1
|
Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder AK, Almeida LN, Clare S, Harcourt K, Ward CJ, Bashford-Rogers R, Lawley T, Manz RA, Okkenhaug K, Masopust D, Clatworthy MR. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat Commun 2023; 14:7081. [PMID: 37925420 PMCID: PMC10625551 DOI: 10.1038/s41467-023-42625-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Anita Chandra
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Christopher J Ward
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Masopust
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
2
|
Heterogeneous plasma cells and long-lived subsets in response to immunization, autoantigen and microbiota. Nat Immunol 2022; 23:1564-1576. [DOI: 10.1038/s41590-022-01345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
|
3
|
Smirnova NF, Riemondy K, Bueno M, Collins S, Suresh P, Wang X, Patel KN, Cool C, Königshoff M, Sharma NS, Eickelberg O. Single-cell transcriptome mapping identifies a local, innate B cell population driving chronic rejection after lung transplantation. JCI Insight 2022; 7:156648. [PMID: 36134664 PMCID: PMC9675462 DOI: 10.1172/jci.insight.156648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is the main reason for poor outcomes after lung transplantation (LTx). We and others have recently identified B cells as major contributors to BOS after LTx. The extent of B cell heterogeneity and the relative contributions of B cell subpopulations to BOS, however, remain unclear. Here, we provide a comprehensive analysis of cell population changes and their gene expression patterns during chronic rejection after orthotopic LTx in mice. Of 11 major cell types, Mzb1-expressing plasma cells (PCs) were the most prominently increased population in BOS lungs. These findings were validated in 2 different cohorts of human BOS after LTx. A Bhlhe41, Cxcr3, and Itgb1 triple-positive B cell subset, also expressing classical markers of the innate-like B-1 B cell population, served as the progenitor pool for Mzb1+ PCs. This subset accounted for the increase in IgG2c production within BOS lung grafts. A genetic lack of Igs decreased BOS severity after LTx. In summary, we provide a detailed analysis of cell population changes during BOS. IgG+ PCs and their progenitors — an innate B cell subpopulation — are the major source of local Ab production and a significant contributor to BOS after LTx.
Collapse
Affiliation(s)
- Natalia F Smirnova
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC) - INSERM U1297, University of Toulouse III, Toulouse, France
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marta Bueno
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan Collins
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pavan Suresh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xingan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kapil N Patel
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital, Tampa, Florida, USA
| | - Carlyne Cool
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nirmal S Sharma
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital, Tampa, Florida, USA.,Division of Pulmonary & Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Honjo K, Won WJ, King RG, Ianov L, Crossman DK, Easlick JL, Shakhmatov MA, Khass M, Vale AM, Stephan RP, Li R, Davis RS. Fc Receptor-Like 6 (FCRL6) Discloses Progenitor B Cell Heterogeneity That Correlates With Pre-BCR Dependent and Independent Pathways of Natural Antibody Selection. Front Immunol 2020; 11:82. [PMID: 32117244 PMCID: PMC7033751 DOI: 10.3389/fimmu.2020.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022] Open
Abstract
B-1a cells produce "natural" antibodies (Abs) to neutralize pathogens and clear neo self-antigens, but the fundamental selection mechanisms that shape their polyreactive repertoires are poorly understood. Here, we identified a B cell progenitor subset defined by Fc receptor-like 6 (FCRL6) expression, harboring innate-like defense, migration, and differentiation properties conducive for natural Ab generation. Compared to FCRL6- pro B cells, the repressed mitotic, DNA damage repair, and signaling activity of FCRL6+ progenitors, yielded VH repertoires with biased distal Ighv segment accessibility, constrained diversity, and hydrophobic and charged CDR-H3 sequences. Beyond nascent autoreactivity, VH11 productivity, which predominates phosphatidylcholine-specific B-1a B cell receptors (BCRs), was higher for FCRL6+ cells as was pre-BCR formation, which was required for Myc induction and VH11, but not VH12, B-1a development. Thus, FCRL6 revealed unexpected heterogeneity in the developmental origins, regulation, and selection of natural Abs at the pre-BCR checkpoint with implications for autoimmunity and lymphoproliferative disorders.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphatidylcholines/immunology
- Phosphatidylcholines/metabolism
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Woong-Jai Won
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rodney G. King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juliet L. Easlick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mikhail A. Shakhmatov
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Andre M. Vale
- Program in Immunobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Robert P. Stephan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Jeon HJ, Fang T, Lee JG, Jang JY, Kim K, Choi S, Yan JJ, Ryu JH, Koo TY, Ahn C, Yang J. VDJ Gene Usage of B Cell Receptors in Peripheral Blood of ABO-incompatible Kidney Transplantation Patients. Transplant Proc 2018; 50:1056-1062. [PMID: 29731065 DOI: 10.1016/j.transproceed.2018.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/22/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION B cell subtypes and immunoglobulin variable (V), diversity (D), joining (J) gene segment usage of B cell receptors in ABO-incompatible (ABOi) kidney transplantation (KT) in comparison to ABO-compatible KT have not been studied. The aims of this study were to analyze the VDJ gene segment usages of B cell receptors in peripheral blood of ABOi KT recipients. METHODS Eighteen ABOi KT patients with accommodation (ABOiA), 10 ABO-compatible stable KT patients (ABOcS), and 10 ABOi KT patients with biopsy-proven acute antibody-mediated rejection (ABOiR) at day 10 after transplantation were selected. Complete transcriptomes of their peripheral blood samples were sequenced and analyzed through RNA sequencing. RESULTS By family, immunoglobulin heavy chain variable 3 (IGHV3), immunoglobulin light kappa chain variable 1 (IGKV1), immunoglobulin light lambda chain variable 2 (IGLV2), and immunoglobulin light lambda chain joining 3 (IGLJ3) gene segments were most frequently used in all groups, and their usage was not statistically different among the three groups except for IGHV3 and IGKV1. IGKV1 was more frequently used in the ABOiA group than in the ABOcS group. According to individual gene segments, IGHV3-7, IGHV3-15, IGHV4-59, IGKV3-11, IGLV1-44, IGLV2-14, IGLV4-69, and IGLV7-46 were more frequently used in the ABOcS group than other groups, and IGKV3-7 was more frequently used in the ABOiR group than other groups. IGLV5-52 and IGLV7-43 were more frequently used in the ABOiA group than in ABOcS group. CONCLUSIONS Our findings suggest that RNA sequencing transcriptomic analyses of peripheral blood can provide information on the VDJ gene usage of B cell receptors and the mechanisms of accommodation and immune reaction in ABOi KT.
Collapse
Affiliation(s)
- H J Jeon
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Republic of Korea
| | - T Fang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J-G Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J Y Jang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - K Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - S Choi
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - J-J Yan
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J H Ryu
- Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - T Y Koo
- Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - C Ahn
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J Yang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Jeon HJ, Kim K, Lee JG, Jang JY, Choi S, Fang T, Yan JJ, Han M, Jeong JC, Lee KB, Kim TJ, Ahn C, Yang J. VDJ gene usage among B-cell receptors in ABO-incompatible kidney transplantation determined by RNA-seq Transcriptomic analysis. BMC Nephrol 2017; 18:340. [PMID: 29183295 PMCID: PMC5706410 DOI: 10.1186/s12882-017-0770-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies on B-cell subtypes and V(D)J gene usage of B-cell receptors in kidney transplants are scarce. This study aimed to investigate V(D)J gene segment usage in ABO-incompatible (ABOi) kidney transplant (KT) patients compared to that in ABO-compatible (ABOc) KT patients. METHODS We selected 16 ABOi KT patients with accommodation (ABOiA), 6 ABOc stable KT patients (ABOcS), and 6 ABOi KT patients with biopsy-proven acute antibody-mediated rejection (ABOiR) at day 10, whose graft tissue samples had been stored in the biorepository between 2010 and 2014. Complete transcriptomes of graft tissues were sequenced and analyzed through RNA sequencing (RNA-seq). The international ImMunoGeneTics information system (IMGT®) was used for in-depth comparison of V(D)J gene segment usage. RESULTS The mean age of the 28 KT recipients was 43.3 ± 12.8 years, and 53.6% were male. By family, IGHV3, IGHJ4, IGLV2, and IGLJ3 gene segments were most frequently used in all groups, and their usage was not statistically different among the three patient groups. While IGKV3 was most frequently used in both the ABOiA and ABOiR groups, IGKV1 was most commonly used in the ABOcS group. In addition, while IGKJ1 was most commonly used in the ABOiA and ABOcS groups, IGKJ4 was most frequently used in the ABOiR group. According to individual gene segments, IGHV4-34 and IGHV4-30-2 were more commonly used in the ABOiR group than in the ABOiA group, and IGHV6-1 was more commonly used in the ABOcS group than in the ABOiR group. IGLV7-43 was more commonly used in the ABOcS group than in the ABOi group. However, technical variability, small sample size, and potential confounding effects of Rituximab or HLA mismatching are limitations of our study. CONCLUSIONS Our findings suggest that RNA-seq transcriptomic analyses can provide information on the V(D)J gene usage of B-cell receptors and the mechanisms of accommodation and immune reaction in ABOi KT.
Collapse
Affiliation(s)
- Hee Jung Jeon
- Department of Internal Medicine, Hallym University College of Medicine, 150 Seongan-ro, Gangdong-gu, Seoul, 05355 Republic of Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Jae-Ghi Lee
- Transplantation Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Joon Young Jang
- Transplantation Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Seongmin Choi
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Taishi Fang
- Transplantation Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Ji-Jing Yan
- Transplantation Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Miyeun Han
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Jong Cheol Jeong
- Department of Nephrology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Kyoung-Bun Lee
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Tae Jin Kim
- Division of Immunobiology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Curie Ahn
- Transplantation Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Transplantation Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Jaeseok Yang
- Transplantation Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Transplantation Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
7
|
Zhu LY, Shao T, Nie L, Zhu LY, Xiang LX, Shao JZ. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity. Mol Immunol 2015; 69:123-30. [PMID: 26573260 DOI: 10.1016/j.molimm.2015.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 11/27/2022]
Abstract
The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China; College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China
| | - Tong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China
| | - Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China
| | - Ling-yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Li-xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China.
| | - Jian-zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, People's Republic of China.
| |
Collapse
|
8
|
Ito C, Yamazaki H, Yamane T. Earliest hematopoietic progenitors at embryonic day 9 preferentially generate B-1 B cells rather than follicular B or marginal zone B cells. Biochem Biophys Res Commun 2013; 437:307-13. [PMID: 23817041 DOI: 10.1016/j.bbrc.2013.06.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
Abstract
The lymphoid potential of the hematopoietic system is observed as early as embryonic day 9 (E9) before transplantable hematopoietic stem cells (HSCs) appear at E11 in mice. However, it is largely unknown as to which cell fraction is responsible for the initial wave of lymphopoiesis and whether these earliest lymphocytes make any contributions to the adult lymphoid system. We previously isolated the earliest hematolymphoid progenitors at E9 that had CD45(+)c-Kit(+)AA4.1(+) phenotypes. In this study, the differentiation potency into B cell subsets of the E9 hematolymphoid progenitors was examined in detail. In culture, E9 hematolymphoid progenitors produced B220(-/low) B cell progenitors in striking contrast to adult BM c-Kit(+)Sca-1(+)Lin(-) cells. Upon in vivo transplantation, B cell progenitors derived from E9 hematolymphoid progenitors preferentially differentiated into the B-1 B lymphocyte subset, whereas their differentiation into B-2 B lymphocyte subsets [follicular B (FoB), marginal zone B (MZB) cells] was inefficient. Of note, these donor B lymphocytes permanently repopulated in host mice, even if adult mice were used as recipients. These results suggest that B cell progenitors produced from an initial wave of definitive hematopoiesis before authentic HSCs appear could be a permanent source for, at least, the B-1 B lymphocyte subset.
Collapse
Affiliation(s)
- Chie Ito
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | | |
Collapse
|
9
|
Rohatgi S, Pirofski LA. Molecular characterization of the early B cell response to pulmonary Cryptococcus neoformans infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:5820-30. [PMID: 23175699 DOI: 10.4049/jimmunol.1201514] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The role of B cells in host defense against fungi has been difficult to establish. We quantified and determined the molecular derivation of B-1a, B-1b, and B-2 B cell populations in C57BL/6 mice after pulmonary infection with Cryptococcus neoformans. Total B-1 and B-2 cell numbers increased in lungs and peritoneal cavity as early as day 1 postinfection, but lacked signs of clonal expansion. Labeled capsular (24067) and acapsular (Cap67) C. neoformans strains were used to identify C. neoformans-binding B cell subsets by flow cytometry. Peritoneal cavity B-1a B cells exhibited the most acapsular and capsular C. neoformans binding in C. neoformans-infected mice, and C. neoformans-selected B-1 B cells secreted laminarin- and C. neoformans-binding IgM. Single-cell PCR-based sequence analysis of B-1a, B-1b, and B-2 cell IgH V region H chain (V(H)) genes revealed increased usage of V(H)11 and V(H)12, respectively, in acapsular and capsular C. neoformans-selected B-1a cells. Germline V(H) segments were used, with capsular C. neoformans-selected cells having less junctional diversity than acapsular C. neoformans-selected cells. Further studies in B-1 B cell-depleted mice showed that these mice had higher brain and lung fungal burdens and less alveolar macrophage phagocytosis of C. neoformans than did control and B-1a B cell-reconstituted mice. Taken together, these results establish a mechanistic role for B-1 B cells in the innate B cell response to pulmonary infection with C. neoformans and reveal that IgM-producing B-1a cells, which express germline V(H) genes, bind C. neoformans and contribute to early fungal clearance. Thus, B-1a B cells provide a first line of defense during pulmonary C. neoformans infection in mice.
Collapse
Affiliation(s)
- Soma Rohatgi
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | | |
Collapse
|
10
|
Takase M, Iida R, Maruya M, Sakaue-Sawano A, Miyawaki A, Wakayama T, Nishigami S, Fagarasan S, Kanagawa O. Nuclear transferred embryonic stem cells for analysis of B1 B-lymphocyte development. Int Immunol 2012; 25:145-56. [PMID: 23042789 DOI: 10.1093/intimm/dxs095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transfer of nuclei of fully differentiated cells into enucleated oocytes is a well-recognized method for the generation of embryonic stem (ES) cells. Here, we demonstrate that nuclear transferred ES (NT-ES) cells can be established with high efficiency using innate-like B lymphocytes as donor cells. We established two mouse lines carrying rearranged immunoglobulin heavy and light chains using NT-ES cells containing nuclei from peritoneal cavity B1 cells. Analysis of B1 clone lines revealed that the B1-cell generation critically depends on the interaction between antigen (possibly self-antigen) and surface immunoglobulin, while the B1-cell maintenance requires the peritoneal environment. The B1-cell expansion takes place in spleen, and is held in check by competitor B2 cells. The results indicate that the NT-ES method could replace the transgenic or knock-in mouse approaches currently used to study the biology of cells that undergo somatic rearrangements of their antigen receptor genes.
Collapse
Affiliation(s)
- Mitsuyo Takase
- Laboratory for Autoimmune Regulation, RIKEN, Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Griffin DO, Rothstein TL. Human b1 cell frequency: isolation and analysis of human b1 cells. Front Immunol 2012; 3:122. [PMID: 22654880 PMCID: PMC3360193 DOI: 10.3389/fimmu.2012.00122] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/28/2012] [Indexed: 01/13/2023] Open
Abstract
Controversy over the frequency of human B1 cells in normal individuals has arisen as different labs have begun to employ non-uniform techniques to study this population. The phenotypic profile and relative paucity of circulating human B1 cells place constraints on methodology to identify and isolate this population. Multiple steps must be optimized to insure accurate enumeration and optimal purification. In the course of working with human B1 cells we have developed a successful strategy that provides consistent analysis of B1 cells for frequency determination and efficient isolation of B1 cells for functional studies. Here we discuss issues attendant to identifying human B1 cells and outline a carefully optimized approach that leads to uniform and reproducible data.
Collapse
Affiliation(s)
- Daniel O Griffin
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research Manhasset, NY, USA
| | | |
Collapse
|
12
|
The pre-B cell receptor: turning autoreactivity into self-defense. Trends Immunol 2010; 31:176-83. [DOI: 10.1016/j.it.2010.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/03/2010] [Accepted: 02/25/2010] [Indexed: 11/17/2022]
|
13
|
Sauerborn M, Schellekens H. B-1 cells and naturally occurring antibodies: influencing the immunogenicity of recombinant human therapeutic proteins? Curr Opin Biotechnol 2009; 20:715-21. [PMID: 19892544 DOI: 10.1016/j.copbio.2009.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 10/14/2009] [Indexed: 12/18/2022]
Abstract
Recombinant human therapeutic proteins are increasingly being used to treat serious and life-threatening diseases like multiple sclerosis, diabetes mellitus, and cancer. An important side effect of these proteins is the development of antidrug antibodies, which can be neutralizing and thus interfere with the efficacy and safety of the drug. Some biophysical properties, for example, aggregation, also can initiate the immunogenic response to human therapeutics. Many other factors including patients' characteristics may influence this response. Besides induced antibodies, autoantibodies (i.e. naturally occurring antibodies [NAs]) against therapeutic relevant proteins in naïve patients are increasingly being identified. The role of autoreactive B cells and their escape from deletion, production of NAs and their pivotal function in the immune system, the dualistic role of B-1 cells in autoimmunity, and the influence of NAs on disease outcome and their possible impact on the efficacy of human therapeutics will be presented and discussed.
Collapse
Affiliation(s)
- Melody Sauerborn
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, 3584 CA Utrecht, The Netherlands.
| | | |
Collapse
|
14
|
Alter-Wolf S, Blomberg BB, Riley RL. Old mice retain bone marrow B1 progenitors, but lose B2 precursors, and exhibit altered immature B cell phenotype and light chain usage. Mech Ageing Dev 2009; 130:401-8. [PMID: 19428460 PMCID: PMC2734388 DOI: 10.1016/j.mad.2009.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
The bone marrow of old adult mice ( approximately 2 years old) has reduced B lymphopoiesis; however, whether the B1 pathway in adult bone marrow is also compromised in senescence is not known. Herein, we show that phenotypic (IgM(-)Lin(-)CD93(+)[AA4.1(+)] CD19(+)B220(low/-)) B1 progenitors are retained in old bone marrow even as B2 B cell precursors are reduced. Moreover, B1 progenitors from both young adult and old mice generated new B cells in vitro enriched for CD43 expression, likely due to their activation, and exhibited increased lambda light chain usage and diminished levels of kappa light chain expression. B1 progenitors were shown to have lower surrogate light chain (lambda5) protein levels than did B2 pro-B cells in young mice and these levels decreased in both B1 and B2 precursor pools in old age. These results indicate that the B1 B cell pathway persists during old age in contrast to the B2 pathway. Moreover, B1 B cell progenitors generated new B cells in the adult bone marrow that have distinct surface phenotype and light chain usage. This is associated with decreased surrogate light chain expression, a characteristic held in common by B1 progenitors as well as B2 precursors in old mice.
Collapse
Affiliation(s)
- Sarah Alter-Wolf
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33101
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33101
| | - Richard L. Riley
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33101
| |
Collapse
|