1
|
Laird MF, Ross CF, Kang V, Konow N. Introduction: food processing and nutritional assimilation in animals. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220559. [PMID: 37839455 PMCID: PMC10577032 DOI: 10.1098/rstb.2022.0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
How animals process and absorb nutrients from their food is a fundamental question in biology. Despite the continuity and interaction between intraoral food processing and post-oesophageal nutritional extraction, these topics have largely been studied separately. At present, we lack a synthesis of how pre- and post-oesophageal mechanisms of food processing shape the ability of various taxa to effectively assimilate nutrients from their diet. The aim of this special issue is to catalyse a unification of these distinct approaches as a functional continuum. We highlight questions that derive from this synthesis, as well as technical advances to address these questions. At present, there is also a skew toward vertebrates in studies of feeding form-function mechanics; by including perspectives from researchers working on both vertebrates and invertebrates, we hope to stimulate integrative and comparative research on food processing and nutritional assimilation. Below, we discuss how the papers in this issue contribute to these goals in three areas: championing a functional-comparative approach, quantifying performance and emphasizing the effects of life history, and food substrate and extrinsic factors in current and future studies of oral food processing and nutritional assimilation. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Myra F. Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104-6243, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|
2
|
van der Geest N, Garcia L, Nates R, Godoy DA. New insight into the swimming kinematics of wild Green sea turtles (Chelonia mydas). Sci Rep 2022; 12:18151. [PMID: 36316441 PMCID: PMC9622894 DOI: 10.1038/s41598-022-21459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/27/2022] [Indexed: 12/31/2022] Open
Abstract
Biomechanically, sea turtles could be perceived as birds of the ocean as they glide and flap their forelimbs to produce the necessary forces required for locomotion, making sea turtles an interesting animal to study. However, being an endangered species makes studying the sea turtle's biomechanics a complex problem to solve, both technically and ethically, without causing disturbance. This work develops a novel, non-invasive procedure to develop full three-dimensional kinematics for wild sea turtles by filming the animals in Australia's Great Barrier Reef using underwater drones without disturbing them. We found that the wild animals had very different swimming patterns than previous studies on juveniles in captivity. Our findings show that the flipper goes through a closed-loop trajectory with extended sweeping of the flipper tip towards the centre of the carapace to create a clapping motion. We have named this the "sweep stroke" and in contrast to previously described four-stage models, it creates a five-stage cycle swimming locomotion model. The model presented here could lead to a better comprehension of the sea turtle propulsion methods and their fluid-structure interaction.
Collapse
Affiliation(s)
- Nick van der Geest
- BioDesign Lab, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Lorenzo Garcia
- BioDesign Lab, Auckland University of Technology, Auckland, 1010, New Zealand.
| | - Roy Nates
- BioDesign Lab, Auckland University of Technology, Auckland, 1010, New Zealand
| | | |
Collapse
|
3
|
Evans KM, Buser TJ, Larouche O, Kolmann MA. Untangling the relationship between developmental and evolutionary integration. Semin Cell Dev Biol 2022; 145:22-27. [PMID: 35659472 DOI: 10.1016/j.semcdb.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022]
Abstract
Patterns of integration and modularity among organismal traits are prevalent across the tree of life, and at multiple scales of biological organization. Over the past several decades, researchers have studied these patterns at the developmental, and evolutionary levels. While their work has identified the potential drivers of these patterns at different scales, there appears to be a lack of consensus on the relationship between developmental and evolutionary integration. Here, we review and summarize key studies and build a framework to describe the conceptual relationship between these patterns across organismal scales and illustrate how, and why some of these studies may have yielded seemingly conflicting outcomes. We find that among studies that analyze patterns of integration and modularity using morphological data, the lack of consensus may stem in part from the difficulty of fully disentangling the developmental and functional causes of integration. Nonetheless, in some empirical systems, patterns of evolutionary modularity have been found to coincide with expectations based on developmental processes, suggesting that in some circumstances, developmental modularity may translate to evolutionary modularity. We also advance an extension to Hallgrímsson et al.'s palimpsest model to describe how patterns of trait modularity may shift across different evolutionary scales. Finally, we also propose some directions for future research which will hopefully be useful for investigators interested in these issues.
Collapse
Affiliation(s)
- Kory M Evans
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA.
| | - Thaddaeus J Buser
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| | - Olivier Larouche
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| | - Matthew A Kolmann
- Rice University, Biosciences Department, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
4
|
Muruga P, Bellwood DR, Mihalitsis M. Forensic odontology: Assessing bite wounds to determine the role of teeth in piscivorous fishes. Integr Org Biol 2022; 4:obac011. [PMID: 35505796 PMCID: PMC9053946 DOI: 10.1093/iob/obac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Teeth facilitate the acquisition and processing of food in most vertebrates. However, relatively little is known about the functions of the diverse tooth morphologies observed in fishes. Piscivorous fishes (fish-eating fish) are crucial in shaping community structure and rely on their oral teeth to capture and/or process prey. However, how teeth are utilized in capturing and/or processing prey remains unclear. Most studies have determined the function of teeth by assessing morphological traits. The behavior during feeding, however, is seldom quantified. Here, we describe the function of teeth within piscivorous fishes by considering how morphological and behavioral traits interact during prey capture and processing. This was achieved through aquarium-based performance experiments, where prey fish were fed to 12 species of piscivorous fishes. Building on techniques in forensic odontology, we incorporate a novel approach to quantify and categorize bite damage on prey fish that were extracted from the piscivore’s stomachs immediately after being ingested. We then assess the significance of morphological and behavioral traits in determining the extent and severity of damage inflicted on prey fish. Results show that engulfing piscivores capture their prey whole and head-first. Grabbing piscivores capture prey tail-first using their teeth, process them using multiple headshakes and bites, before spitting them out, and then re-capturing prey head-first for ingestion. Prey from engulfers sustained minimal damage, whereas prey from grabbers sustained significant damage to the epaxial musculature. Within grabbers, headshakes were significantly associated with more severe damage categories. Headshaking behavior damages the locomotive muscles of prey, presumably to prevent escape. Compared to non-pharyngognaths, pharyngognath piscivores inflict significantly greater damage to prey. Overall, when present, oral jaw teeth appear to be crucial for both prey capture and processing (immobilization) in piscivorous fishes.
Collapse
Affiliation(s)
- Pooventhran Muruga
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
5
|
Provini P, Brunet A, Filippo A, Van Wassenbergh S. In vivo intraoral waterflow quantification reveals hidden mechanisms of suction feeding in fish. eLife 2022; 11:73621. [PMID: 35192455 PMCID: PMC8906803 DOI: 10.7554/elife.73621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all fishes rely on flows of water to transport food to the back of their pharynx. While external flows that draw food into the mouth are well described, how intra-oral water flows manage to deposit food at the esophagus entrance remains unknown. In theory, the posteriorly moving water must, at some point, curve laterally and/or ventrally to exit through the gill slits. Such flows would eventually carry food away from the esophagus instead of toward it. This apparent paradox calls for a filtration mechanism to deviate food from the suction-feeding streamlines. To study this gap in our fundamental understanding of how fishes feed, we developed and applied a new technique to quantify three-dimensional patterns of intra-oral water flows in vivo. We combined stereoscopic high-speed x-ray videos to quantify skeletal motion (XROMM) with 3D x-ray particle tracking (XPT) of neutrally buoyant spheres of 1.4 mm in diameter. We show, for carp (Cyprinus carpio) and tilapia (Oreochromis niloticus), that water tracers displayed higher curvatures than food tracers, indicating an inertia-driven filtration. In addition, tilapia also exhibited a 'central jet' flow pattern, which aids in quickly carrying food to the pharyngeal jaw region. When the food was trapped at the branchial basket, it was resuspended and carried more centrally by periodical bidirectional waterflows, synchronized with head-bone motions. By providing a complete picture of the suction-feeding process and revealing fundamental differences in food transport mechanisms among species, this novel technique opens a new area of investigation to fully understand how most aquatic vertebrates feed.
Collapse
Affiliation(s)
- Pauline Provini
- Département Adaptations du Vivant, UMR 7179 CNRS, MNHN, Paris, France
| | - Alexandre Brunet
- Département Adaptations du Vivant, UMR 7179 CNRS, MNHN, Paris, France
| | - Andréa Filippo
- Département Adaptations du Vivant, UMR 7179 CNRS, MNHN, Paris, France
| | | |
Collapse
|
6
|
Mihalitsis M, Bellwood DR. Functional groups in piscivorous fishes. Ecol Evol 2021; 11:12765-12778. [PMID: 34594537 PMCID: PMC8462170 DOI: 10.1002/ece3.8020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Piscivory is a key ecological function in aquatic ecosystems, mediating energy flow within trophic networks. However, our understanding of the nature of piscivory is limited; we currently lack an empirical assessment of the dynamics of prey capture and how this differs between piscivores. We therefore conducted aquarium-based performance experiments, to test the feeding abilities of 19 piscivorous fish species. We quantified their feeding morphology, striking, capturing, and processing behavior. We identify two major functional groups: grabbers and engulfers. Grabbers are characterized by horizontal, long-distance strikes, capturing their prey tailfirst and subsequently processing their prey using their oral jaw teeth. Engulfers strike from short distances, from high angles above or below their prey, engulfing their prey and swallowing their prey whole. Based on a meta-analysis of 2,209 published in situ predator-prey relationships in marine and freshwater aquatic environments, we show resource partitioning between grabbers and engulfers. Our results provide a functional classification for piscivorous fishes delineating patterns, which transcend habitats, that may help explain size structures in fish communities.
Collapse
Affiliation(s)
- Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQldAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Australian Research CouncilCentre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQldAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Australian Research CouncilCentre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| |
Collapse
|
7
|
Li S, Wang F. Vertebrate Evolution Conserves Hindbrain Circuits despite Diverse Feeding and Breathing Modes. eNeuro 2021; 8:ENEURO.0435-20.2021. [PMID: 33707205 PMCID: PMC8174041 DOI: 10.1523/eneuro.0435-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Feeding and breathing are two functions vital to the survival of all vertebrate species. Throughout the evolution, vertebrates living in different environments have evolved drastically different modes of feeding and breathing through using diversified orofacial and pharyngeal (oropharyngeal) muscles. The oropharyngeal structures are controlled by hindbrain neural circuits. The developing hindbrain shares strikingly conserved organizations and gene expression patterns across vertebrates, thus begs the question of how a highly conserved hindbrain generates circuits subserving diverse feeding/breathing patterns. In this review, we summarize major modes of feeding and breathing and principles underlying their coordination in many vertebrate species. We provide a hypothesis for the existence of a common hindbrain circuit at the phylotypic embryonic stage controlling oropharyngeal movements that is shared across vertebrate species; and reconfiguration and repurposing of this conserved circuit give rise to more complex behaviors in adult higher vertebrates.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurobiology, Duke University, Durham, NC 27710
| | - Fan Wang
- Department of Neurobiology, Duke University, Durham, NC 27710
| |
Collapse
|
8
|
Abstract
X-Ray Reconstruction of Moving Morphology (XROMM), though traditionally used for studies of in vivo skeletal kinematics, can also be used to precisely and accurately measure ex vivo range of motion from cadaveric manipulations. The workflow for these studies is holistically similar to the in vivo XROMM workflow but presents several unique challenges. This paper aims to serve as a practical guide by walking through each step of the ex vivo XROMM process: how to acquire and prepare cadaveric specimens, how to manipulate specimens to collect X-ray data, and how to use these data to compute joint rotational mobility. Along the way, it offers recommendations for best practices and for avoiding common pitfalls to ensure a successful study.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|