1
|
Březina J, Vobořil M, Filipp D. Mechanisms of Direct and Indirect Presentation of Self-Antigens in the Thymus. Front Immunol 2022; 13:926625. [PMID: 35774801 PMCID: PMC9237256 DOI: 10.3389/fimmu.2022.926625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The inevitability of evolution of the adaptive immune system with its mechanism of randomly rearranging segments of the T cell receptor (TCR) gene is the generation of self-reactive clones. For the sake of prevention of autoimmunity, these clones must be eliminated from the pool of circulating T cells. This process occurs largely in the thymic medulla where the strength of affinity between TCR and self-peptide MHC complexes is the factor determining thymocyte fate. Thus, the display of self-antigens in the thymus by thymic antigen presenting cells, which are comprised of medullary thymic epithelial (mTECs) and dendritic cells (DCs), is fundamental for the establishment of T cell central tolerance. Whereas mTECs produce and present antigens in a direct, self-autonomous manner, thymic DCs can acquire these mTEC-derived antigens by cooperative antigen transfer (CAT), and thus present them indirectly. While the basic characteristics for both direct and indirect presentation of self-antigens are currently known, recent reports that describe the heterogeneity of mTEC and DC subsets, their presentation capacity, and the potentially non-redundant roles in T cell selection processes represents another level of complexity which we are attempting to unravel. In this review, we underscore the seminal studies relevant to these topics with an emphasis on new observations pertinent to the mechanism of CAT and its cellular trajectories underpinning the preferential distribution of thymic epithelial cell-derived self-antigens to specific subsets of DC. Identification of molecular determinants which control CAT would significantly advance our understanding of how the cellularly targeted presentation of thymic self-antigens is functionally coupled to the T cell selection process.
Collapse
Affiliation(s)
| | | | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Perry JSA, Russler-Germain EV, Zhou YW, Purtha W, Cooper ML, Choi J, Schroeder MA, Salazar V, Egawa T, Lee BC, Abumrad NA, Kim BS, Anderson MS, DiPersio JF, Hsieh CS. Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity 2018; 48:923-936.e4. [PMID: 29752065 DOI: 10.1016/j.immuni.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 12/31/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022]
Abstract
The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Bone Marrow Transplantation
- CD36 Antigens/genetics
- CD36 Antigens/immunology
- CD36 Antigens/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Immune Tolerance/immunology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transplantation, Homologous
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - You W Zhou
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Whitney Purtha
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Matthew L Cooper
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaebok Choi
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark A Schroeder
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vanessa Salazar
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byeong-Chel Lee
- University of Pittsburgh Cancer Institute and Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Department of Medicine, Division of Dermatology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Anderson
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - John F DiPersio
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Skogberg G, Telemo E, Ekwall O. Exosomes in the Thymus: Antigen Transfer and Vesicles. Front Immunol 2015; 6:366. [PMID: 26257734 PMCID: PMC4507453 DOI: 10.3389/fimmu.2015.00366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Thymocytes go through several steps of maturation and selection in the thymus in order to form a functional pool of effector T-cells and regulatory T-cells in the periphery. Close interactions between thymocytes, thymic epithelial cells, and dendritic cells are of vital importance for the maturation, selection, and lineage decision of the thymocytes. One important question that is still unanswered is how a relatively small epithelial cell population can present a vast array of self-antigens to the manifold larger population of developing thymocytes in this selection process. Here, we review and discuss the literature concerning antigen transfer from epithelial cells with a focus on exosomes. Exosomes are nano-sized vesicles released from a cell into the extracellular space. These vesicles can carry proteins, microRNAs, and mRNAs between cells and are thus able to participate in intercellular communication. Exosomes have been shown to be produced by thymic epithelial cells and to carry tissue-restricted antigens and MHC molecules, which may enable them to participate in the thymocyte selection process.
Collapse
Affiliation(s)
- Gabriel Skogberg
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden
| | - Esbjörn Telemo
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden ; Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, Gothenburg University , Gothenburg , Sweden
| |
Collapse
|
4
|
Abstract
Professional antigen-presenting cells (APCs) such as conventional dendritic cells (DCs) process protein antigens to MHC-bound peptides and then present the peptide–MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI) and/or MHC class II (MHCII) from neighboring cells through a process of cell–cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide–MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC.
Collapse
Affiliation(s)
- Masafumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
5
|
Abstract
Self-tolerance imposition requires the presentation of self-antigens by a variety of thymic antigen-presenting cells. In this issue of Immunity, Perry et al. (2014) reveal unidirectional self-antigen transfer from medullary thymic epithelial cells to dendritic cells as an essential aspect.
Collapse
Affiliation(s)
- Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Markus Feuerer
- Helmholtz Young Investigator Group Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Perry JSA, Lio CWJ, Kau AL, Nutsch K, Yang Z, Gordon JI, Murphy KM, Hsieh CS. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 2014; 41:414-426. [PMID: 25220213 PMCID: PMC4175925 DOI: 10.1016/j.immuni.2014.08.007] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/18/2014] [Indexed: 02/07/2023]
Abstract
The contribution of thymic antigen-presenting-cell (APC) subsets in selecting a self-tolerant T cell population remains unclear. We show that bone marrow (BM) APCs and medullary thymic epithelial cells (mTECs) played nonoverlapping roles in shaping the T cell receptor (TCR) repertoire by deletion and regulatory T (Treg) cell selection of distinct TCRs. Aire, which induces tissue-specific antigen expression in mTECs, affected the TCR repertoire in a manner distinct from mTEC presentation. Approximately half of Aire-dependent deletion or Treg cell selection utilized a pathway dependent on antigen presentation by BM APCs. Batf3-dependent CD8α⁺ dendritic cells (DCs) were the crucial BM APCs for Treg cell selection via this pathway, showing enhanced ability to present antigens from stromal cells. These results demonstrate the division of function between thymic APCs in shaping the self-tolerant TCR repertoire and reveal an unappreciated cooperation between mTECs and CD8α⁺ DCs for presentation of Aire-induced self-antigens to developing thymocytes.
Collapse
Affiliation(s)
- Justin S A Perry
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chan-Wang J Lio
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Katherine Nutsch
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhuo Yang
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kenneth M Murphy
- Howard Hughes Medical Institute and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Abstract
Exosomes are nanosized membrane-bound vesicles that are released by various cell types and are capable of carrying proteins, lipids and RNAs which can be delivered to recipient cells. Exosomes play a role in intercellular communication and have been described to mediate immunologic information. In this article we report the first isolation and characterization of exosomes from human thymic tissue. Using electron microscopy, particle size determination, density gradient measurement, flow cytometry, proteomic analysis and microRNA profiling we describe the morphology, size, density, protein composition and microRNA content of human thymic exosomes. The thymic exosomes share characteristics with previously described exosomes such as antigen presentation molecules, but they also exhibit thymus specific features regarding surface markers, protein content and microRNA profile. Interestingly, thymic exosomes carry proteins that have a tissue restricted expression in the periphery which may suggest a role in T cell selection and the induction of central tolerance. We speculate that thymic exosomes may provide the means for intercellular information exchange necessary for negative selection and regulatory T cell formation of the developing thymocytes within the human thymic medulla.
Collapse
|
8
|
Abstract
The thymus serves as the central organ of immunologic self-nonself discrimination. Thymocytes undergo both positive and negative selection, resulting in T cells with a broad range of reactivity to foreign antigens but with a lack of reactivity to self-antigens. The thymus is also the source of a subset of regulatory T cells that inhibit autoreactivity of T-cell clones that may escape negative selection. As a result of these functions, the thymus has been shown to be essential for the induction of tolerance in many rodent and large animal models. Proper donor antigen presentation in the thymus after bone marrow, dendritic cell, or solid organ transplantation has been shown to induce tolerance to allografts. The molecular mechanisms of positive and negative selection and regulatory T-cell development must be understood if a tolerance-inducing therapeutic intervention is to be designed effectively. In this brief and selective review, we present some of the known information on T-cell development and on the role of the thymus in experimental models of transplant tolerance. We also cite some clinical attempts to induce tolerance to allografts using pharmacologic or biologic interventions.
Collapse
|
9
|
Kroger CJ, Flores RR, Morillon M, Wang B, Tisch R. Dysregulation of thymic clonal deletion and the escape of autoreactive T cells. Arch Immunol Ther Exp (Warsz) 2010; 58:449-57. [PMID: 20872284 DOI: 10.1007/s00005-010-0100-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/25/2010] [Indexed: 12/25/2022]
Abstract
Events ongoing in the thymus are critical for deleting developing thymocytes specific for tissue antigens, and establishing self-tolerance within the T cell compartment. Aberrant thymic negative selection, however, is believed to generate a repertoire with increased self-reactivity, which in turn can contribute to the development of T cell-mediated autoimmunity. In this review, mechanisms that regulate the efficacy of negative selection and influence the deletion of autoreactive thymocytes will be discussed.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina, Mary Ellen Jones Bldg., Room 635, Campus Box 7290, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
10
|
Thymic selection and lineage commitment of CD4(+)Foxp3(+) regulatory T lymphocytes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:251-77. [PMID: 20800824 DOI: 10.1016/s1877-1173(10)92010-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulatory T lymphocytes play a central role in the control of a variety of immune-responses. Their absence in humans and in experimental animal models leads to severe autoimmune and inflammatory disorders. Consistent with their major role in prevention of autoimmune pathology, their repertoire is enriched in autospecific cells. Probably the majority of regulatory T cells develop in the thymus. How T cell-precursors choose between the conventional versus regulatory T cell lineages remains an unanswered question. More is known about selection of regulatory T cell precursors. Positive selection of these cells is favored by high affinity interactions with MHC class II/peptide ligands expressed by thymic epithelial or dendritic cells. They are also known to be relatively resistant to negative selection. These two parameters allow for the generation of the autoreactive regulatory T cell repertoire, and clearly distinguish selection-criteria of conventional versus regulatory T cell-precursors. It will now be important to elucidate the molecular mechanisms involved in the intrathymic choice of the regulatory T cell-lineage.
Collapse
|
11
|
Stephen TL, Tikhonova A, Riberdy JM, Laufer TM. The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla. THE JOURNAL OF IMMUNOLOGY 2009; 183:5554-62. [PMID: 19843939 DOI: 10.4049/jimmunol.0901104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.
Collapse
Affiliation(s)
- Tom Li Stephen
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
12
|
Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9:833-44. [DOI: 10.1038/nri2669] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Koble C, Kyewski B. The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. ACTA ACUST UNITED AC 2009; 206:1505-13. [PMID: 19564355 PMCID: PMC2715082 DOI: 10.1084/jem.20082449] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Central tolerance is shaped by the array of self-antigens expressed and presented by various types of thymic antigen-presenting cells (APCs). Depending on the overall signal quality and/or quantity delivered in these interactions, self-reactive thymocytes either apoptose or commit to the T regulatory cell lineage. The cellular and molecular complexity underlying these events has only recently been appreciated. We analyzed the ex vivo presentation of ubiquitous or tissue-restricted self-antigens by medullary thymic epithelial cells (mTECs) and thymic dendritic cells (DCs), the two major APC types present in the medulla. We found that the ubiquitously expressed nuclear neo-self-antigen ovalbumin (OVA) was efficiently presented via major histocompatibility complex class II by mTECs and thymic DCs. However, presentation by DCs was highly dependent on antigen expression by TECs, and hemopoietic cells did not substitute for this antigen source. Accordingly, efficient deletion of OVA-specific T cells correlated with OVA expression by TECs. Notably, OVA was only presented by thymic but not peripheral DCs. We further demonstrate that thymic DCs are constitutively provided in situ with cytosolic as well as membrane-bound mTEC-derived proteins. The subset of DCs displaying transferred proteins was enriched in activated DCs, with these cells being most efficient in presenting TEC-derived antigens. These data provide evidence for a unique, constitutive, and unidirectional transfer of self-antigens within the thymic microenvironment, thus broadening the cellular base for tolerance induction toward promiscuously expressed tissue antigens.
Collapse
Affiliation(s)
- Christian Koble
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany
| | | |
Collapse
|
14
|
Millet V, Naquet P, Guinamard RR. Intercellular MHC transfer between thymic epithelial and dendritic cells. Eur J Immunol 2008; 38:1257-63. [PMID: 18412162 DOI: 10.1002/eji.200737982] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thymic dendritic cells (DC) and epithelial cells play a major role in central tolerance but their respective roles are still controversial. Epithelial cells have the unique ability to ectopically express peripheral tissue-restricted antigens conferring self-tolerance to tissues. Paradoxically, while negative selection seems to occur for some of these antigens, epithelial cells, contrary to DC, are poor negative selectors. Using a thymic epithelial cell line, we show the functional intercellular transfer of membrane material, including MHC molecules, occurring between epithelial cells. Using somatic and bone marrow chimeras, we show that this transfer occurs efficiently in vivo between epithelial cells and, in a polarized fashion, from epithelial to DC. This novel mode of transfer of MHC-associated, epithelial cell-derived self-antigens onto DC might participate to the process of negative selection in the thymic medulla.
Collapse
Affiliation(s)
- Virginie Millet
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | | |
Collapse
|
15
|
Brown NK, McCormick DJ, David CS, Kong YCM. H2E-derived Ealpha52-68 peptide presented by H2Ab interferes with clonal deletion of autoreactive T cells in autoimmune thyroiditis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:7039-46. [PMID: 18453626 PMCID: PMC2575422 DOI: 10.4049/jimmunol.180.10.7039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Susceptibility and resistance to experimental autoimmune thyroiditis is encoded by MHC H2A genes. We reported that traditionally resistant B10 (H2(b)) mice permit thyroiditis induction with mouse thyroglobulin (mTg) after depleting regulatory T cells (Tregs), supporting A(b) presentation to thyroiditogenic T cells. Yet, Ea(k) transgenic mice, expressing A(b) and normally absent E(b) molecules (E(+)B10 mice), are susceptible to thyroiditis induction without Treg depletion. To explore the effect of E(b) expression on mTg presentation by A(b), seven putative A(b)-binding, 15-16-mer peptides were synthesized. Five were immunogenic for both B10 and E(+)B10 mice. The effect of E(b) expression was tested by competition with an Ealpha52-68 peptide, because Ealpha52-68 occupies approximately 15% of A(b) molecules in E(+)B10 mice, binding with high affinity. Ealpha52-68 competitively reduced the proliferative response to mTg, mTg1677, and mTg2342 of lymph node cells primed to each Ag. Moreover, mTg1677 induced mild thyroiditis in Treg-depleted B10 mice, and in E(+)B10 mice without the need for Treg depletion. Ealpha52-68 competition with mTg-derived peptides may impede clonal deletion of pathogenic, mTg-specific T cells in the thymus.
Collapse
Affiliation(s)
- Nicholas K. Brown
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Daniel J. McCormick
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Chella S. David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Yi-chi M. Kong
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
16
|
Aschenbrenner K, D'Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 2007; 8:351-8. [PMID: 17322887 DOI: 10.1038/ni1444] [Citation(s) in RCA: 443] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 01/26/2007] [Indexed: 01/28/2023]
Abstract
The parameters specifying whether autoreactive CD4(+) thymocytes are deleted (recessive tolerance) or differentiate into regulatory T cells (dominant tolerance) remain unresolved. Dendritic cells directly delete thymocytes, partly through cross-presentation of peripheral antigens 'promiscuously' expressed in medullary thymic epithelial cells (mTECs) positive for the autoimmune regulator Aire. It is unclear if and how mTECs themselves act as antigen-presenting cells during tolerance induction. Here we found that an absence of major histocompatibility class II molecules on mTECs resulted in fewer polyclonal regulatory T cells. Furthermore, targeting of a model antigen to Aire(+) mTECs led to the generation of specific regulatory T cells independently of antigen transfer to dendritic cells. Thus, 'routing' of mTEC-derived self antigens may determine whether specific thymocytes are deleted or enter the regulatory T cell lineage.
Collapse
|
17
|
Abstract
Recent elucidation of the role of central tolerance in preventing organ-specific autoimmunity has changed our concepts of self/nonself discrimination. This paradigmatic shift is largely attributable to the discovery of promiscuous expression of tissue-restricted self-antigens (TRAs) by medullary thymic epithelial cells (mTECs). TRA expression in mTECs mirrors virtually all tissues of the body, irrespective of developmental or spatio-temporal expression patterns. This review summarizes current knowledge on the cellular and molecular regulation of TRA expression in mTECs, outlines relevant mechanisms of antigen presentation and modes of tolerance induction, and discusses implications for the pathogenesis of autoimmune diseases and other biological processes such as fertility, pregnancy, puberty, and tumor defense.
Collapse
Affiliation(s)
- Bruno Kyewski
- Division of Developmental Immunology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany.
| | | |
Collapse
|
18
|
Goldman KP, Park CS, Kim M, Matzinger P, Anderson CC. Thymic cortical epithelium induces self tolerance. Eur J Immunol 2005; 35:709-17. [PMID: 15719367 DOI: 10.1002/eji.200425675] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Because of its role in positive selection, the ability of cortical epithelium to induce tolerance is controversial. On the one hand, experiments with transplanted thymuses showed that the recipients were functionally tolerant of all the antigens expressed by the cells of those thymuses, including cells of the cortical epithelium. On the other, the keratin 14 (K14) transgenic mouse strain, which expresses MHC class II on cortical epithelium under the control of the K14 promoter, does not seem to be tolerant of the transgenic MHC molecule. Here we tested whether the lack of tolerance in the K14 mouse might be more apparent than real. We found that K14 mice are indeed completely tolerant of K14 cortical thymic epithelium, whereas they remain reactive to tissues that express the same MHC allele under normal genetic control. These results establish the ability of cortical epithelium to induce central tolerance, and impinge on several of the models concerning positive selection of newly developing T cells.
Collapse
|
19
|
Abstract
The thymus has been viewed as the main site of tolerance induction to self-antigens that are specifically expressed by thymic cells and abundant blood-borne self-antigens, whereas tolerance to tissue-restricted self-antigens has been ascribed to extrathymic (peripheral) tolerance mechanisms. However, the phenomenon of promiscuous expression of tissue-restricted self-antigens by medullary thymic epithelial cells has led to a reassessment of the role of central T-cell tolerance in preventing organ-specific autoimmunity. Recent evidence indicates that both genetic and epigenetic mechanisms account for this unorthodox mode of gene expression. As we discuss here, these new insights have implications for our understanding of self-tolerance in humans, its breakdown in autoimmune diseases and the significance of this tolerance mode in vertebrate evolution.
Collapse
Affiliation(s)
- Bruno Kyewski
- Tumour Immunology Programme, Division of Developmental Immunology, German Cancer Research Centre, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | | |
Collapse
|
20
|
Zhang M, Vacchio MS, Vistica BP, Lesage S, Egwuagu CE, Yu CR, Gelderman MP, Kennedy MC, Wawrousek EF, Gery I. T cell tolerance to a neo-self antigen expressed by thymic epithelial cells: the soluble form is more effective than the membrane-bound form. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3954-62. [PMID: 12682222 DOI: 10.4049/jimmunol.170.8.3954] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously shown that transgenic (Tg) mice expressing either soluble or membrane-bound hen egg lysozyme (sHEL or mHEL, respectively) under control of the alphaA-crystallin promoter develop tolerance due to thymic expression of minuscule amounts of HEL. To further address the mechanisms by which this tolerance develops, we mated these two lines of Tg mice with the 3A9 line of HEL-specific TCR Tg mice, to produce double-Tg mice. Both lines of double-Tg mice showed deletion of HEL-specific T cells, demonstrated by reduction in numbers of these cells in the thymus and periphery, as well as by reduced proliferative response to HEL in vitro. In addition, the actual deletional process in thymi of the double-Tg mice was visualized in situ by the TUNEL assay and measured by binding of Annexin V. Notably, the apoptosis localized mainly in the thymic medulla, in line with the finding that the populations showing deletion and increased Annexin V binding consisted mainly of single- and double-positive thymocytes. Interestingly, the thymic deletional effect of sHEL was superior to that of mHEL in contrast to the opposite differential tolerogenic effects of these HEL forms on B cells specific to this Ag. Analysis of bone marrow chimeras indicates that both forms of HEL are produced by irradiation-resistant thymic stromal cells and the data suggest that sHEL is more effective in deleting 3A9 T cells due mainly to its higher accessibility to cross-presentation by dendritic APC.
Collapse
Affiliation(s)
- Meifen Zhang
- National Eye Institute and National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Trembleau S, Gregori S, Penna G, Gorny I, Adorini L. IL-12 administration reveals diabetogenic T cells in genetically resistant I-Ealpha-transgenic nonobese diabetic mice: resistance to autoimmune diabetes is associated with binding of Ealpha-derived peptides to the I-A(g7) molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4104-14. [PMID: 11564833 DOI: 10.4049/jimmunol.167.7.4104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonobese diabetic (NOD) and NOD-DRalpha transgenic (tg) mice, expressing Aalpha(d):Abeta(g7) and Aalpha(d):Abeta(g7) plus DRalpha:Ebeta(g7) class II molecules, respectively, both develop insulin-dependent diabetes mellitus (IDDM), whereas NOD-Ealpha tg mice expressing Aalpha(d):Abeta(g7) plus Ealpha:Ebeta(g7) are protected. We show that IL-12 administration induces rapid IDDM onset in NOD-DRalpha but fails to provoke insulitis and diabetes in NOD-Ealpha tg mice. Nevertheless, T cells from IL-12-treated NOD-Ealpha tg mice secrete IFN-gamma and transfer IDDM to NOD-SCID and NOD-Ealpha-SCID recipients, demonstrating the presence of peripheral diabetogenic Th1 cells in the protected mice. Surprisingly, regulatory cells were undetectable. Moreover, Ealpha:Ebeta(g7) could substitute for DRalpha:Ebeta(g7) in Ag presentation, arguing against mechanisms of protection involving capture of diabetogenic I-A(g7)-restricted epitopes by Ealpha:Ebeta(g7)molecules. Interestingly, the expression of naturally processed epitopes derived from DRalpha- and Ealpha-chains bound to I-A(g7) is different in the two strains of tg mice, and the difference is enhanced by IL-12 administration. I-A(g7) molecules from both NOD-DRalpha and NOD-Ealpha tg mice present the conserved DRalpha/Ealpha 52-68 sequence, at high and low levels, respectively. In addition, only IDDM-resistant NOD-Ealpha tg mice possess APCs bearing Ealpha65-77/I-A(g7) complexes, which tolerize the specific T cells. This is associated with the selective inhibition of the response to insulinoma-associated protein 2 (IA-2), an autoantigen in IDDM. Our results support protective mechanisms based on I-A(g7) blockade by peptides unique to the Ealpha-chain, such as Ealpha65-77 and/or tolerance of diabetogenic T cells cross-reactive with Ealpha-peptide/I-A(g7) complexes.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Autoantigens
- Cells, Cultured
- Cytokines/biosynthesis
- Diabetes Mellitus, Type 1/immunology
- HLA-DR Antigens/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Interleukin-12/pharmacology
- Membrane Proteins/immunology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Pancreas/immunology
- Peptide Fragments
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 8
- Receptors, Antigen, T-Cell
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Th1 Cells/immunology
Collapse
Affiliation(s)
- S Trembleau
- Roche Milan Ricerche, Via Olgettina 58, I-20132 Milan, Italy
| | | | | | | | | |
Collapse
|
22
|
Klein L, Roettinger B, Kyewski B. Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur J Immunol 2001; 31:2476-86. [PMID: 11500832 DOI: 10.1002/1521-4141(200108)31:8<2476::aid-immu2476>3.0.co;2-t] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity, yet the identity of cells involved remains elusive. Here we show that antigen expression in a minor fraction of medullary thymic epithelial cells leads to deletion of specific CD4 T cells. Strikingly, this deletion is not dependent on cross-presentation by hemopoietic antigen-presenting cells, which have been ascribed a predominant role in negative selection. By contrast, when the same antigen enters the thymus via the blood stream, negative selection is strictly dependent on antigen presentation by hemopoietic cells. These findings imply that the (re)-presentation of "self" by thymic stromal cells is non-redundant, and that different thymic antigen-presenting cells instead cover complementing sets of self-antigens, thus maximizing the scope of central tolerance
Collapse
Affiliation(s)
- L Klein
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Kyewski B, Röttinger B, Klein L. Making central T-cell tolerance efficient: thymic stromal cells sample distinct self-antigen pools. Curr Top Microbiol Immunol 2001; 251:139-45. [PMID: 11036769 DOI: 10.1007/978-3-642-57276-0_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- B Kyewski
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, FRG
| | | | | |
Collapse
|
24
|
Kraj P, Pacholczyk R, Ignatowicz L. Alpha beta TCRs differ in the degree of their specificity for the positively selecting MHC/peptide ligand. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2251-9. [PMID: 11160279 DOI: 10.4049/jimmunol.166.4.2251] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have tested the peptide specificity of positive selection using three transgenic alphabetaTCRs, originally selected on class II MHC (A(b)) covalently bound with one peptide Ealpha (52-68) (Ep). The transgenic TCR specific for the cytochrome c-derived (43-58) peptide was selected on A(b) bound with different arrays of endogenous peptides or the analogue of Ep covalently bound to A(b), but not on the original A(b)Ep complex. In contrast, transgenic TCRs specific for two different analogues of the Ep peptide and A(b) did not mature as CD4(+) T cells in various thymic environments, including the A(b)EpIi(-) mice. These results show that TCRs can be promiscuous or specific for the selecting MHC/peptide complex, and suggest that in mice described in this study transgenic expression of the TCR changes the original requirements for the positively selecting MHC/peptide complex. Future studies will determine whether the latter phenomenon is general or specific for this system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantigens/metabolism
- Bone Marrow/immunology
- CD4 Antigens/biosynthesis
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/biosynthesis
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Columbidae
- Cytochrome c Group/immunology
- Cytochrome c Group/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/metabolism
- Hybridomas
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Radiation Chimera/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- P Kraj
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
25
|
Klein L, Kyewski B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol 2000; 12:179-86. [PMID: 10712940 DOI: 10.1016/s0952-7915(99)00069-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-antigen-MHC complexes expressed by thymic stromal cells serve as ligands for TCR-mediated positive and negative selection, resulting in a self-MHC-restricted, self-tolerant T cell repertoire. It has recently become apparent that thymic stromal cells differ in their accessibility to antigen as well as their ability to process and present antigen. These differences result in the sampling by thymic stromal cells of largely nonoverlapping self-antigen pools and the display of self-peptide profiles specific for each cell type. In conjunction with single or serial cell-cell interactions between thymocytes and stromal cells, such differences in self-antigen display allow for maximal (re)presentation of 'self' in the thymus and optimize the efficacy of positive and negative selection.
Collapse
Affiliation(s)
- L Klein
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, USA.
| | | |
Collapse
|
26
|
Smith AL, Fazekas de St Groth B. Antigen-pulsed CD8alpha+ dendritic cells generate an immune response after subcutaneous injection without homing to the draining lymph node. J Exp Med 1999; 189:593-8. [PMID: 9927521 PMCID: PMC2192915 DOI: 10.1084/jem.189.3.593] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1998] [Revised: 11/24/1998] [Indexed: 12/02/2022] Open
Abstract
Two subsets of murine splenic dendritic cells, derived from distinct precursors, can be distinguished by surface expression of CD8alpha homodimers. The functions of the two subsets remain controversial, although it has been suggested that the lymphoid-derived (CD8alpha+) subset induces tolerance, whereas the myeloid-derived (CD8alpha-) subset has been shown to prime naive T cells and to generate memory responses. To study their capacity to prime or tolerize naive CD4(+) T cells in vivo, purified CD8alpha+ or CD8alpha- dendritic cells were injected subcutaneously into normal mice. In contrast to CD8alpha- dendritic cells, the CD8alpha+ fraction failed to traffic to the draining lymph node and did not generate responses to intravenous peptide. However, after in vitro pulsing with peptide, strong in vivo T cell responses to purified CD8alpha+ dendritic cells could be detected. Such responses may have been initiated via transfer of peptide-major histocompatibility complex complexes to migratory host CD8alpha- dendritic cells after injection. These data suggest that correlation of T helper cell type 1 (Th1) and Th2 priming with injection of CD8alpha+ and CD8alpha- dendritic cells, respectively, may not result from direct T cell activation by lymphoid versus myeloid dendritic cells, but rather from indirect modification of the response to immunogenic CD8alpha- dendritic cells by CD8alpha+ dendritic cells.
Collapse
Affiliation(s)
- A L Smith
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia, 2042
| | | |
Collapse
|
27
|
Viret C, Barlow AK, Janeway CA. On the intrathymic intercellular transfer of self-determinants. IMMUNOLOGY TODAY 1999; 20:8-10. [PMID: 10081222 DOI: 10.1016/s0167-5699(98)01372-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C Viret
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
28
|
Klein L, Klein T, Rüther U, Kyewski B. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J Exp Med 1998; 188:5-16. [PMID: 9653079 PMCID: PMC2525550 DOI: 10.1084/jem.188.1.5] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Inducible serum proteins whose concentrations oscillate between nontolerogenic and tolerogenic levels pose a particular challenge to the maintenance of self-tolerance. Temporal restrictions of intrathymic antigen supply should prevent continuous central tolerization of T cells, in analogy to the spatial limitation imposed by tissue-restricted antigen expression. Major acute-phase proteins such as human C-reactive protein (hCRP) are typical examples for such inducible self-antigens. The circulating concentration of hCRP, which is secreted by hepatocytes, is induced up to 1,000-fold during an acute-phase reaction. We have analyzed tolerance to hCRP expressed in transgenic mice under its autologous regulatory regions. Physiological regulation of basal levels (<10(-9) M) and inducibility (>500-fold) are preserved in female transgenics, whereas male transgenics constitutively display induced levels. Surprisingly, crossing of hCRP transgenic mice to two lines of T cell receptor transgenic mice (specific for either a dominant or a subdominant epitope) showed that tolerance is mediated by intrathymic deletion of immature thymocytes, irrespective of widely differing serum levels. In the absence of induction, hCRP expressed by thymic medullary epithelial cells rather than liver-derived hCRP is necessary and sufficient to induce tolerance. Importantly, medullary epithelial cells also express two homologous mouse acute-phase proteins. These results support a physiological role of "ectopic" thymic expression in tolerance induction to acute-phase proteins and possibly other inducible self-antigens and have implications for delineating the relative contributions of central versus peripheral tolerance.
Collapse
Affiliation(s)
- L Klein
- Tumor Immunology Program, Divison of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
29
|
Abstract
Abstract
Intrathymic expression of endogenous mouse mammary tumor virus (MMTV)–encoded superantigens (SAg) induces the clonal deletion of T cells bearing SAg-reactive T-cell receptor (TCR) Vβ elements. However, the identity of the thymic antigen-presenting cells (APC) involved in the induction of SAg tolerance remains to be defined. We have analyzed the potential of dendritic cells (DC) to mediate the clonal deletion of Mtv-7-reactive TCR αβ P14 transgenic thymocytes in an in vitro assay. Our results show that both thymic and splenic DC induced the deletion of TCR transgenic double positive (DP) thymocytes. DC appear to be more efficient than splenic B cells as negatively selecting APC in this experimental system. Interestingly, thymic and splenic DC display a differential ability to induce CD4+SP thymocyte proliferation. These observations suggest that thymic DC may have an important role in the induction of SAg tolerance in vivo.
Collapse
|
30
|
Affiliation(s)
- C Ardavín
- Dept of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain.
| |
Collapse
|
31
|
Farr A, DeRoos PC, Eastman S, Rudensky AY. Differential expression of CLIP:MHC class II and conventional endogenous peptide:MHC class II complexes by thymic epithelial cells and peripheral antigen-presenting cells. Eur J Immunol 1996; 26:3185-93. [PMID: 8977321 DOI: 10.1002/eji.1830261252] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Major histocompatibility complex (MHC) class II molecules expressed by thymic epithelial cells are involved in positive selection of CD4 T cells, whereas the high-avidity interaction of T cell receptors with the endogenous peptide: MHC class II complexes expressed on bone marrow (BM)-derived antigen-presenting cells (APC) and, to a lesser extent, on thymic epithelial cells mediate negative selection. To understand better the generation of the CD4 T cell repertoire both in the thymus and in the periphery we analyzed relative levels of expression of specific endogenous peptide: MHC class II complexes in thymic epithelial cells (TEC) and peripheral APC. Expression of E alpha52-68: I-A(b) and class II-associated invariant chain peptide (CLIP): I-A(b) complexes in thymic epithelial cells and in the bone-marrow derived splenic APC, i.e. B cells, was studied using YAe and 30-2 monoclonal antibodies which are specific for the corresponding complexes. To distinguish between expression of both complexes in radioresistant thymic epithelial elements and radiation sensitive BM-derived APC, radiation BM chimeras were constructed. Using immunohistochemical and immunochemical approaches we demonstrated that the level of expression of E alpha52-68: I-A(b) complexes in thymic epithelial cells is approximately 5-10% of that seen in splenic cells whereas total class II levels were comparable. In contrast, CLIP: I-A(b) complexes are expressed at substantially higher levels in TEC vs. splenic APC. This result demonstrates quantitative differences in expression of distinct peptide: MHC class II complexes in thymic epithelial cells and peripheral splenic APC.
Collapse
Affiliation(s)
- A Farr
- Department of Immunology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Although the thymus produces many immature thymocytes, few of these cells mature. Positive selection has been thought to limit thymocyte development. In thymuses expressing a single MHC/peptide combination, however, surprisingly large numbers of thymocytes are selected to mature. Many of these react with the selecting MHC, bound to other self-peptides. Therefore, the number of thymocytes that mature is limited by the fact that positively selected cells die because they react too well with MHC bound to self-peptides that are not identical to those involved in positive selection. T cells that mature in thymuses expressing a single MHC/peptide ligand react frequently with foreign MHC, suggesting that the repertoire of alpha beta receptors may be more biased toward reaction with MHC than was previously thought.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/ultrastructure
- Gene Expression Regulation/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/physiology
- Hybridomas
- Major Histocompatibility Complex/physiology
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Peptides/immunology
- Peptides/metabolism
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/ultrastructure
- Transgenes/physiology
Collapse
Affiliation(s)
- L Ignatowicz
- Department of Medicine, National Jewish Center for Immunology and Respiratory Medicine, University of Colorado Health Sciences Center, Denver, 80206, USA
| | | | | |
Collapse
|