1
|
Al-khayyat W, Pirkkanen J, Dougherty J, Laframboise T, Dickinson N, Khaper N, Lees SJ, Mendonca MS, Boreham DR, Tai TC, Thome C, Tharmalingam S. Overexpression of FRA1 ( FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression. Cells 2023; 12:2344. [PMID: 37830558 PMCID: PMC10571788 DOI: 10.3390/cells12192344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.
Collapse
Affiliation(s)
- Wuroud Al-khayyat
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jake Pirkkanen
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jessica Dougherty
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Taylor Laframboise
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Noah Dickinson
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
| | - Neelam Khaper
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Simon J. Lees
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas R. Boreham
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Tze Chun Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Christopher Thome
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
2
|
Kamal A, Arnold C, Claringbould A, Moussa R, Servaas NH, Kholmatov M, Daga N, Nogina D, Mueller‐Dott S, Reyes‐Palomares A, Palla G, Sigalova O, Bunina D, Pabst C, Zaugg JB. GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks. Mol Syst Biol 2023; 19:e11627. [PMID: 37073532 PMCID: PMC10258561 DOI: 10.15252/msb.202311627] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
Enhancers play a vital role in gene regulation and are critical in mediating the impact of noncoding genetic variants associated with complex traits. Enhancer activity is a cell-type-specific process regulated by transcription factors (TFs), epigenetic mechanisms and genetic variants. Despite the strong mechanistic link between TFs and enhancers, we currently lack a framework for jointly analysing them in cell-type-specific gene regulatory networks (GRN). Equally important, we lack an unbiased way of assessing the biological significance of inferred GRNs since no complete ground truth exists. To address these gaps, we present GRaNIE (Gene Regulatory Network Inference including Enhancers) and GRaNPA (Gene Regulatory Network Performance Analysis). GRaNIE (https://git.embl.de/grp-zaugg/GRaNIE) builds enhancer-mediated GRNs based on covariation of chromatin accessibility and RNA-seq across samples (e.g. individuals), while GRaNPA (https://git.embl.de/grp-zaugg/GRaNPA) assesses the performance of GRNs for predicting cell-type-specific differential expression. We demonstrate their power by investigating gene regulatory mechanisms underlying the response of macrophages to infection, cancer and common genetic traits including autoimmune diseases. Finally, our methods identify the TF PURA as a putative regulator of pro-inflammatory macrophage polarisation.
Collapse
Affiliation(s)
- Aryan Kamal
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Annique Claringbould
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Rim Moussa
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Nila H Servaas
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Maksim Kholmatov
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Neha Daga
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Daria Nogina
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Sophia Mueller‐Dott
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Armando Reyes‐Palomares
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Present address:
Department of Biochemistry and Molecular BiologyComplutense University of MadridMadridSpain
| | - Giovanni Palla
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Present address:
Institute of Computational BiologyHelmholtz Center MunichOberschleißheimGermany
| | - Olga Sigalova
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Daria Bunina
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Caroline Pabst
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership UnitUniversity of HeidelbergHeidelbergGermany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Molecular Medicine Partnership UnitUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
3
|
Grant MM, Scott AE, Matthews JB, Griffiths HR, Chapple ILC. Pre-conditioning of gingival epithelial cells with sub-apoptotic concentrations of curcumin prevents pro-inflammatory cytokine release. J Periodontal Res 2023; 58:634-645. [PMID: 36919895 DOI: 10.1111/jre.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Plaque-induced gingival inflammation (gingivitis) is ubiquitous in humans. The epithelial barrier reacts to the presence of oral bacteria and induces inflammatory cascades. The objective of this study was to investigate the mechanism by which the small molecule micronutrient curcumin could decrease inflammatory response in vitro to oral bacterium heat-killed Fusobacterium nucleatum as curcumin could be a useful compound for combatting gingivitis already consumed by humans. METHODS H400 oral epithelial cell line was pre-conditioned with curcumin and the production of cytokines was measured by enzyme-linked immunosorbent assay (ELISA) and translocation of transcription factors was used to monitor inflammatory responses. Haem oxygenase (HO-1) expression and molecules that HO-1 releases were evaluated for their potential to reduce the quantity of cytokine production. Immunofluorescence microscopy and Western blotting were used to evaluate changes in transcription factor and enzyme location. RESULTS Pre-conditioning of H400 cells with a sub-apoptotic concentration of curcumin (20 μM) attenuated secretion of Granulocyte-Macrophage - Colony-Stimulating Factor (GM-CSF) and reduced NFkB nuclear translocation. This pre-conditioning caused an increase in nuclear Nrf2; an initial drop (at 8 h) followed by an adaptive increase (at 24 h) in glutathione; and an increase in haem oxygenase (HO-1) expression. Inhibition of HO-1 by SnPPIX prevented the curcumin-induced attenuation of GM-CSF production. HO-1 catalyses the breakdown of haem to carbon monoxide, free iron and biliverdin: the HO-1/CO anti-inflammatory pathway. Elevations in carbon monoxide, achieved using carbon monoxide releasing molecule-2 (CORM2) treatment alone abrogated F. nucleatum-induced cytokine production. Biliverdin is converted to bilirubin by biliverdin reductase (BVR). This pleiotropic protein was found to increase in cell membrane expression upon curcumin treatment. CONCLUSION Curcumin decreased inflammatory cytokine production induced by Fusobacterium nucleatum in H400 oral epithelial cells. The mechanism of action appears to be driven by the increase of haem oxygenase and the production of carbon monoxide.
Collapse
Affiliation(s)
- Melissa M Grant
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences and National Institute of Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and Birmingham Dental Hospital, Birmingham, UK
| | | | - John B Matthews
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences and National Institute of Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and Birmingham Dental Hospital, Birmingham, UK
| | | | - Iain L C Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences and National Institute of Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and Birmingham Dental Hospital, Birmingham, UK
| |
Collapse
|
4
|
He YY, Zhou HF, Chen L, Wang YT, Xie WL, Xu ZZ, Xiong Y, Feng YQ, Liu GY, Li X, Liu J, Wu QP. The Fra-1: Novel role in regulating extensive immune cell states and affecting inflammatory diseases. Front Immunol 2022; 13:954744. [PMID: 36032067 PMCID: PMC9404335 DOI: 10.3389/fimmu.2022.954744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fra-1(Fos-related antigen1), a member of transcription factor activator protein (AP-1), plays an important role in cell proliferation, apoptosis, differentiation, inflammation, oncogenesis and tumor metastasis. Accumulating evidence suggest that the malignancy and invasive ability of tumors can be significantly changed by directly targeting Fra-1. Besides, the effects of Fra-1 are gradually revealed in immune and inflammatory settings, such as arthritis, pneumonia, psoriasis and cardiovascular disease. These regulatory mechanisms that orchestrate immune and non-immune cells underlie Fra-1 as a potential therapeutic target for a variety of human diseases. In this review, we focus on the current knowledge of Fra-1 in immune system, highlighting its unique importance in regulating tissue homeostasis. In addition, we also discuss the possible critical intervention strategy in diseases, which also outline future research and development avenues.
Collapse
|
5
|
Zeng F, He J, Jin X, Liao Q, Chen Z, Peng H, Zhou Y. FRA-1: A key factor regulating signal transduction of tumor cells and a potential target molecule for tumor therapy. Biomed Pharmacother 2022; 150:113037. [PMID: 35658206 DOI: 10.1016/j.biopha.2022.113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Fos-related antigen-1 (FRA-1) is a member of activator protein-1 (AP-1) transcription factor superfamily, and FRA-1 is highly expressed in colon cancer, breast cancer, gastric cancer, lung cancer, bladder cancer, and other tumors. The expression level of FRA-1 is closely related to the processes of tumor cell proliferation, apoptosis, transformation, migration, and invasion, which is a potential therapeutic target and prognostic factor for many tumors. Clarifying the detailed mechanism of action of FRA-1 could provide the theoretical basis for tumor diagnosis, treatment, and prognosis, and is of great significance for the study of tumor etiology and pathogenesis. In this paper, the expression levels and influencing factors of FRA-1 in various tumor tissues and cells are summarized, as well as the effect of FRA-1 expression level on the biological behavior of tumor cells and the signal transduction mechanism. At the same time, the signal transduction mechanism of FRA-1 in inflammation was expounded. In addition, the related metabolites, drugs and non-coding RNA that affect the expression and function of FRA-1 were summarized. Finally, it illustrates that FRA-1 may be taken as a key factor for tumor prognosis and a potential therapeutic target. This review provides a theoretical basis for the systematic understanding of the relationship between FRA-1 and tumors, its function, and possible mechanism.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Junyu He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Honghua Peng
- Department of The Oncology, Third Xianya Hospital, Xiangya School of Medicine, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
6
|
Cao S, Schnelzer A, Hannemann N, Schett G, Soulat D, Bozec A. The Transcription Factor FRA-1/AP-1 Controls Lipocalin-2 Expression and Inflammation in Sepsis Model. Front Immunol 2021; 12:701675. [PMID: 34712224 PMCID: PMC8546226 DOI: 10.3389/fimmu.2021.701675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening condition characterized by excessive inflammation in its early phase. This is followed by an aberrant resolution phase associated to a prolonged period of immune suppression that can ultimately lead to multiple organ dysfunctions. This immunosuppression can be mediated by the functional reprogramming of gene transcription in monocytes/macrophages in response to prolonged lipopolysaccharide (LPS) exposure. Surprisingly, there is no report on the role of AP-1 transcription factors in this reprogramming process. Herein, we used the endotoxin tolerance model on murine bone marrow-derived macrophages in which tolerant cells stimulated twice with LPS were compared to naïve cells stimulated once. Out of all AP-1 transcription factors tested, Fosl1 gene stood out because of its unique regulation in tolerized cells. Moreover, we could correlate FRA-1 expression to the expression of an essential anti-inflammatory molecule involved in sepsis response, Lipocalin 2 aka NGAL. Identical results were obtained in human PBMC following the endotoxin tolerance model. When using FRA-1 deficient macrophages, we could confirm that FRA-1 regulates NGAL expression during the tolerant state. Interestingly, ChIP-seq and ChIP-qPCR revealed the binding of FRA-1 on Lcn2 promoter after LPS stimulation in these cells. Finally, we used an in vivo septic model of consecutive injection of LPS, in which the second stimulation is performed before the resolution of inflammation, in wild type and FRA-1 deficient mice. NGAL secretion was elevated in lung, spleen and serum of wild type tolerant mice, whereas it was significantly lower in tolerant FRA-1 deficient mice. Moreover, an increased inflammatory state likely dependent of the low level of NGAL was observed in these FRA-1 deficient mice. This was characterized by an increase of neutrophil infiltration in lung and an increase of apoptotic follicular cells in spleen. This suggests that FRA-1 expression supports resolution of inflammation in this model. Collectively, our data indicate that FRA-1 is involved in myeloid cell tolerance responses by mediating the functional reprogramming of Lcn2 transcription in response to prolonged LPS exposure. In conclusion, FRA-1 may have a protective role in the tolerance response of sepsis through the regulation of NGAL, leading to resolution of inflammation.
Collapse
Affiliation(s)
- Shan Cao
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anne Schnelzer
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Hannemann
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM U1183, Montpellier, France
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Shetty A, Bhosale SD, Tripathi SK, Buchacher T, Biradar R, Rasool O, Moulder R, Galande S, Lahesmaa R. Interactome Networks of FOSL1 and FOSL2 in Human Th17 Cells. ACS OMEGA 2021; 6:24834-24847. [PMID: 34604665 PMCID: PMC8482465 DOI: 10.1021/acsomega.1c03681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Dysregulated function of Th17 cells has implications in immunodeficiencies and autoimmune disorders. Th17 cell differentiation is orchestrated by a complex network of transcription factors, including several members of the activator protein (AP-1) family. Among the latter, FOSL1 and FOSL2 modulate the effector functions of Th17 cells. However, the molecular mechanisms underlying these effects are unclear, owing to the poorly characterized protein interaction networks of FOSL factors. Here, we establish the first interactomes of FOSL1 and FOSL2 in human Th17 cells, using affinity purification-mass spectrometry analysis. In addition to the known JUN proteins, we identified several novel binding partners of FOSL1 and FOSL2. Gene ontology analysis found a significant fraction of these interactors to be associated with RNA-binding activity, which suggests new mechanistic links. Intriguingly, 29 proteins were found to share interactions with FOSL1 and FOSL2, and these included key regulators of Th17 fate. We further validated the binding partners identified in this study by using parallel reaction monitoring targeted mass spectrometry and other methods. Our study provides key insights into the interaction-based signaling mechanisms of FOSL proteins that potentially govern Th17 cell differentiation and associated pathologies.
Collapse
Affiliation(s)
- Ankitha Shetty
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku 20520, Finland
- InFLAMES
Research Flagship Center, University of
Turku, Turku 20520, Finland
- Centre
of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Santosh D. Bhosale
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku 20520, Finland
- Protein
Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Subhash Kumar Tripathi
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku 20520, Finland
| | - Tanja Buchacher
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku 20520, Finland
- InFLAMES
Research Flagship Center, University of
Turku, Turku 20520, Finland
| | - Rahul Biradar
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku 20520, Finland
- InFLAMES
Research Flagship Center, University of
Turku, Turku 20520, Finland
| | - Omid Rasool
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku 20520, Finland
- InFLAMES
Research Flagship Center, University of
Turku, Turku 20520, Finland
| | - Robert Moulder
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku 20520, Finland
- InFLAMES
Research Flagship Center, University of
Turku, Turku 20520, Finland
| | - Sanjeev Galande
- Centre
of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Riitta Lahesmaa
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, Turku 20520, Finland
- InFLAMES
Research Flagship Center, University of
Turku, Turku 20520, Finland
| |
Collapse
|
8
|
Williams LM, McCann FE, Cabrita MA, Layton T, Cribbs A, Knezevic B, Fang H, Knight J, Zhang M, Fischer R, Bonham S, Steenbeek LM, Yang N, Sood M, Bainbridge C, Warwick D, Harry L, Davidson D, Xie W, Sundstrӧm M, Feldmann M, Nanchahal J. Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proc Natl Acad Sci U S A 2020; 117:20753-20763. [PMID: 32759223 PMCID: PMC7456151 DOI: 10.1073/pnas.2004281117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibrotic diseases remain a major cause of morbidity and mortality, yet there are few effective therapies. The underlying pathology of all fibrotic conditions is the activity of myofibroblasts. Using cells from freshly excised disease tissue from patients with Dupuytren's disease (DD), a localized fibrotic disorder of the palm, we sought to identify new therapeutic targets for fibrotic disease. We hypothesized that the persistent activity of myofibroblasts in fibrotic diseases might involve epigenetic modifications. Using a validated genetics-led target prioritization algorithm (Pi) of genome wide association studies (GWAS) data and a broad screen of epigenetic inhibitors, we found that the acetyltransferase CREBBP/EP300 is a major regulator of contractility and extracellular matrix production via control of H3K27 acetylation at the profibrotic genes, ACTA2 and COL1A1 Genomic analysis revealed that EP300 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, and broad transcriptomic and proteomic profiling of CREBBP/EP300 inhibition by the chemical probe SGC-CBP30 identified collagen VI (Col VI) as a prominent downstream regulator of myofibroblast activity. Targeted Col VI knockdown results in significant decrease in profibrotic functions, including myofibroblast contractile force, extracellular matrix (ECM) production, chemotaxis, and wound healing. Further evidence for Col VI as a major determinant of fibrosis is its abundant expression within Dupuytren's nodules and also in the fibrotic foci of idiopathic pulmonary fibrosis (IPF). Thus, Col VI may represent a tractable therapeutic target across a range of fibrotic disorders.
Collapse
Affiliation(s)
- Lynn M Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Fiona E McCann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Marisa A Cabrita
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Adam Cribbs
- Botnar Research Centre, National Institute for Health Research Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Bogdan Knezevic
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Hai Fang
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Julian Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Mingjun Zhang
- Biotherapeutics Department, Celgene Corporation, San Diego, CA 92121
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Leenart M Steenbeek
- Department of Plastic Surgery, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Manu Sood
- Department of Plastic and Reconstructive Surgery, Broomfield Hospital, Mid and South Essex National Health Service Foundation Trust, Chelmsford CM1 4ET, Essex, United Kingdom
| | - Chris Bainbridge
- Pulvertaft Hand Surgery Centre, Royal Derby Hospital, University Hospitals of Derby and Burton National Health Service Foundation Trust, Derby DE22 3NE, United Kingdom
| | - David Warwick
- Department of Trauma and Orthopaedic Surgery, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Lorraine Harry
- Department of Plastic and Reconstructive Surgery, Queen Victoria Hospital National Health Service Foundation Trust, East Grinstead RH19 3DZ, United Kingdom
| | - Dominique Davidson
- Department of Plastic and Reconstructive Surgery, St. John's Hospital, Livingston, West Lothian EH54 6PP, United Kingdom
| | - Weilin Xie
- Biotherapeutics Department, Celgene Corporation, San Diego, CA 92121
| | - Michael Sundstrӧm
- Structural Genomics Consortium, Karolinska Centre for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7FY, United Kingdom;
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7FY, United Kingdom;
| |
Collapse
|
9
|
de Marcken M, Dhaliwal K, Danielsen AC, Gautron AS, Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci Signal 2019; 12:12/605/eaaw1347. [DOI: 10.1126/scisignal.aaw1347] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human blood CD14+monocytes are bone marrow–derived white blood cells that sense and respond to pathogens. Although innate immune activation by RNA viruses preferentially occurs through intracellular RIG-I–like receptors, other nucleic acid recognition receptors, such as Toll-like receptors (TLRs), play a role in finely programming the final outcome of virus infection. Here, we dissected how human monocytes respond to infection with either Coxsackie (CV), encephalomyocarditis (EMCV), influenza A (IAV), measles (MV), Sendai (SV), or vesicular stomatitis (VSV) virus. We found that in monocytes, type I interferon (IFN) and cytokine responses to infection were RNA virus specific and differentially involved TLR7 and TLR8, which sense single-stranded RNA. These TLRs activated distinct signaling cascades in monocytes, which correlated with differences in the production of cytokines involved in the polarization of CD4+T helper cells. Furthermore, we found that TLR7 signaling specifically increased expression of the transcription factor FOSL1, which reduced IL-27 and TNFα production by monocytes. TLR7, but not TLR8, activation of monocytes also stimulated Ca2+flux that prevented type I IFN responses. Our work demonstrates that in human monocytes, TLR7 and TLR8 triggered different signaling pathways that contribute to distinct phenotypes during RNA virus infection. In addition, we defined individual targets within these pathways that promoted specific T helper and antiviral responses.
Collapse
Affiliation(s)
- Marine de Marcken
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Khushwant Dhaliwal
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
10
|
Bhattarai G, Kook SH, Kim JH, Poudel SB, Lim SS, Seo YK, Lee JC. COMP-Ang1 prevents periodontitic damages and enhances mandible bone growth in an experimental animal model. Bone 2016; 92:168-179. [PMID: 27612438 DOI: 10.1016/j.bone.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent enhancing tissue regeneration with increased angiogenesis. However, the effect of COMP-Ang1 on periodontitic tissue damages and the related mechanisms are not yet investigated. We initially explored whether a local delivery of COMP-Ang1 protects lipopolysaccharide (LPS)/ligature-induced periodontal destruction in rats. As the results, μCT and histological analyses revealed that COMP-Ang1 inhibits LPS-mediated degradation of periodontium. COMP-Ang1 also suppressed osteoclast number and the expression of osteoclast-specific and inflammation-related molecules in the inflamed region of periodontitis rats. Implanting a COMP-Ang1-impregnated scaffold into critical-sized mandible bone defects enhanced the amount of bone in the defects with increased expression of bone-specific markers. The addition of COMP-Ang1 prevented significantly osteoclast differentiation and activation in LPS-stimulated RAW264.7 macrophages and inhibited the phosphorylation of c-Jun, mitogen-activated protein kinases, and cAMP response element-binding protein in the cells. On contrary, COMP-Ang1 increased the level of phosphatidylinositol 3-kinase (PI3K) in LPS-exposed macrophages and a pharmacological PI3K inhibitor diminished the anti-osteoclastogenic effect of COMP-Ang1. Similarly, COMP-Ang1 blocked the expression of inflammation-related molecules in LPS-stimulated human periodontal ligament fibroblasts (hPLFs). Further, the COMP-Ang1 enhanced differentiation of hPLFs into osteoblasts by stimulating the expression of bone-specific markers, Tie2, and activator protein-1 subfamily. Collectively, our findings may support the therapeutic potentials of COMP-Ang1 in preventing inflammatory periodontal damages and in stimulating new bone growth.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea
| | - Jae-Hwan Kim
- Chonnam National University Dental Hospital, Kwangju 61186, South Korea
| | - Sher Bahadur Poudel
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Shin-Saeng Lim
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Young-Kwon Seo
- Research Institute of Biotechnology, Dongguk University, Seoul 04620, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
11
|
Schwabe K, Garcia M, Ubieta K, Hannemann N, Herbort B, Luther J, Noël D, Jorgensen C, Casteilla L, David JP, Stock M, Herrmann M, Schett G, Bozec A. Inhibition of Osteoarthritis by Adipose-Derived Stromal Cells Overexpressing Fra-1 in Mice. Arthritis Rheumatol 2015; 68:138-51. [DOI: 10.1002/art.39425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/01/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Kay Schwabe
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | - Kenia Ubieta
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | - Julia Luther
- University of Erlangen-Nuremberg, Erlangen, Germany, and University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Daniele Noël
- INSERM U844, Hôpital Saint-Eloi; Montpellier France
| | | | - Louis Casteilla
- INSERM U1031, STROMALab, Universite Paul Sabatier, CNRS-EFS-UMR5273; Toulouse France
| | - Jean-Pierre David
- University of Erlangen-Nuremberg, Erlangen, Germany, and University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | | | | | - Georg Schett
- University of Erlangen-Nuremberg; Erlangen Germany
| | - Aline Bozec
- University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
12
|
Rajasekaran S, Tamatam CR, Potteti HR, Raman V, Lee JW, Matthay MA, Mehta D, Reddy NM, Reddy SP. Visualization of Fra-1/AP-1 activation during LPS-induced inflammatory lung injury using fluorescence optical imaging. Am J Physiol Lung Cell Mol Physiol 2015; 309:L414-24. [PMID: 26071555 DOI: 10.1152/ajplung.00315.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/08/2015] [Indexed: 01/11/2023] Open
Abstract
Inappropriate lung inflammatory response following oxidant and toxicant exposure can lead to abnormal repair and disease pathogenesis, including fibrosis. Thus early detection of molecular and cellular processes and mediators promoting lung inflammation is necessary to develop better strategies for therapeutic intervention and disease management. Previously, we have shown that transcription factor Fra-1/AP-1 plays key roles in lung inflammatory response, as Fra-1-null mice are less susceptible than wild-type mice to LPS-induced lung injury and mortality. Herein, we developed a transgenic reporter mouse model expressing tdTomato under the control of FRA-1 (human) promoter (referred to as FRA-1(TdTg) mice) to monitor its activation during inflammatory lung injury using fluorescence protein-based optical imaging and molecular analysis in vivo and ex vivo. A higher red fluorescent signal was observed in the lungs of LPS-treated FRA-1(TdTg) mice compared with vehicle controls, and Western blot and qRT-PCR analyses revealed a significant correlation with the FRA-1-tdTomato reporter expression. Immunocolocalization demonstrated expression of FRA-1-tdTomato largely in lung alveolar macrophages and to some extent in epithelial cells. Moreover, we validated these results with a second reporter mouse model that expressed green fluorescent protein upon activation of endogenous Fra-1 promoter. Additionally, we demonstrated increased expression of FRA-1 in alveolar macrophages in human lung instilled with Escherichia coli ex vivo. Collectively, our data obtained from two independent reporter mouse models and from human samples underscore the significance of Fra-1 activation in alveolar macrophages during inflammatory lung injury and may aid in developing strategies to target this transcription factor in lung injury and repair.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Chandramohan R Tamatam
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Haranatha R Potteti
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Venu Raman
- Division of Cancer Imaging Research, Department of Radiology and Radiological Sciences, The Johns Hopkins University, Baltimore, Maryland
| | - Jae-Woo Lee
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Dolly Mehta
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Narsa M Reddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Sekhar P Reddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Witham J, Ouboussad L, Lefevre PF. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages. PLoS One 2013; 8:e59389. [PMID: 23533622 PMCID: PMC3606415 DOI: 10.1371/journal.pone.0059389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3′ end of the gene.
Collapse
Affiliation(s)
- James Witham
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
| | - Lylia Ouboussad
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
| | - Pascal F. Lefevre
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Vaz M, Reddy NM, Rajasekaran S, Reddy SP. Genetic disruption of Fra-1 decreases susceptibility to endotoxin-induced acute lung injury and mortality in mice. Am J Respir Cell Mol Biol 2012; 46:55-62. [PMID: 21816965 DOI: 10.1165/rcmb.2011-0169oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activator protein-1 (AP-1) transcription factor, comprising Jun and Fos family proteins, distinctly regulates various cellular processes, including those involved in inflammation. FOS like antigen 1 (Fra-1), a member of the Fos family, dimerizes with members of the Jun family and regulates gene expression in a context-dependent manner. Although respiratory toxicants are known to stimulate the expression of Fra-1 in the lung, whether Fra-1 promotes or decreases susceptibility to the development and progression of toxicant-induced lung disease in vivo is not well established. To determine the role of Fra-1 in LPS-induced acute lung injury and mortality, we administered LPS either intraperitoneally or intratracheally to Fra-1-sufficient (Fra-11(+/+)) and Fra-1-deficient (Fra-1(Δ/Δ)) mice. LPS-induced mortality, lung injury, inflammation, cytokine measurements, and AP-1 and NF-κB activities were then assessed in these mice. Fra-1(Δ/Δ) mice showed a greater resistance to LPS-induced mortality than did their Fra-1(+/+) counterparts. Consistent with this result, LPS-induced lung injury and inflammatory responses were markedly lower in Fra-1(Δ/Δ) mice than in Fra-1(+/+) mice. Compared with Fra-1(+/+) mice, Fra-1(Δ/Δ) mice showed a reduced influx of neutrophils into the lungs, accompanied by a decreased expression of proinflammatory cytokines in response to treatment with LPS. The decreased inflammatory responses in Fra-1(Δ/Δ) mice coincided with diminished and increased levels of NF-κB and c-Jun/AP-1 binding, respectively. These results demonstrate that Fra-1/AP-1 plays a key role in promoting LPS-induced injury and mortality in mice, and they suggest that targeting (i.e., inhibiting) this transcription factor may be a useful approach to dampening the adverse effects of exposure to endotoxins.
Collapse
Affiliation(s)
- Michelle Vaz
- Department of Pediatrics, University of Illinois at Chicago, 60612, USA
| | | | | | | |
Collapse
|
15
|
Interstitial lung disease induced by gefitinib and Toll-like receptor ligands is mediated by Fra-1. Oncogene 2011; 30:3821-32. [DOI: 10.1038/onc.2011.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Takada Y, Ray N, Ikeda E, Kawaguchi T, Kuwahara M, Wagner EF, Matsuo K. Fos proteins suppress dextran sulfate sodium-induced colitis through inhibition of NF-kappaB. THE JOURNAL OF IMMUNOLOGY 2009; 184:1014-21. [PMID: 20018614 DOI: 10.4049/jimmunol.0901196] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Fos family proteins, c-Fos and Fra-1, are components of the dimeric transcription factor AP-1, which is typically composed of Fos and Jun family proteins. We have previously shown that mice lacking c-Fos (Fos(-/-) mice) respond more strongly to LPS injection than do wild-type (wt) controls. We then examined the sensitivity of Fos(-/-) mice to acute inflammatory stress in a dextran sulfate sodium (DSS)-induced colitis model. We found that Fos(-/-) mice exhibited more severe weight loss, bleeding, diarrhea, and colon shortening than did wt mice, in association with higher TNF-alpha production and NF-kappaB activity in colon segments of DSS-treated Fos(-/-) mice. Furthermore, NF-kappaB inhibition suppressed severe DSS-induced colitis in Fos(-/-) mice. In contrast, Fra-1 transgenic (Tg) mice responded poorly to LPS injection, and Fra-1-overexpressing macrophages and fibroblasts showed reduced production of proinflammatory cytokines, NO, and NF-kappaB activity. Remarkably, in the DSS-induced colitis model, Fra-1 Tg mice showed less severe clinical scores of colitis than did wt mice. Consistently, proinflammatory cytokine production and NF-kappaB activity in colon segments of DSS-treated Fra-1 Tg mice were lower than in wt controls. These findings reveal that the absence of c-Fos and overexpression of Fra-1 respectively enhance and suppress the activation of NF-kappaB in DSS-induced inflammatory stress. In this paper, we propose that AP-1 transcription factors containing c-Fos or Fra-1 are negative regulators of NF-kappaB-mediated stress responses.
Collapse
Affiliation(s)
- Yasunari Takada
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|