1
|
Prazdnikov DV. Chromosome complements of Channalucius and C.striata from Phu Quoc Island and karyotypic evolution in snakehead fishes (Actinopterygii, Channidae). COMPARATIVE CYTOGENETICS 2023; 17:1-12. [PMID: 36761446 PMCID: PMC9836404 DOI: 10.3897/compcytogen.v17.i1.94943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Snakehead fishes of the family Channidae are obligatory air-breathers freshwater predators, the vast majority of which belong to the genus Channa Scopoli, 1777. Channa species are characterized by high karyotypic diversity due to various types of chromosomal rearrangements. It is assumed that, in addition to the lifestyle, fragmentation and isolation of snakehead populations contribute to an increase in karyotypic diversity. However, the chromosome complements of many isolated populations of widespread Channa species remain unknown, and the direction of karyotype transformations is poorly understood. This paper describes the previously unstudied karyotypes of Channalucius (Cuvier, 1831) and C.striata (Bloch, 1793) from Phu Quoc Island and analyzes the trends of karyotypic evolution in the genus Channa. In C.lucius, the karyotypes are differed in the number of chromosome arms (2n = 48, NF = 50 and 51), while in C.striata, the karyotypes are differed in the diploid chromosome number (2n = 44 and 43, NF = 48). A comparative cytogenetic analysis showed that the main trend of karyotypic evolution of Channa species is associated with a decrease in the number of chromosomes and an increase in the number of chromosome arms, mainly due to fusions and pericentric inversions. The data obtained support the assumption that fragmentation and isolation of populations, especially of continental islands, contribute to the karyotypic diversification of snakeheads and are of interest for further cytogenetic studies of Channidae.
Collapse
Affiliation(s)
- Denis V Prazdnikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Moscow Russia
| |
Collapse
|
2
|
KUZNETSOV AN. How big can a walking fish be? A theoretical inference based on observations on four land-dwelling fish genera of South Vietnam. Integr Zool 2022; 17:849-878. [PMID: 34599557 PMCID: PMC9786276 DOI: 10.1111/1749-4877.12599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Comparative study of terrestrial locomotion of 4 fish genera including Anabas, Channa, Clarias, and Monopterus, was performed in experimental setting with the substrate surface of wet clay. No special adaptations for terrestrial locomotion were found. Every fish uses for propulsion on land what it already has. Eel-shaped Monopterus crawls by body undulations in a serpentine or sidewinding technique, the latter of which was not previously observed beyond snakes. The other 3 fish genera walk by body oscillations using stiff appendages as propulsors. When they are located anteriorly, as the serrate operculum in Anabas and the preaxial spine of the pectoral fin in Clarias, the propulsion is termed prolocomotor, when posteriorly, as the spiny anal fin in Channa-metalocomotor. Channa is the heaviest fish walking out of water in our days, quite comparable in size with first Devonian tetrapods Acanthostega and Tulerpeton. A theoretical calculation is suggested for the upper size limit of a fish capable of terrestrial walking without special locomotor adaptations. It should be roughly 20 cm in the vertical dimension of the trunk, which is just a little above the known size of Devonian tetrapodomorph fishes Panderichthys and Elpistostege. The metalocomotor walking technique of Channa is suggested as the closest extant model for terrestrial locomotion at the fish-tetrapod transition. The major difference is that the metalocomotor propulsor in Channa is represented by the anal fin, while in tetrapodomorphs by the pelvic fins. The sprawled pelvic fins were advantageous in respect of reduced requirement for side-to-side tail swinging.
Collapse
|
3
|
Naylor ER, Kawano SM. Mudskippers modulate their locomotor kinematics when moving on deformable and inclined substrates. Integr Comp Biol 2022; 62:icac084. [PMID: 35679069 DOI: 10.1093/icb/icac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many ecological factors influence animal movement, including properties of the media that they move on or through. Animals moving in terrestrial environments encounter conditions that can be challenging for generating propulsion and maintaining stability, such as inclines and deformable substrates that can cause slipping and sinking. In response, tetrapods tend to adopt a more crouched posture and lower their center of mass on inclines and increase the surface area of contact on deformable substrates, such as sand. Many amphibious fishes encounter the same challenges when moving on land, but how these finned animals modulate their locomotion with respect to different environmental conditions and how these modifications compare with those seen within tetrapods is relatively understudied. Mudskippers (Gobiidae: Oxudercinae) are a particularly noteworthy group of amphibious fishes in this context given that they navigate a wide range of environmental conditions, from flat mud to inclined mangrove trees. They use a unique form of terrestrial locomotion called 'crutching', where their pectoral fins synchronously lift and vault the front half of the body forward before landing on their pelvic fins while the lower half of the body and tail are kept straight. However, recent work has shown that mudskippers modify some aspects of their locomotion when crutching on deformable surfaces, particularly those at an incline. For example, on inclined dry sand, mudskippers bent their bodies laterally and curled and extended their tails to potentially act as a secondary propulsor and/or anti-slip device. In order to gain a more comprehensive understanding of the functional diversity and context-dependency of mudskipper crutching, we compared their kinematics on different combinations of substrate types (solid, mud, dry sand) and inclines (0°, 10°, 20°). In addition to increasing lateral bending on deformable and inclined substrates, we found that mudskippers increased the relative contact time and contact area of their paired fins while becoming more crouched, responses comparable to those seen in tetrapods and other amphibious fishes. Mudskippers on these substrates also exhibited previously undocumented behaviors, such as extending and adpressing the distal portions of their pectoral fins more anteriorly, dorsoventrally bending their trunk, "belly-flopping" on sand, and "gripping" the mud substrate with their pectoral fin rays. Our study highlights potential compensatory mechanisms shared among vertebrates in terrestrial environments while also illustrating that locomotor flexibility and even novelty can emerge when animals are challenged with environmental variation.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| |
Collapse
|
4
|
Bressman NR. Terrestrial capabilities of invasive fishes and their management implications. Integr Comp Biol 2022; 62:icac023. [PMID: 35511196 DOI: 10.1093/icb/icac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amphibious fishes have many adaptations that make them successful in a wide variety of conditions, including air-breathing, terrestrial locomotor capabilities, and extreme tolerance of poor water quality. However, the traits that make them highly adaptable may allow these fishes to successfully establish themselves outside of their native regions. In particular, the terrestrial capabilities of invasive amphibious fishes allow them to disperse overland, unlike fully aquatic invasive fishes, making their management more complicated. Despite numerous amphibious fish introductions around the world, ecological risk assessments and management plans often fail to adequately account for their terrestrial behaviors. In this review, I discuss the diversity of invasive amphibious fishes and what we currently know about why they emerge onto land, how they move around terrestrial environments, and how they orient while on land. In doing so, I use case studies of the performance and motivations of nonnative amphibious fishes in terrestrial environments to propose management solutions that factor in their complete natural history. Because of their terrestrial capabilities, we may need to manage amphibious fishes more like amphibians than fully aquatic fishes, but to do so, we need to learn more about how these species perform in a wide range of terrestrial environments and conditions.
Collapse
Affiliation(s)
- Noah R Bressman
- Salisbury University, Department of Biology, 1101 Camden Avenue, Salisbury, Maryland, USA, 21801
| |
Collapse
|
5
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
6
|
Turko AJ, Rossi GS, Wright PA. More than Breathing Air: Evolutionary Drivers and Physiological Implications of an Amphibious Lifestyle in Fishes. Physiology (Bethesda) 2021; 36:307-314. [PMID: 34431416 DOI: 10.1152/physiol.00012.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amphibious and aquatic air-breathing fishes both exchange respiratory gasses with the atmosphere, but these fishes differ in physiology, ecology, and possibly evolutionary origins. We introduce a scoring system to characterize interspecific variation in amphibiousness and use this system to highlight important unanswered questions about the evolutionary physiology of amphibious fishes.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Bressman NR, Morrison CH, Ashley-Ross MA. Reffling: A Novel Locomotor Behavior Used by Neotropical Armored Catfishes (Loricariidae) in Terrestrial Environments. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/i2020084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mehta RS, Donohoe KR. Snowflake morays, Echidna nebulosa, exhibit similar feeding kinematics in terrestrial and aquatic treatments. J Exp Biol 2021; 224:269098. [PMID: 34109983 PMCID: PMC8214832 DOI: 10.1242/jeb.234047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Some species of durophagous moray eels (Muraenidae) have been documented emerging from the marine environment to capture intertidal crabs but how they consume prey out of water is unknown. Here, we trained snowflake morays, Echidna nebulosa, to undulate out of the aquatic environment to feed on land. On land, snowflake morays remove prey from the substrate by biting and swallow prey using pharyngeal jaw enabled transport. Although snowflake morays exhibit smaller jaw rotation angles on land when apprehending their prey, transport kinematics involving dorsoventral flexion of the head to protract the pharyngeal jaws and overall feeding times did not differ between terrestrial and aquatic treatments. We suggest that their elongate body plan, ability to rotate their heads in the dorsoventral and lateral directions, and extreme pharyngeal movements all contribute to the ability of durophagous morays to feed in the terrestrial environment. Summary: Body elongation and pharyngeal transport facilitates prey capture and swallowing on land for the snowflake moray, Echidna nebulosa.
Collapse
Affiliation(s)
- Rita S Mehta
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95064, USA
| | - Kyle R Donohoe
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95064, USA
| |
Collapse
|
9
|
Tunnah L, Robertson CE, Turko AJ, Wright PA. Acclimation to prolonged aquatic hypercarbia or air enhances hemoglobin‑oxygen affinity in an amphibious fish. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110848. [PMID: 33217558 DOI: 10.1016/j.cbpa.2020.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
When the amphibious mangrove rivulus (Kryptolebias marmoratus) leaves water for extended periods, hemoglobin-O2 binding affinity increases. We tested the hypothesis that the change in affinity was a consequence of hemoglobin isoform switching driven by exposure to environments associated with increased internal CO2 levels. We exposed K. marmoratus to either water (control, pH 8.1), air, aquatic hypercarbia (5.1 kPa CO2, pH 6.6-6.8), or aquatic acid (isocarbic control, pH 6.6-6.8), for 7 days, and measured hemoglobin-O2 affinity spectrophotometrically. We found that mangrove rivulus compensated for elevated CO2 and aquatic acid exposure by shifting hemoglobin-O2 affinity back to aquatic (control) levels when measured at an ecologically-relevant high CO2 level that would be experienced in vivo. Using proteomics, we found that the hemoglobin subunits present in the blood did not change between treatments, but air and aquatic acid exposure altered the abundance of cathodic hemoglobin subunits. We therefore conclude that hemoglobin isoform switching is not a primary strategy used by mangrove rivulus to adjust P50 under these conditions. Abundances of other RBC proteins also differed between treatment groups relative to control fish (e.g. Rhesus protein type A, band 3 anion exchanger). Overall, our data indicate that both aquatic hypercarbia and aquatic acidosis create similar changes in hemoglobin-O2 affinity as air exposure. However, the protein-level consequences differ between these groups, indicating that the red blood cell response of mangrove rivulus can be modulated depending on the environmental cue received.
Collapse
Affiliation(s)
- Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Cayleih E Robertson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
10
|
Bressman NR, Hill JE, Ashley-Ross MA. Why did the invasive walking catfish cross the road? Terrestrial chemoreception described for the first time in a fish. JOURNAL OF FISH BIOLOGY 2020; 97:895-907. [PMID: 32754931 DOI: 10.1111/jfb.14465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Clarias batrachus (walking catfish) is an invasive species in Florida, renowned for its air-breathing and terrestrial locomotor capabilities. However, it is unknown how this species orients in terrestrial environments. Furthermore, while anecdotal life history information is widespread for this species in its nonnative range, little of this information exists in the literature. The goals of this study were to identify sensory modalities that C. batrachus use to orient on land, and to describe the natural history of this species in its nonnative range. Fish (n = 150) were collected from around Ruskin, FL, and housed in a greenhouse, where experiments took place. Individual catfish were placed in the center of a terrestrial arena and were exposed to nine treatments: two controls, L-alanine, quinine, allyl isothiocynate, sucrose, volatile hydrogen sulphide, pond water and aluminium foil. These fish exhibited significantly positive chemotaxis toward alanine and pond water, and negative chemotaxis away from volatile hydrogen sulphide, suggesting chemoreception - both through direct contact and through the air - is important to their terrestrial orientation. Additionally, 88 people from Florida wildlife-related Facebook groups who have personal observations of C. batrachus on land were interviewed for information regarding their terrestrial natural history. These data were combined with observations from 38 YouTube videos. C. batrachus appear to emerge most frequently during or just after heavy summer rains, particularly from stormwater drains in urban areas, where they may feed on terrestrial invertebrates. By better understanding the full life history of C. batrachus, we can improve management of this species.
Collapse
Affiliation(s)
- Noah R Bressman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jeffrey E Hill
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Miriam A Ashley-Ross
- School of Forest Resources and Conservation, Tropical Aquaculture Laboratory, University of Florida, Ruskin, Florida, USA
| |
Collapse
|