1
|
Zhang M, Hou L, Tang W, Lei W, Lin H, Wang Y, Long H, Lin S, Chen Z, Wang G, Zhao G. Oridonin attenuates atherosclerosis by inhibiting foam macrophage formation and inflammation through FABP4/PPARγ signalling. J Cell Mol Med 2023; 27:4155-4170. [PMID: 37905351 PMCID: PMC10746953 DOI: 10.1111/jcmm.18000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Both lipid accumulation and inflammatory response in lesion macrophages fuel the progression of atherosclerosis, leading to high mortality of cardiovascular disease. A therapeutic strategy concurrently targeting these two risk factors is promising, but still scarce. Oridonin, the bioactive medicinal compound, is known to protect against inflammatory response and lipid dysfunction. However, its effect on atherosclerosis and the underlying molecular mechanism remain elusive. Here, we showed that oridonin attenuated atherosclerosis in hyperlipidemic ApoE knockout mice. Meanwhile, we confirmed the protective effect of oridonin on the oxidized low-density lipoprotein (oxLDL)-induced foam macrophage formation, resulting from increased cholesterol efflux, as well as reduced inflammatory response. Mechanistically, the network pharmacology prediction and further experiments revealed that oridonin dramatically facilitated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), thereby regulating liver X receptor-alpha (LXRα)-induced ATP-binding cassette transporter A1 (ABCA1) expression and nuclear factor NF-kappa-B (NF-κB) translocation. Antagonist of PPARγ reversed the cholesterol accumulation and inflammatory response mediated by oridonin. Besides, RNA sequencing analysis revealed that fatty acid binding protein 4 (FABP4) was altered responding to lipid modulation effect of oridonin. Overexpression of FABP4 inhibited PPARγ activation and blunted the benefit effect of oridonin on foam macrophages. Taken together, oridonin might have potential to protect against atherosclerosis by modulating the formation and inflammatory response in foam macrophages through FABP4/PPARγ signalling.
Collapse
Affiliation(s)
- Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Wanying Tang
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | | | - Huiling Lin
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Yu Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
- Xiangya Hospital, Central South UniversityChangshaChina
| | - Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Zhi Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| | - Guangliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
- Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuanChina
| |
Collapse
|
2
|
Ortiz-Mendoza N, Martínez-Gordillo MJ, Martínez-Ambriz E, Basurto-Peña FA, González-Trujano ME, Aguirre-Hernández E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:3752. [PMID: 37960108 PMCID: PMC10648697 DOI: 10.3390/plants12213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Nepetoideae is the most diverse subfamily of Lamiaceae, and some species are well known for their culinary and medicinal uses. In recent years, there has been growing interest in the therapeutic properties of the species of this group regarding inflammatory illnesses. This study aims to collect information on traditional uses through ethnobotanical, pharmacological, and phytochemical information of the subfamily Nepetoideae related to inflammatory diseases. UNAM electronic resources were used to obtain the information. The analysis of the most relevant literature was compiled and organised in tables. From this, about 106 species of the subfamily are traditionally recognised to alleviate chronic pain associated with inflammation. Pharmacological studies have been carried out in vitro and in vivo on approximately 308 species belonging to the genera Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa. Phytochemical and pharmacological evaluations have been performed and mostly prepared as essential oil or high polarity extracts, whose secondary metabolites are mainly of a phenolic nature. Other interesting and explored metabolites are diterpenes from the abietane, clerodane, and kaurane type; however, they have only been described in some species of the genera Salvia and Isodon. This review reveals that the Nepetoideae subfamily is an important source for therapeutics of the inflammatory process.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria Coyoacán, Edificio D, 1° Piso, Circuito de Posgrados, Mexico City 04510, Mexico
| | - Martha Juana Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Emmanuel Martínez-Ambriz
- Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Xalapa 91073, Veracruz, Mexico;
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
3
|
Pan Y, Ikoma K, Matsui R, Nakayama A, Takemura N, Saitoh T. Dasatinib suppresses particulate-induced pyroptosis and acute lung inflammation. Front Pharmacol 2023; 14:1250383. [PMID: 37705538 PMCID: PMC10495768 DOI: 10.3389/fphar.2023.1250383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Background: Humans are constantly exposed to various industrial, environmental, and endogenous particulates that result in inflammatory diseases. After being engulfed by immune cells, viz. Macrophages, such particulates lead to phagolysosomal dysfunction, eventually inducing pyroptosis, a form of cell death accompanied by the release of inflammatory mediators, including members of the interleukin (IL)-1 family. Phagolysosomal dysfunction results in the activation of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, an immune complex that induces pyroptosis upon exposure to various external stimuli. However, several particulates induce pyroptosis even if the NLRP3 inflammasome is inhibited; this indicates that such inhibition is not always effective in treating diseases induced by particulates. Therefore, discovery of drugs suppressing particulate-induced NLRP3-independent pyroptosis is warranted. Methods: We screened compounds that inhibit silica particle (SP)-induced cell death and release of IL-1α using RAW264.7 cells, which are incapable of NLRP3 inflammasome formation. The candidates were tested for their ability to suppress particulate-induced pyroptosis and phagolysosomal dysfunction using mouse primary macrophages and alleviate SP-induced NLRP3-independent lung inflammation. Results: Several Src family kinase inhibitors, including dasatinib, effectively suppressed SP-induced cell death and IL-1α release. Furthermore, dasatinib suppressed pyroptosis induced by other particulates but did not suppress that induced by non-particulates, such as adenosine triphosphate. Dasatinib reduced SP-induced phagolysosomal dysfunction without affecting phagocytosis of SPs. Moreover, dasatinib treatment strongly suppressed the increase in IL-1α levels and neutrophil counts in the lungs after intratracheal SP administration. Conclusion: Dasatinib suppresses particulate-induced pyroptosis and can be used to treat relevant inflammatory diseases.
Collapse
Affiliation(s)
- Yixi Pan
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kenta Ikoma
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Risa Matsui
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Naoki Takemura
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Takemura N. [Development of Anti-inflammatory Drugs with Novel Mechanisms of Action Targeting Pyroptosis]. YAKUGAKU ZASSHI 2023; 143:997-1003. [PMID: 38044115 DOI: 10.1248/yakushi.23-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Programmed cell death plays various physiological roles, one of which is an immune response that protects the body from infectious pathogens such as bacteria and viruses. Pathogen infection causes dysfunction of cellular organelles, such as mitochondria and lysosomes, triggering stress signals that induce programmed cell death. In some cases, cell death coincides with intracellular inflammatory cytokine release. Such programmed cell death, accompanied by the induction of inflammatory responses, is called pyroptosis, which inhibits pathogen proliferation within cells and attracts leukocytes that eliminate the pathogens, thereby preventing infection spread. Additionally, pyroptosis can be induced by noninfectious stimuli such as drugs, pollutants, and nutrients, resulting in severe inflammatory disease. Therefore, the development of effective anti-inflammatory drugs that prevent pyroptosis based on the understanding of the mechanisms responsible for its induction is an urgent requirement. This review provides an overview of the non-infectious inflammatory response caused by pyroptosis and the development of new anti-inflammatory drugs that target organelles to prevent pyroptosis to treat relevant inflammatory diseases.
Collapse
Affiliation(s)
- Naoki Takemura
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|