1
|
Wang W, Zhao Y, Zhu G. The role of sphingosine-1-phosphate in the development and progression of Parkinson's disease. Front Cell Neurosci 2023; 17:1288437. [PMID: 38179204 PMCID: PMC10764561 DOI: 10.3389/fncel.2023.1288437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Parkinson's disease (PD) could be viewed as a proteinopathy caused by changes in lipids, whereby modifications in lipid metabolism may lead to protein alterations, such as the accumulation of alpha-synuclein (α-syn), ultimately resulting in neurodegeneration. Although the loss of dopaminergic neurons in the substantia nigra is the major clinical manifestation of PD, the etiology of it is largely unknown. Increasing evidence has highlighted the important role of lipids in the pathophysiology of PD. Sphingosine-1-phosphate (S1P), a signaling lipid, has been suggested to have a potential association with the advancement and worsening of PD. Therefore, better understanding the mechanisms and regulatory proteins is of high interest. Most interestingly, S1P appears to be an important target to offers a new strategy for the diagnosis and treatment of PD. In this review, we first introduce the basic situation of S1P structure, function and regulation, with a special focus on the several pathways. We then briefly describe the regulation of S1P signaling pathway on cells and make a special focused on the cell growth, proliferation and apoptosis, etc. Finally, we discuss the function of S1P as potential therapeutic target to improve the clinical symptoms of PD, and even prevent the progression of the PD. In the context of PD, the functions of S1P modulators have been extensively elucidated. In conclusion, S1P modulators represent a novel and promising therapeutic principle and therapeutic method for PD. However, more research is required before these drugs can be considered as a standard treatment option for PD.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Lin L, Yu H, Li L, Yang W, Chen X, Gong Y, Lei Q, Li Z, Zhou Z, Dai L, Zhang H, Hu H. TRIM55 promotes noncanonical NF-κB signaling and B cell-mediated immune responses by coordinating p100 ubiquitination and processing. Sci Signal 2023; 16:eabn5410. [PMID: 37816088 DOI: 10.1126/scisignal.abn5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
The ubiquitination-dependent processing of NF-κB2 (also known as p100) is a critical step in the activation of the noncanonical NF-κB pathway. We investigated the molecular mechanisms regulating this process and showed that TRIM55 was the E3 ubiquitin ligase that mediated the ubiquitination of p100 and coordinated its processing. TRIM55 deficiency impaired noncanonical NF-κB activation and B cell function. Mice with a B cell-specific Trim55 deficiency exhibited reduced germinal center formation and antibody production. These mice showed less severe symptoms than those of control mice upon the induction of a systemic lupus-like disease, suggesting B cell-intrinsic functions of TRIM55 in humoral immune responses and autoimmunity. Mechanistically, the ubiquitination of p100 mediated by TRIM55 was crucial for p100 processing by VCP, an ATPase that mediates ubiquitin-dependent protein degradation by the proteasome. Furthermore, we found that TRIM55 facilitated the interaction between TRIM21 and VCP as well as TRIM21-mediated K63-ubiquitination of VCP, both of which were indispensable for the formation of the VCP-UFD1-NPL4 complex and p100 processing. Together, our results reveal a mechanism by which TRIM55 fine-tunes p100 processing and regulates B cell-dependent immune responses in vivo, highlighting TRIM55 as a potential therapeutic target for lupus-like disease.
Collapse
Affiliation(s)
- Liangbin Lin
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Yu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Li
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenyong Yang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueying Chen
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingqiang Lei
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonghan Li
- School of Life Science, Sichuan University, Chengdu 610041, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhua Road, Shanghai 200438, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Lunzhi Dai
- Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chongqing International Institute for Immunology, Chongqing 401338, China
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Li H, Luo Q, Cai S, Tie R, Meng Y, Shan W, Xu Y, Zeng X, Qian P, Huang H. Glia maturation factor-γ is required for initiation and maintenance of hematopoietic stem and progenitor cells. Stem Cell Res Ther 2023; 14:117. [PMID: 37122014 PMCID: PMC10150485 DOI: 10.1186/s13287-023-03328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND In vertebrates, hematopoietic stem and progenitor cells (HSPCs) emerge from hemogenic endothelium in the floor of the dorsal aorta and subsequently migrate to secondary niches where they expand and differentiate into committed lineages. Glia maturation factor γ (gmfg) is a key regulator of actin dynamics that was shown to be highly expressed in hematopoietic tissue. Our goal is to investigate the role and mechanism of gmfg in embryonic HSPC development. METHODS In-depth bioinformatics analysis of our published RNA-seq data identified gmfg as a cogent candidate gene implicated in HSPC development. Loss and gain-of-function strategies were applied to study the biological function of gmfg. Whole-mount in situ hybridization, confocal microscopy, flow cytometry, and western blotting were used to evaluate changes in the number of various hematopoietic cells and expression levels of cell proliferation, cell apoptosis and hematopoietic-related markers. RNA-seq was performed to screen signaling pathways responsible for gmfg deficiency-induced defects in HSPC initiation. The effect of gmfg on YAP sublocalization was assessed in vitro by utilizing HUVEC cell line. RESULTS We took advantage of zebrafish embryos to illustrate that loss of gmfg impaired HSPC initiation and maintenance. In gmfg-deficient embryos, the number of hemogenic endothelium and HSPCs was significantly reduced, with the accompanying decreased number of erythrocytes, myelocytes and lymphocytes. We found that blood flow modulates gmfg expression and gmfg overexpression could partially rescue the reduction of HSPCs in the absence of blood flow. Assays in zebrafish and HUVEC showed that gmfg deficiency suppressed the activity of YAP, a well-established blood flow mediator, by preventing its shuttling from cytoplasm to nucleus. During HSPC initiation, loss of gmfg resulted in Notch inactivation and the induction of Notch intracellular domain could partially restore the HSPC loss in gmfg-deficient embryos. CONCLUSIONS We conclude that gmfg mediates blood flow-induced HSPC maintenance via regulation of YAP, and contributes to HSPC initiation through the modulation of Notch signaling. Our findings reveal a brand-new aspect of gmfg function and highlight a novel mechanism for embryonic HSPC development.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ye Meng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- School of Medicine, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
| |
Collapse
|