1
|
Naito S, Tanaka H, Jiang JJ, Tarumi M, Hashimoto A, Tanaka Y, Murakami K, Kubota SI, Hojyo S, Hashimoto S, Murakami M. DDX6 is involved in the pathogenesis of inflammatory diseases via NF-κB activation. Biochem Biophys Res Commun 2024; 703:149666. [PMID: 38377944 DOI: 10.1016/j.bbrc.2024.149666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
The IL-6 amplifier was originally discovered as a mechanism for the enhanced activation of NF-κB in non-immune cells. In the IL-6 amplifier, IL-6-STAT3 and NF-κB stimulation is followed by an excessive production of IL-6, chemokines, and growth factors to develop chronic inflammation preceding the development of inflammatory diseases. Previously, using a shRNA-mediated genome-wide screening, we found that DEAD-Box Helicase 6 (DDX6) is a candidate positive regulator of the amplifier. Here, we investigate whether DDX6 is involved in the pathogenesis of inflammatory diseases via the IL-6 amplifier. We found that DDX6-silencing in non-immune cells suppressed the NF-κB pathway and inhibited activation of the IL-6 amplifier, while the forced expression of DDX6 enhanced NF-κB promoter activity independent of the RNA helicase activity of DDX6. The imiquimod-mediated dermatitis model was suppressed by the siRNA-mediated gene downregulation of DDX6. Furthermore, silencing DDX6 significantly reduced the TNF-α-induced phosphorylation of p65/RelA and IκBα, nuclear localization of p65, and the protein levels of IκBα. Mechanistically, DDX6 is strongly associated with p65 and IκBα, but not TRADD, RIP, or TRAF2, suggesting a novel function of DDX6 as an adaptor protein in the NF-κB pathway. Thus, our findings demonstrate a possible role of DDX6 beyond RNA metabolism and suggest DDX6 is a therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Seiichiro Naito
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Tarumi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Tanaka Y, Ohki I, Murakami K, Ozawa S, Wang Y, Murakami M. The gateway reflex regulates tissue-specific autoimmune diseases. Inflamm Regen 2024; 44:12. [PMID: 38449060 PMCID: PMC10919025 DOI: 10.1186/s41232-024-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
The dynamic interaction and movement of substances and cells between the central nervous system (CNS) and peripheral organs are meticulously controlled by a specialized vascular structure, the blood-brain barrier (BBB). Experimental and clinical research has shown that disruptions in the BBB are characteristic of various neuroinflammatory disorders, including multiple sclerosis. We have been elucidating a mechanism termed the "gateway reflex" that details the entry of immune cells, notably autoreactive T cells, into the CNS at the onset of such diseases. This process is initiated through local neural responses to a range of environmental stimuli, such as gravity, electricity, pain, stress, light, and joint inflammation. These stimuli specifically activate neural pathways to open gateways at targeted blood vessels for blood immune cell entry. The gateway reflex is pivotal in managing tissue-specific inflammatory diseases, and its improper activation is linked to disease progression. In this review, we present a comprehensive examination of the gateway reflex mechanism.
Collapse
Affiliation(s)
- Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Izuru Ohki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Ozawa
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yaze Wang
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Teoh YB, Jiang JJ, Yamasaki T, Nagata N, Sugawara T, Hasebe R, Ohta H, Sasaki N, Yokoyama N, Nakamura K, Kagawa Y, Takiguchi M, Murakami M. An inflammatory bowel disease-associated SNP increases local thyroglobulin expression to develop inflammation in miniature dachshunds. Front Vet Sci 2023; 10:1192888. [PMID: 37519997 PMCID: PMC10375717 DOI: 10.3389/fvets.2023.1192888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory colorectal polyp (ICRP) in miniature dachshunds (MDs) is a chronic inflammatory bowel disease (IBD) characterized by granulomatous inflammation that consists of neutrophil infiltration and goblet cell hyperplasia in the colon. Recently, we identified five MD-associated single-nucleotide polymorphisms (SNPs), namely PLG, TCOF1, TG, COL9A2, and COL4A4, by whole-exome sequencing. Here, we investigated whether TG c.4567C>T (p.R1523W) is associated with the ICRP pathology. We found that the frequency of the T/T SNP risk allele was significantly increased in MDs with ICRP. In vitro experiments showed that TG expression in non-immune cells was increased by inducing the IL-6 amplifier with IL-6 and TNF-α. On the other hand, a deficiency of TG suppressed the IL-6 amplifier. Moreover, recombinant TG treatment enhanced the activation of the IL-6 amplifier, suggesting that TG is both a positive regulator and a target of the IL-6 amplifier. We also found that TG expression together with two NF-κB targets, IL6 and CCL2, was increased in colon samples isolated from MDs with the T/T risk allele compared to those with the C/C non-risk allele, but serum TG was not increased. Cumulatively, these results suggest that the T/T SNP is an expression quantitative trait locus (eQTL) of TG mRNA in the colon, and local TG expression triggered by this SNP increases the risk of ICRP in MDs via the IL-6 amplifier. Therefore, TG c.4567C>T is a diagnostic target for ICRP in MDs, and TG-mediated IL-6 amplifier activation in the colon is a possible therapeutic target for ICRP.
Collapse
Affiliation(s)
- Yong Bin Teoh
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Nagata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Noboru Sasaki
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Yokoyama
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|