was subsequently discovered to meet the criteria for ICL. Flow cytometric analysis of the patient's peripheral blood mononuclear cells revealed antibodies coating a much larger proportion of his CD4(+) T cells (33.61%) than the CD4(+) T cells of normal donors (3.94 +/- 1.77%). The reasons behind the development of these autoantibodies are explored.
Collapse
Affiliation(s)
- Rachel B Salit
- Department of Internal Medicine, The University of Maryland Medical Center, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
We reviewed the cases of 11 patients with cryptococcosis and idiopathic CD4 lymphocytopenia (ICL) referred to our institution in the previous 12 years, as well as 42 similar cases reported in the literature, to assess the characteristics of the infection in this population. Cryptococcosis in 53 patients with ICL had features in common with cryptococcosis in previously normal patients. ICL patients had a slight male predominance (1.2:1) and a median age of presentation of 41 years (range, 4.5-85 yr). Initial cerebrospinal fluid findings showed glucose below 40 mg/dL in 60% of the patients, a median pleocytosis of 59 white blood cells/mm (range, 0-884), and protein of 156 mg/dL (range, 25-402 mg/dL). The median CD4 count at diagnosis of ICL and at the last available measurement was 82 (range, 7-292) and 132 (range, 13-892) cells/mm, respectively, for an average follow-up of 32 months in 46 patients. Unlike previously normal patients with cryptococcosis, those with ICL had an excess incidence of dermatomal zoster (7 episodes in 46 ICL cases). Pneumocystis pneumonia was rare (1 case), casting doubt on the need for prophylaxis in patients with ICL. A favorable outcome (cured or improved) may be more common in ICL patients than in previously normal patients with cryptococcal meningitis and no predisposing factors. Identification of ICL in patients who were apparently normal before the onset of cryptococcosis appears to be useful because it predicts a favorable outcome. Patients with cryptococcal infection and ICL have an increased likelihood of developing dermatomal zoster. The long-term follow-up of these patients offers some reassurance regarding favorable prognosis.
Collapse
Affiliation(s)
- Dimitrios I Zonios
- From Clinical Mycology Section, Laboratory of Clinical Infectious Diseases (DIZ, JEB); Laboratory of Immunoregulation (JF); and Biostatistics Research Branch (C-YH), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; and Critical Care Medicine Department (DC), Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
44
|
DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Buchanan JL, Buckner WH, Cheng A, Faust T, Hsieh F, Huang X, Lee JH, Marshall TL, Martin MW, McGowan DC, Schneider S, Turci SM, White RD, Zhu X. Discovery of 4-amino-5,6-biaryl-furo[2,3-d]pyrimidines as inhibitors of Lck: development of an expedient and divergent synthetic route and preliminary SAR. Bioorg Med Chem Lett 2007; 17:2305-9. [PMID: 17280833 DOI: 10.1016/j.bmcl.2007.01.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2006] [Revised: 01/12/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
4-Amino-5,6-biaryl-furo[2,3-d]pyrimidines were identified as potent non-selective inhibitors of Lck. A novel, divergent, and practical synthetic route was developed to access derivatives from bifunctional intermediates. Lead optimization was guided by X-ray crystallographic data, and preliminary SAR led to the identification of compounds with improved cellular potency and selectivity.
Collapse
Affiliation(s)
- Erin F DiMauro
- Department of Medicinal Chemistry, Amgen Inc., One Kendall Square, Building 1000, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Buchanan JL, Buckner WH, Cee VJ, Chai L, Deak HL, Epstein LF, Faust T, Gallant P, Geuns-Meyer SD, Gore A, Gu Y, Henkle B, Hodous BL, Hsieh F, Huang X, Kim JL, Lee JH, Martin MW, Masse CE, McGowan DC, Metz D, Mohn D, Morgenstern KA, Oliveira-dos-Santos A, Patel VF, Powers D, Rose PE, Schneider S, Tomlinson SA, Tudor YY, Turci SM, Welcher AA, White RD, Zhao H, Zhu L, Zhu X. Discovery of aminoquinazolines as potent, orally bioavailable inhibitors of Lck: synthesis, SAR, and in vivo anti-inflammatory activity. J Med Chem 2006; 49:5671-86. [PMID: 16970394 DOI: 10.1021/jm0605482] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease. Screening of our kinase-preferred collection identified aminoquinazoline 1 as a potent, nonselective inhibitor of Lck and T cell proliferation. In this report, we describe the synthesis and structure-activity relationships of a series of novel aminoquinazolines possessing in vitro mechanism-based potency. Optimized, orally bioavailable compounds 32 and 47 exhibit anti-inflammatory activity (ED(50) of 22 and 11 mg/kg, respectively) in the anti-CD3-induced production of interleukin-2 (IL-2) in mice.
Collapse
Affiliation(s)
- Erin F DiMauro
- Department of Medicinal Chemistry, Amgen, Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Martin MW, Newcomb J, Nunes JJ, McGowan DC, Armistead DM, Boucher C, Buchanan JL, Buckner W, Chai L, Elbaum D, Epstein LF, Faust T, Flynn S, Gallant P, Gore A, Gu Y, Hsieh F, Huang X, Lee JH, Metz D, Middleton S, Mohn D, Morgenstern K, Morrison MJ, Novak PM, Oliveira-dos-Santos A, Powers D, Rose P, Schneider S, Sell S, Tudor Y, Turci SM, Welcher AA, White RD, Zack D, Zhao H, Zhu L, Zhu X, Ghiron C, Amouzegh P, Ermann M, Jenkins J, Johnston D, Napier S, Power E. Novel 2-aminopyrimidine carbamates as potent and orally active inhibitors of Lck: synthesis, SAR, and in vivo antiinflammatory activity. J Med Chem 2006; 49:4981-91. [PMID: 16884310 DOI: 10.1021/jm060435i] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. In this paper, we describe the synthesis, structure-activity relationships, and pharmacological characterization of 2-aminopyrimidine carbamates, a new class of compounds with potent and selective inhibition of Lck. The most promising compound of this series, 2,6-dimethylphenyl 2-((3,5-bis(methyloxy)-4-((3-(4-methyl-1-piperazinyl)propyl)oxy)phenyl)amino)-4-pyrimidinyl(2,4-bis(methyloxy)phenyl)carbamate (43) exhibits good activity when evaluated in in vitro assays and in an in vivo model of T cell activation.
Collapse
Affiliation(s)
- Matthew W Martin
- Department of Chemistry Research and Discovery, Amgen Inc., One Kendall Square, Building 1000, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW A severe decrease of CD4 T cells predisposes humans to opportunistic infections. In adults, HIV is certainly the most common cause of CD4 lymphocytopenia, but other causes, such as infections, autoimmune diseases, immunosuppressive therapy, lymphoma and idiopathic forms need to be considered. This review summarizes the current knowledge of the poorly understood syndrome of idiopathic CD4 lymphocytopenia. RECENT FINDINGS Little research has tried to systematically dissect this probably heterogeneic syndrome after its initial description in 1992. Numerous cases presenting with opportunistic infections have been reported. Disturbed differentiation of stem cell precursors may contribute to CD4 lymphocytopenia. Because infections and lymphoma may also cause CD4 lymphocytopenia, the distinction between cause and effect may evolve only during follow-up. SUMMARY The manifestation of opportunistic infections calls for the evaluation of the immune system for CD4 lymphocytopenia. The differential diagnosis of this condition in adults comprises primarily HIV infection and less often other diseases or drugs. Idiopathic CD4 lymphocytopenia is very rare. The clinical significance of low CD4 cell counts in HIV negative patients still awaits its systematic analysis. Prophylaxis of opportunistic infections is oriented at the recommendations of HIV-infected individuals and causal treatment remains experimental.
Collapse
Affiliation(s)
- Ulrich A Walker
- Division of Rheumatology and Clinical Immunology, Freiburg University Hospital, Freiburg, Germany
| | | |
Collapse
|
48
|
Isgrò A, Sirianni MC, Gramiccioni C, Mezzaroma I, Fantauzzi A, Aiuti F. Idiopathic CD4+ lymphocytopenia may be due to decreased bone marrow clonogenic capability. Int Arch Allergy Immunol 2005; 136:379-84. [PMID: 15746558 DOI: 10.1159/000084258] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2004] [Accepted: 11/08/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Idiopathic CD4+ lymphocytopenia is defined by a stable decrease of CD4+ T cells in the absence of any known cause of immune deficiency. The mechanisms responsible for the immunological impairment are still unknown, but a regenerative failure of hematopoietic stem/progenitor cells has been hypothesized. METHODS We evaluated in the bone marrow (BM) of 5 patients with idiopathic CD4+ lymphocytopenia the phenotype of BM progenitor cells, their differentiation capacity with colony-forming cells and long-term culture-initiating cell assays, in parallel with the spontaneous IL-7 production in the patient sera. RESULTS Compared with controls, a regenerative failure of hematopoietic stem cells has been observed, both in 'committed' and in 'uncommitted' progenitor cells, despite high IL-7 serum levels. The percentage of phenotypically primitive CD34+CD38-DR+ cells (this includes the lymphoid precursor cells) was decreased, suggesting an involvement of the more primitive BM compartment in the de novo T cell generation. CONCLUSIONS Despite the low number of patients, due to the low incidence of the disease, the decrease of primitive precursors sustains the possibility that diminished stem cell precursors might contribute to the development of CD4+ T cell depletion.
Collapse
Affiliation(s)
- Antonella Isgrò
- Division of Allergy and Clinical Immunology, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Criado G, Madrenas J. Superantigen stimulation reveals the contribution of Lck to negative regulation of T cell activation. THE JOURNAL OF IMMUNOLOGY 2004; 172:222-30. [PMID: 14688329 DOI: 10.4049/jimmunol.172.1.222] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
The conventional paradigm of T cell activation through the TCR states that Lck plays a critical activating role in this signaling process. However, the T cell response to bacterial superantigens does not require Lck. In this study we report that not only is Lck dispensable for T cell activation by superantigens, but it actively inhibits this signaling pathway. Disruption of Lck function, either by repression of Lck gene expression or by selective pharmacologic inhibitors of Lck, led to increased IL-2 production in response to superantigen stimulation. This negative regulatory effect of Lck on superantigen-induced T cell responses required the kinase activity of Lck and correlated with early TCR signaling, but was independent of immunological synapse formation and TCR internalization. Our data demonstrate that the multistage role of Lck in T cell signaling includes the activation of a negative regulatory pathway of T cell activation.
Collapse
Affiliation(s)
- Gabriel Criado
- FOCIS Center for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada N6A 5K8
| | | |
Collapse
|
50
|
Cabello Clotet N, Arnaiz Aparicio L, Ortuño Andériz F, Cobiella Carnicer R. [Idiopathic? immunodeficiency of T-CD4 lymphocytes. Case Report]. Rev Clin Esp 2002; 202:362-3. [PMID: 12093411 DOI: 10.1016/s0014-2565(02)71081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|