1
|
Oliva A, Cogliati Dezza F, Cancelli F, Curtolo A, Falletta A, Volpicelli L, Venditti M. New Antimicrobials and New Therapy Strategies for Endocarditis: Weapons That Should Be Defended. J Clin Med 2023; 12:7693. [PMID: 38137762 PMCID: PMC10743892 DOI: 10.3390/jcm12247693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The overall low-quality evidence concerning the clinical benefits of different antibiotic regimens for the treatment of infective endocarditis (IE), which has made it difficult to strongly support or reject any regimen of antibiotic therapy, has led to a discrepancy between the available guidelines and clinical practice. In this complex scenario, very recently published guidelines have attempted to fill this gap. Indeed, in recent years several antimicrobials have entered the market, including ceftobiprole, ceftaroline, and the long-acting lipoglycopeptides dalbavancin and oritavancin. Despite being approved for different indications, real-world data on their use for the treatment of IE, alone or in combination, has accumulated over time. Furthermore, an old antibiotic, fosfomycin, has gained renewed interest for the treatment of complicated infections such as IE. In this narrative review, we focused on new antimicrobials and therapeutic strategies that we believe may provide important contributions to the advancement of Gram-positive IE treatment, providing a summary of the current in vitro, in vivo, and clinical evidence supporting their use in clinical practice.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.C.D.); (F.C.); (A.C.); (A.F.); (L.V.); (M.V.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Farhadi Z, Sadeghi AA, Motamedi Sedeh F, Chamani M. The effects of thymol, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on viability, the Nosema sp. spore load and the expression of vg and sod-1 genes in infected honey bees. Anim Biotechnol 2023; 34:4736-4745. [PMID: 36905146 DOI: 10.1080/10495398.2023.2187409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
This study was done to investigate the effects of thymol, fumagillin, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on Nosema sp. spore load, the expression of vitellogenin (vg) and superoxide-dismutase-1 (sod-1) genes and mortality of bees infected with N. ceranae. Five healthy colonies were assigned as the negative control, and 25 Nosema sp. infected colonies were assigned to five treatment groups including: the positive control: no additive to sirup; fumagillin 26.4 mg/L, thymol 0.1 g/L, Api-Bioxal 0.64 g/L and Nose-Go 5.0 g/L sirup. The reduction in the number of Nosema sp. spores in fumagillin, thymol, Api-Bioxal and Nose-Go compared to the positive control was 54, 25, 30 and 58%, respectively. Nosema sp. infection in all infected groups increased (p < .05) Escherichia coli population compared to the negative control. Nose-Go had a negative effect on lactobacillus population compared to other substances. Nosema sp. infection decreased vg and sod-1 genes expression in all infected groups compared to the negative control. Fumagillin and Nose-Go increased the expression of vg gene, and Nose-Go and thymol increased the expression of sod-1 gene than the positive control. Nose-Go has the potential to treat nosemosis if the necessary lactobacillus population is provided in the gut.
Collapse
Affiliation(s)
- Zahra Farhadi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farahnaz Motamedi Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Refai MY, Elazzazy AM, Desouky SE, Abu-Elghait M, Fayed EA, Alajel SM, Alajlan AA, Albureikan MO, Nakayama J. Interception of Epoxide ring to quorum sensing system in Enterococcus faecalis and Staphylococcus aureus. AMB Express 2023; 13:126. [PMID: 37946062 PMCID: PMC10636001 DOI: 10.1186/s13568-023-01633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Quorum sensing inhibitor (QSI) has been attracting attention as anti-virulence agent which disarms pathogens of their virulence rather than killing them. QSI marking cyclic peptide-mediated QS in Gram-positive bacteria is an effective tool to overcome the crisis of antibiotic-dependent chemotherapy due to the emergence of drug resistance strain, e.g., methicillin resistant Staphylococcus aureus (MRSA) and Vancomycin resistant Enterococci (VRE). From a semi-large-scale screening thus far carried out, two Epoxide compounds, Ambuic acid and Synerazol, have been found to efficiently block agr and fsr QS systems, suggesting that the Epoxide group is involved in the mode of action of these QSIs. To address this notion, known natural Epoxide compounds, Cerulenin and Fosfomycin were examined for QSI activity for the agr and fsr systems in addition to in silico and SAR studies. As a result, most of investigated Epoxide containing antibiotics correlatively interfere with QSI activity for the agr and fsr systems under sublethal concentrations.
Collapse
Affiliation(s)
- Mohammed Y Refai
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed M Elazzazy
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Said E Desouky
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 819-0395, Fukuoka, Japan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Cairo, Egypt.
| | - Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, 11754, Cairo, Egypt
| | - Sulaiman M Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdullah A Alajlan
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mona O Albureikan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 819-0395, Fukuoka, Japan
| |
Collapse
|
4
|
Saravolatz LD, Pawlak J. In vitro activity of fosfomycin alone and in combination against Staphylococcus aureus with reduced susceptibility or resistance to methicillin, vancomycin, daptomycin or linezolid. J Antimicrob Chemother 2022; 78:238-241. [PMID: 36374572 DOI: 10.1093/jac/dkac380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To evaluate the activity of fosfomycin against a group of MRSA strains, including isolates with reduced susceptibility or resistance to vancomycin, daptomycin, linezolid and ceftaroline and to determine the effect of combining various combinations of antimicrobial agents used in the therapy of serious Gram-positive infections. METHODS Broth microdilution testing was used to determine the MICs of fosfomycin, vancomycin, daptomycin, linezolid, ceftaroline and cefazolin. Isolates were selected for further evaluations to determine in vitro synergy between fosfomycin and select antimicrobial agents using chequerboard broth microdilution testing. Fosfomycin was tested in combination with vancomycin, linezolid, daptomycin, ceftaroline and cefazolin. RESULTS Fosfomycin maintained activity against 100% of strains of vancomycin-resistant Staphylococcus aureus (VRSA) and linezolid-resistant S. aureus (LRSA), 86% of VISA and 95% of daptomycin-resistant S. aureus (DRSA) strains. The combination of fosfomycin with ceftaroline consistently demonstrated synergy among all 18 isolates against the strains tested. The next most potent combination regimen was linezolid with fosfomycin, which demonstrated synergy in 16 of the 18 strains. Daptomycin demonstrated synergy in only 7 of the 18 strains tested when combined with fosfomycin. Cefazolin demonstrated synergy in 6 of 6 strains and vancomycin demonstrated no interaction in 6 of 6 strains tested. CONCLUSIONS Fosfomycin demonstrated excellent activity against MRSA as well as isolates with resistance or reduced activity to other anti-MRSA drugs including vancomycin, daptomycin and linezolid. When combined with linezolid or daptomycin, fosfomycin demonstrated synergy for all or most strains tested. Thus, these combinations may have potential clinical utility when treating patients with serious infections caused by MRSA.
Collapse
Affiliation(s)
- Louis D Saravolatz
- Ascension St. John Hospital, Grosse Pointe Woods, MI, USA.,Thomas Mackey Center for Infectious Disease Research, Grosse Pointe Woods, MI, USA.,Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Joan Pawlak
- Ascension St. John Hospital, Grosse Pointe Woods, MI, USA.,Thomas Mackey Center for Infectious Disease Research, Grosse Pointe Woods, MI, USA.,Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
5
|
Darlow CA, da Costa RMA, Ellis S, Franceschi F, Sharland M, Piddock L, Das S, Hope W. Potential Antibiotics for the Treatment of Neonatal Sepsis Caused by Multidrug-Resistant Bacteria. Paediatr Drugs 2021; 23:465-484. [PMID: 34435316 PMCID: PMC8418595 DOI: 10.1007/s40272-021-00465-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Neonatal sepsis causes up to an estimated 680,000 deaths annually worldwide, predominantly in low- and middle-income countries (LMICs). A significant and growing proportion of bacteria causing neonatal sepsis are resistant to multiple antibiotics, including the World Health Organization-recommended empiric neonatal sepsis regimen of ampicillin/gentamicin. The Global Antibiotic Research and Development Partnership is aiming to develop alternative empiric antibiotic regimens that fulfil several criteria: (1) affordable in LMIC settings; (2) activity against neonatal bacterial pathogens, including extended-spectrum β-lactamase producers, gentamicin-resistant Gram-negative bacteria, and methicillin-resistant Staphylococcus aureus (MRSA); (3) a licence for neonatal use or extensive experience of use in neonates; and (4) minimal toxicities. In this review, we identify five antibiotics that fulfil these criteria: amikacin, tobramycin, fosfomycin, flomoxef, and cefepime. We describe the available characteristics of each in terms of mechanism of action, resistance mechanisms, clinical pharmacokinetics, pharmacodynamics, and toxicity profile. We also identify some knowledge gaps: (1) the neonatal pharmacokinetics of cefepime is reliant on relatively small and limited datasets, and the pharmacokinetics of flomoxef are also reliant on data from a limited demographic range and (2) for all reviewed agents, the pharmacodynamic index and target has not been definitively established for both bactericidal effect and emergence of resistance, with many assumed to have an identical index/target to similar class molecules. These five agents have the potential to be used in novel combination empiric regimens for neonatal sepsis. However, the data gaps need addressing by pharmacokinetic trials and pharmacodynamic characterisation.
Collapse
Affiliation(s)
- Christopher A Darlow
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | | | - Sally Ellis
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | | | - Mike Sharland
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| | - Laura Piddock
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
- Antimicrobials Research Group, Institute for Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Shampa Das
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
6
|
Kussmann M, Obermueller M, Karer M, Kriz R, Chen RY, Hohl L, Schneider L, Burgmann H, Traby L, Vossen MG. Synergistic Effect of Cefazolin Plus Fosfomycin Against Staphylococcus aureus in vitro and in vivo in an Experimental Galleria mellonella Model. Front Pharmacol 2021; 12:685807. [PMID: 34045971 PMCID: PMC8144499 DOI: 10.3389/fphar.2021.685807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: This study investigated the synergistic in vitro and in vivo activity of cefazolin plus fosfomycin against methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA) to provide the basis for a potential treatment alternative. Methods: Antimicrobial susceptibility and in vitro synergy tests were performed with five MSSA and five MRSA isolates using the broth microdilution and chequerboard assays, respectively. The in vivo efficacy of cefazolin plus fosfomycin for the treatment of MRSA infections was assessed using the Galleria mellonella survival assay. Results: Using fractional inhibitory concentration index (FICI), the evaluated combination of cefazolin plus fosfomycin showed synergistic in vitro activity against all MSSA and MRSA isolates tested. In addition, cefazolin susceptibility was recovered in all MRSA isolates except one fosfomycin-resistant strain when combined with fosfomycin at readily achievable concentrations. The G. mellonella survival assay demonstrated highly synergistic in vivo activity of cefazolin plus fosfomycin, resulting in a 44–52% reduction in mortality when compared to cefazolin-alone and fosfomycin-alone, respectively. Conclusion: If susceptibility to fosfomycin is either confirmed or can be assumed based on local resistance patterns, combination therapy with cefazolin plus fosfomycin could be a valuable treatment option for empirical as well as targeted therapy of S. aureus and MRSA infections. Future studies proving the clinical significance of this combination therapy are therefore warranted.
Collapse
Affiliation(s)
- Manuel Kussmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Obermueller
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Karer
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Richard Kriz
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Rui-Yang Chen
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Lena Hohl
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Lisa Schneider
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Ludwig Traby
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias G Vossen
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Population pharmacokinetics and Monte Carlo simulation for dosage optimization of fosfomycin in the treatment of osteoarticular infections in patients without renal dysfunction. Antimicrob Agents Chemother 2021; 65:AAC.02038-20. [PMID: 33619055 PMCID: PMC8092888 DOI: 10.1128/aac.02038-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Fosfomycin is gaining interest in the treatment of complex osteoarticular infections (OI) due to MDR pathogens.Objective: The aims were to conduct population pharmacokinetics of fosfomycin in a cohort of OI patients receiving 16g/daily by intermittent (II) or continuous infusion (CI), and to carry out Monte Carlo simulations for dosage optimization in the treatment of these infections.Methods: Patients underwent blood sampling on day 5 of therapy (2-3 serial samples). Population pharmacokinetics and Monte Carlo simulations were performed to define the probability of target attainment (PTA) of 70% T>MIC, and the cumulative fraction of response (CFR) against common OI pathogens with dosages of 8, 12, 16, and 20g/day administered by II, extended-infusion (EI) or CI.Results: Forty-eight patients were recruited. A two-compartment open model with infusion input and first-order elimination was developed. Estimated creatinine clearance (CLCR) was included as covariate in the final model. Monte Carlo simulations showed that optimal PTAs and CFRs (≥90%) may be achieved in three different classes of renal function by administering a daily dosage of: 2g q6h by II against S. aureus, E. coli, ESBL-producing E. Coli and MRSA; 8g by CI against CoNS, K. pneumoniae and ESBL-producing K. pneumoniae; 12g by CI against P. aeruginosa, and 16g by CI against KPC-producing K. pneumoniae Conclusion: Our study provides a strong rationale for considering fosfomycin dosages of 8-16 g daily by CI in several clinical scenarios for OI patients. Feasibility of administration by CI in an elastomeric pump makes fosfomycin a candidate for OPAT programs.
Collapse
|
8
|
Gbubele JD, Olszewski TK. Asymmetric synthesis of organophosphorus compounds using H-P reagents derived from chiral alcohols. Org Biomol Chem 2021; 19:2823-2846. [PMID: 33710223 DOI: 10.1039/d1ob00124h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chiral organophosphorus compounds, especially those containing C-stereogenic carbons in the proximity of the phosphorus atom, are known for their unique properties and have found wide applications that span from medicinal chemistry to enantioselective catalysis. However, the synthesis of such chiral molecules, especially with the precise control of stereochemistry at chiral carbon atoms, still remains a very challenging task. This review summarizes recent advances in the highly stereoselective formation of C- and, in some cases, also P-stereogenic organophosphorus compounds. The presented synthesis strategy is based on the use of H-P reagents bearing TADDOL, BINOL or a menthol moiety attached to the phosphorus atom and serving as a chiral auxiliary. Reactions of such chiral H-P species with different partners, e.g., alkenes, alkynes, imines, and carbonyl compounds, leading to structurally diverse chiral organophosphorus compounds with up to five chiral centers are comprehensively discussed. In each case, the stereochemical outcome of the reaction is influenced by the presence of the chiral alcohol used; therefore, the content of this review is compiled into sections with respect to the type of chiral alcohol attached to the phosphorus atom in the H-P species applied.
Collapse
Affiliation(s)
- Joseph D Gbubele
- Faculty of Chemistry, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | |
Collapse
|
9
|
Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M, Montagnani F, Lovecchio A, Luzzati R, Di Bella S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics (Basel) 2020; 9:antibiotics9080500. [PMID: 32785114 PMCID: PMC7460049 DOI: 10.3390/antibiotics9080500] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Fosfomycin is being increasingly prescribed for multidrug-resistant bacterial infections. In patients with systemic involvement, intravenous fosfomycin is usually administered as a partner drug, as part of an antibiotic regimen. Hence, the knowledge of fosfomycin pharmacodynamic interactions (synergistic, additive, indifferent and antagonistic effect) is fundamental for a proper clinical management of severe bacterial infections. We performed a systematic review to point out fosfomycin’s synergistic properties, when administered with other antibiotics, in order to help clinicians to maximize drug efficacy optimizing its use in clinical practice. Interactions were more frequently additive or indifferent (65.4%). Synergism accounted for 33.7% of total interactions, while antagonism occurred sporadically (0.9%). Clinically significant synergistic interactions were mostly distributed in combination with penicillins (51%), carbapenems (43%), chloramphenicol (39%) and cephalosporins (33%) in Enterobactaerales; with linezolid (74%), tetracyclines (72%) and daptomycin (56%) in Staphylococcus aureus; with chloramphenicol (53%), aminoglycosides (43%) and cephalosporins (36%) against Pseudomonas aeruginosa; with daptomycin (97%) in Enterococcus spp. and with sulbactam (75%) and penicillins (60%) and in Acinetobacter spp. fosfomycin-based antibiotic associations benefit from increase in the bactericidal effect and prevention of antimicrobial resistances. Taken together, the presence of synergistic interactions and the nearly total absence of antagonisms, make fosfomycin a good partner drug in clinical practice.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | | | - Alberto Enrico Maraolo
- First Division of Infectious Diseases, Cotugno Hospital, AORN dei Colli, 80131 Naples, Italy;
| | | | - Riccardo Pol
- Department of Infectious Diseases, Udine University, 33100 Udine, Italy;
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Tropical and Infectious Diseases Unit, University Hospital of Siena, 53100 Siena, Italy; (M.F.); (F.M.)
| | - Francesca Montagnani
- Department of Medical Sciences, Tropical and Infectious Diseases Unit, University Hospital of Siena, 53100 Siena, Italy; (M.F.); (F.M.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Antonio Lovecchio
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
- Correspondence:
| |
Collapse
|
10
|
Valderrama MJ, Alfaro M, Rodríguez-Avial I, Baos E, Rodríguez-Avial C, Culebras E. Synergy of Linezolid with Several Antimicrobial Agents against Linezolid-Methicillin-Resistant Staphylococcal Strains. Antibiotics (Basel) 2020; 9:E496. [PMID: 32784878 PMCID: PMC7460281 DOI: 10.3390/antibiotics9080496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Linezolid is a synthetic oxazolydinone active against multi-resistant Gram-positive cocci that inhibits proteins synthesis by interacting with the 50S ribosomal subunit. Although linezolid-resistant strains are infrequent, several outbreaks have been recently described, associated with prolonged treatment with the antibiotic. As an alternative to monotherapy, the combination of different antibiotics is a commonly used option to prevent the selection of resistant strains. In this work, we evaluated combinations of linezolid with classic and new aminoglycosides (amikacin, gentamicin and plazomicin), carbapenems (doripenem, imipenem and meropenem) and fosfomycin on several linezolid- and methicillin-resistant strains of Staphylococcus aureus and S. epidermidis, isolated in a hospital intensive care unit in Madrid, Spain. Using checkerboard and time-kill assays, interesting synergistic effects were encountered for the combination of linezolid with imipenem in all the staphylococcal strains, and for linezolid-doripenem in S.epidermidis isolates. The combination of plazomicin seemed to also have a good synergistic or partially synergistic activity against most of the isolates. None of the combinations assayed showed an antagonistic effect.
Collapse
Affiliation(s)
- María-José Valderrama
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Alfaro
- Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.A.); (I.R.-A.); (E.B.); (E.C.)
| | | | - Elvira Baos
- Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.A.); (I.R.-A.); (E.B.); (E.C.)
| | | | - Esther Culebras
- Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.A.); (I.R.-A.); (E.B.); (E.C.)
- Departamento de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
11
|
Tsegka KG, Voulgaris GL, Kyriakidou M, Falagas ME. Intravenous fosfomycin for the treatment of patients with central nervous system infections: evaluation of the published evidence. Expert Rev Anti Infect Ther 2020; 18:657-668. [DOI: 10.1080/14787210.2020.1754193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Katerina G Tsegka
- Alfa Institute of Biomedical Sciences, Athens, Greece
- Department of Medicine, Henry Dunant Hospital Center, Athens, Greece
| | - Georgios L Voulgaris
- Alfa Institute of Biomedical Sciences, Athens, Greece
- Laboratory of Pharmacokinetics and Toxicology, Department of Pharmacy, 401 General Military Hospital, Athens, Greece
| | - Margarita Kyriakidou
- Alfa Institute of Biomedical Sciences, Athens, Greece
- School of Applied Mathematical and Physical Sciences, National Technical University, Athens, Greece
| | - Matthew E Falagas
- Alfa Institute of Biomedical Sciences, Athens, Greece
- Department of Medicine, Henry Dunant Hospital Center, Athens, Greece
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Ibrahim YM, Abu El-Wafa WM. Evaluation of fosfomycin combined with vancomycin against vancomycin-resistant coagulase negative staphylococci. J Chemother 2020; 32:411-419. [DOI: 10.1080/1120009x.2020.1761638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yasser Musa Ibrahim
- Department of Microbiology, General Division of Basic Medical Sciences, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Wael Mohamed Abu El-Wafa
- Department of Microbiology, General Division of Basic Medical Sciences, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
13
|
Fonnes S, Weisser JJ, Holzknecht BJ, Arpi M, Rosenberg J. The plasma pharmacokinetics of fosfomycin and metronidazole after intraperitoneal administration in patients undergoing appendectomy for uncomplicated appendicitis. Fundam Clin Pharmacol 2020; 34:504-512. [PMID: 31944378 DOI: 10.1111/fcp.12535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
We aimed to investigate the pharmacokinetics of fosfomycin and metronidazole after intraperitoneal administration of the combination of fosfomycin and metronidazole in patients undergoing laparoscopic appendectomy for uncomplicated appendicitis. We included eight otherwise healthy men undergoing laparoscopic appendectomy. The trial treatment was administered at the end of the surgical procedure and left in the abdominal cavity. Trial drugs consisted of 4 g fosfomycin and 1 g metronidazole in a total volume of 500.2 mL. Blood samples were collected prior to and ½, 1, 2, 4, 8, 12 and 24 h after administration. High-performance liquid chromatography-mass spectrometry was used for the measurement of plasma concentrations, and pharmacokinetic calculations were undertaken. Antimicrobial susceptibility testing was undertaken on isolates from intraoperatively collected specimens. The median maximal concentration for fosfomycin in plasma was 104.4 mg/L, median time point for the maximal concentration was 1.5 h, median half-life 3.0 h, and median area under the curve 608 mg*h/L. The median maximal concentration for metronidazole in plasma was 13.6 mg/L, median time point for the maximal concentration was 2.0 h, median half-life 7.3 h, and median area under the curve was 164 mg*h/L. All aerobic bacteria were susceptible to fosfomycin, and all anaerobes were susceptible to metronidazole. Plasma concentrations of fosfomycin and metronidazole were in line with concentrations reported from pharmacokinetic studies after intravenous administration and were within therapeutic ranges.
Collapse
Affiliation(s)
- Siv Fonnes
- Department of Surgery, Centre for Perioperative Optimisation, Herlev and Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Johan Juhl Weisser
- Section of Analytical Bioscience, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen E, Denmark
| | - Barbara Juliane Holzknecht
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Magnus Arpi
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Jacob Rosenberg
- Department of Surgery, Centre for Perioperative Optimisation, Herlev and Gentofte Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| |
Collapse
|
14
|
Trost BM, Shinde AH, Wang Y, Zuo Z, Min C. Palladium-Catalyzed Regio-, Enantio-, and Diastereoselective Asymmetric [3 + 2] Cycloaddition Reactions: Synthesis of Chiral Cyclopentyl Phosphonates. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Anand H. Shinde
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Youliang Wang
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Zhijun Zuo
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Chang Min
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
15
|
Cao Y, Peng Q, Li S, Deng Z, Gao J. The intriguing biology and chemistry of fosfomycin: the only marketed phosphonate antibiotic. RSC Adv 2019; 9:42204-42218. [PMID: 35548698 PMCID: PMC9088020 DOI: 10.1039/c9ra08299a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
Recently infectious diseases caused by the increased emergence and rapid spread of drug-resistant bacterial isolates have been one of the main threats to global public health because of a marked surge in both morbidity and mortality. The only phosphonate antibiotic in the clinic, fosfomycin, is a small broad-spectrum molecule that effectively inhibits the initial step in peptidoglycan biosynthesis by blocking the enzyme, MurA in both Gram-positive and Gram-negative bacteria. As fosfomycin has a novel mechanism of action, low toxicity, a broad spectrum of antibacterial activity, excellent pharmacodynamic/pharmacokinetic properties, and good bioavailability, it has been approved for clinical use in the treatment of urinary tract bacterial infections in many countries for several decades. Furthermore, its potential use for difficult-to-treat bacterial infections has become promising, and fosfomycin has become an ideal candidate for the effective treatment of bacterial infections caused by multidrug-resistant isolates, especially in combination with other therapeutic drugs. Here we aim to present an overview of the biology and chemistry of fosfomycin including isolation and characterization, pharmacology, biosynthesis and chemical synthesis since its discovery in order to not only help scientists reassess the role of this exciting drug in fighting antibiotic resistance but also build the stage for discovering more novel phosphonate antibiotics in the future.
Collapse
Affiliation(s)
- Yingying Cao
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Qingyao Peng
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Shanni Li
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jiangtao Gao
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| |
Collapse
|
16
|
Trinh TD, Smith JR, Rybak MJ. Parenteral Fosfomycin for the Treatment of Multidrug Resistant Bacterial Infections: The Rise of the Epoxide. Pharmacotherapy 2019; 39:1077-1094. [PMID: 31487056 DOI: 10.1002/phar.2326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fosfomycin was initially discovered in 1969 but has recently gained renewed interest for the treatment of multidrug-resistant (MDR) bacterial infections, particularly in the United States. Its unique mechanism of action, bactericidal activity, broad spectrum of activity, and relatively safe and tolerable adverse effect profile make it a great addition to the dwindling antibiotic armamentarium. Fosfomycin contains a three-membered epoxide ring with a direct carbon to phosphorous bond that bypasses the intermediate oxygen bond commonly present in other organophosphorous compounds; this structure makes the agent unique from other antibiotics. Despite nearly 50 years of parenteral fosfomycin use in Europe, fosfomycin has retained stable activity against most pathogens. Furthermore, fosfomycin demonstrated in vitro synergy in combination with other cell wall-active antibiotics (e.g., β-lactams, daptomycin). These combinations may offer respite for severe infections due to MDR gram-positive and gram-negative bacteria. The intravenous (IV) formulation is currently under review in the United States, and apropos, this review collates more contemporary evidence (i.e., studies published between 2000 and early 2019) in anticipation of this development. The approval of IV fosfomycin provides another option for consideration in the management of MDR infections. Its unique structure will give rise to a promising epoxide epoch in the battle against MDR bacteria.
Collapse
Affiliation(s)
- Trang D Trinh
- Medication Outcomes Center, Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, San Francisco, California
| | - Jordan R Smith
- Department of Clinical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
17
|
An Y, Wang Y, Zhan J, Tang X, Shen K, Shen F, Wang C, Luan W, Wang X, Wang X, Liu M, Zheng Q, Yu L. Fosfomycin Protects Mice From Staphylococcus aureus Pneumonia Caused by α-Hemolysin in Extracellular Vesicles by Inhibiting MAPK-Regulated NLRP3 Inflammasomes. Front Cell Infect Microbiol 2019; 9:253. [PMID: 31380296 PMCID: PMC6644418 DOI: 10.3389/fcimb.2019.00253] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/28/2019] [Indexed: 01/22/2023] Open
Abstract
α-Hemolysin (Hla) is a significant virulence factor in Staphylococcus aureus (S. aureus)-caused infectious diseases such as pneumonia. Thus, to prevent the production of Hla when treating S. aureus infection, it is necessary to choose an antibiotic with good antibacterial activity and effect. In our study, we observed that Fosfomycin (FOM) at a sub-inhibitory concentration inhibited expression of Hla. Molecular dynamics demonstrated that FOM bound to the binding sites LYS 154 and ASP 108 of Hla, potentially inhibiting Hla. Furthermore, we verified that staphylococcal membrane-derived vesicles (SMVs) contain Hla and that FOM treatment significantly reduced the production of SMVs and Hla. Based on our pharmacological inhibition analysis, ERK and p38 activated NLRP3 inflammasomes. Moreover, FOM inhibited expression of MAPKs and NLRP3 inflammasome-related proteins in S. aureus as well as SMV-infected human macrophages (MΦ) and alveolar epithelial cells. In vivo, SMVs isolated from S. aureus DU1090 (an isogenic Hla deletion mutant) or the strain itself caused weaker inflammation than that of its parent strain 8325-4. FOM also significantly reduced the phosphorylation levels of ERK and P38 and expression of NLRP3 inflammasome-related proteins. In addition, FOM decreased MPO activity, pulmonary vascular permeability and edema formation in the lungs of mice with S. aureus-caused pneumonia. Taken together, these data indicate that FOM exerts protective effects against S. aureus infection in vitro and in vivo by inhibiting Hla in SMVs and blocking ERK/P38-mediated NLRP3 inflammasome activation by Hla.
Collapse
Affiliation(s)
- Yanan An
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yang Wang
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiuyu Zhan
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xudong Tang
- Key Lab for New Drugs Research of TCM in Shenzhen, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Keshu Shen
- Jilin Hepatobiliary Hospital, Changchun, China
| | - Fengge Shen
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chao Wang
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenjing Luan
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xuefei Wang
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xueyan Wang
- Key Lab for New Drugs Research of TCM in Shenzhen, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Mingyuan Liu
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qingchuan Zheng
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lu Yu
- Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory Nano-Micro Architecture Chemistry, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Theoretical Chemistry, Institute of Zoonosis, College of Veterinary Medicine, Department of Infectious Diseases, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
18
|
Hashemian SMR, Farhadi Z, Farhadi T. Fosfomycin: the characteristics, activity, and use in critical care. Ther Clin Risk Manag 2019; 15:525-530. [PMID: 30988619 PMCID: PMC6441553 DOI: 10.2147/tcrm.s199119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fosfomycin (C3H7O4P) is a phosphonic acid derivative representing an epoxide class of antibiotics. The drug is a re-emerging bactericidal antibiotic with a wide range of actions against several Gram-positive and Gram-negative bacteria. Among the existing antibacterial agents, fosfomycin has the lowest molecular weight (138 Da), which is not structurally associated with other classes of antibiotics. In intensive care unit (ICU) patients, severe soft tissue infections (STIs) may lead to serious life-threatening problems, and therefore, appropriate antibiotic therapy and often intensive care management (ICM) coupled with surgical intervention are necessary. Fosfomycin is an antibiotic primarily utilized for the treatment of STIs in ICUs. Recently, fosfomycin has attracted renewed interest for the treatment of serious systemic infections caused by multidrug-resistant Enterobacteriaceae. In some countries, intravenous fosfomycin has been prescribed for various serious systemic infections, such as acute osteomyelitis, nosocomial lower respiratory tract infections, complicated urinary tract infections, bacterial meningitis, and bacteremia. Administration of intravenous fosfomycin can result in a sufficient concentration of the drug at different body regions. Dose modification is not required in hepatic deficiency because fosfomycin is not subjected to enterohepatic circulation.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran, .,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zinat Farhadi
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
19
|
Dimopoulos G, Koulenti D, Parker SL, Roberts JA, Arvaniti K, Poulakou G. Intravenous fosfomycin for the treatment of multidrug-resistant pathogens: what is the evidence on dosing regimens? Expert Rev Anti Infect Ther 2019; 17:201-210. [PMID: 30668931 DOI: 10.1080/14787210.2019.1573669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The intravenous (IV) formulation of fosfomycin has been re-introduced in clinical practice mainly to overcome treatment failures against multidrug-resistant (MDR) bacteria. Appropriate dosing schedules of the IV formulation have not yet been established. Areas covered: The mechanism of action and resistance development, commercial IV formulations, pharmacokinetic/pharmacodynamic (PK/PD) properties, IV dosing regimens for the treatment of MDR infections along with efficacy and safety issues were reviewed. Data regarding specific MDR pathogens, daily doses and patients' outcomes, gaps in the current literature, and in progress research agenda are presented. Expert opinion: The doses of fosfomycin IV range between 12 and 24 grams/day depending on the severity of infection. The efficacy and safety of the commonly administered doses have been shown mainly in observational non-comparative trials. The optimal dose ensuring maximal efficacy with minimal toxicity along with the most appropriate co-administered antibiotic(s) need further evaluation. The pharmacokinetic/pharmacodynamic parameter associated with maximum efficacy has not yet been established, although, the ratio of the area under the concentration-time curve (AUC) for the free unbound fraction of fosfomycin versus the MIC (fAUC/MIC) may be linked to optimal treatment. RCTs and other comparative studies are underway to address gaps of knowledge in adult patients and neonates.
Collapse
Affiliation(s)
- George Dimopoulos
- a Department of Critical Care , University Hospital ATTIKON, National and Kapodistrian University of Athens , Athens , Greece
| | - Despoina Koulenti
- a Department of Critical Care , University Hospital ATTIKON, National and Kapodistrian University of Athens , Athens , Greece.,b UQ Centre for Clinical Research, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Suzanne L Parker
- b UQ Centre for Clinical Research, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Jason A Roberts
- b UQ Centre for Clinical Research, Faculty of Medicine , The University of Queensland , Brisbane , Australia.,c School of Pharmacy, Centre for Translational Anti-infective Pharmacodynamics , The University of Queensland , Brisbane , Australia.,d Department of Intensive Care Medicine , Royal Brisbane and Women's Hospital , Brisbane , Australia.,e Pharmacy Department , Royal Brisbane and Women's Hospital , Brisbane , Australia
| | - Kostoula Arvaniti
- f Intensive Care Unit , Papageorgiou University Affiliated Hospital , Thessaloniki , Greece
| | - Garyphalia Poulakou
- g 3rd Department of Internal Medicine, SOTIRIA Hospital , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
20
|
Synergistic effect of linezolid with fosfomycin against Staphylococcus aureus in vitro and in an experimental Galleria mellonella model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:731-738. [PMID: 30638785 DOI: 10.1016/j.jmii.2018.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/09/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND/PURPOSES Treatment of Staphylococcus aureus infections is challenging owing to widespread multidrug resistance. There is now considerable interest in the potential of combination therapies. Although linezolid/fosfomycin combination appears to be a promising treatment option based on in vitro data, further preclinical work is needed. In this study, the Galleria mellonella system was employed to study the in vivo efficacy of this combination in order to determine whether it should be explored further for the treatment of S. aureus infections. METHODS The antimicrobial activity of linezolid and fosfomycin alone and in combination was assessed versus four S. aureus. Synergy studies were performed using the microtitre plate chequerboard assay and time-kill methodology. The in vivo activity of linezolid/fosfomycin combination was assessed using a G. mellonella larvae model. RESULTS The combination of linezolid and fosfomycin was synergistic and bacteriostatic against four tested strains. Treatment of G. mellonella larvae infected with lethal doses of S. aureus resulted in significantly enhanced survival rates when low-dose of combination has no significant differences with high-dose combination (P > 0.05), G. mellonella hemolymph burden of S. aureus suggest that combination therapy with rapid and sustained bacteriostatic activity compared monotherapy. CONCLUSION This work indicated that linezolid combination with fosfomycin has synergistic effect against S. aureus in vitro and in an experimental G. mellonella model, and it suggests that high-dose of linezolid and fosfomycin may not necessary.
Collapse
|
21
|
Hirakawa H, Kurabayashi K, Tanimoto K, Tomita H. Oxygen Limitation Enhances the Antimicrobial Activity of Fosfomycin in Pseudomonas aeruginosa Following Overexpression of glpT Which Encodes Glycerol-3-Phosphate/Fosfomycin Symporter. Front Microbiol 2018; 9:1950. [PMID: 30186264 PMCID: PMC6110920 DOI: 10.3389/fmicb.2018.01950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Fosfomycin is resurfacing as a "last resort drug" to treat infections caused by multidrug resistant pathogens. This drug has a remarkable benefit in that its activity increases under oxygen-limited conditions unlike other commonly used antimicrobials such as β-lactams, fluoroquinolones and aminoglycosides. Especially, utility of fosfomycin has being evaluated with particular interest to treat chronic biofilm infections caused by Pseudomonas aeruginosa because it often encounters anaerobic situations. Here, we showed that P. aeruginosa PAO1, commonly used in many laboratories, becomes more susceptible to fosfomycin when grown anaerobically, and studied on how fosfomycin increases its activity under anaerobic conditions. Results of transport assay and gene expression study indicated that PAO1 cells grown anaerobically exhibit a higher expression of glpT encoding a glycerol-3-phosphate transporter which is responsible for fosfomycin uptake, then lead to increased intracellular accumulation of the drug. Elevated expression of glpT in anaerobic cultures depended on ANR, a transcriptional regulator that is activated under anaerobic conditions. Purified ANR protein bound to the DNA fragment from glpT region upstream, suggesting it is an activator of glpT gene expression. We found that increased susceptibility to fosfomycin was also observed in a clinical isolate which has a promoted biofilm phenotype and its glpT and anr genes are highly conserved with those of PAO1. We conclude that increased antibacterial activity of fosfomycin to P. aeruginosa under anaerobic conditions is attributed to elevated expression of GlpT following activation of ANR, then leads to increased uptake of the drug.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kumiko Kurabayashi
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
22
|
Fransen F, Hermans K, Melchers MJB, Lagarde CCM, Meletiadis J, Mouton JW. Pharmacodynamics of fosfomycin against ESBL- and/or carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 2018; 72:3374-3381. [PMID: 29029067 DOI: 10.1093/jac/dkx328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Background The increase in antibiotic resistance in Gram-negative bacteria and the limited therapeutic options due to the shortage of new antibiotics have increased the interest of the 'old' antibiotic fosfomycin in the treatment of infections. However, there are contradictory reports on the pharmacodynamics of and emergence of resistance to fosfomycin. Methods Time-kill assays were performed with 11 ESBL-positive and 3 ESBL-negative strains, exposing the bacteria to 2-fold static concentrations from 0.125× to 32× MIC. The sigmoid maximum effect (Emax) model was fitted to the time-kill curve data. Amplification of resistance over time was evaluated under various conditions of selective pressure by plating on 16× MIC plates. Results Fosfomycin was bactericidal for all strains within 8 h. Using the Emax model, no significant differences between strains were observed for the pharmacodynamic parameters. However, the large variation in Hill slope factors for Escherichia coli of 0.87 up to 4.02 indicates that the killing behaviour appears to be more time dependent for some strains but concentration dependent for others. In the fosfomycin-exposed cultures under low and high selective pressure (≥2× MIC) the median resistance proportions between the resistant and total population increased from ≤2 × 10-6 (T = 0 h) to 0.652-0.899 (T = 24 h). Resistance appeared stable after repeated subculturing. Conclusions Killing behaviour of fosfomycin does not only differ between species but also within species and may have an impact on the design of optimal dosing regimens. Although fosfomycin was bactericidal against all strains (re)growth of resistant subpopulations occurred relatively fast. This may limit the use of fosfomycin as a single drug therapy.
Collapse
Affiliation(s)
- Fiona Fransen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kelly Hermans
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria J B Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Claudia C M Lagarde
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joseph Meletiadis
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.,Clinical Microbiology Laboratory, Attikon Hospital, University of Athens, Athens, Greece
| | - Johan W Mouton
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Pharmacokinetics, Safety, and Tolerability of Single-Dose Intravenous (ZTI-01) and Oral Fosfomycin in Healthy Volunteers. Antimicrob Agents Chemother 2017. [PMID: 28630194 DOI: 10.1128/aac.00775-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pharmacokinetics, safety, and tolerability of intravenous (i.v.) fosfomycin disodium (ZTI-01) and oral fosfomycin tromethamine were evaluated after a single dose in 28 healthy adult subjects. Subjects received a single 1-h i.v. infusion of 1 g and 8 g fosfomycin disodium and a single dose of 3 g oral fosfomycin tromethamine in a phase I, randomized, open-label, three-period crossover study. Serial blood and urine samples were collected before and up to 48 h after dosing. The mean pharmacokinetic parameters ± standard deviations of fosfomycin in plasma after 1 g and 8 g i.v., respectively, were the following: maximum clearance of drug in serum (Cmax), 44.3 ± 7.6 and 370 ± 61.9 μg/ml; time to maximum concentration of drug in serum (Tmax), 1.1 ± 0.05 and 1.08 ± 0.01 h; volume of distribution (V), 29.7 ± 5.7 and 31.5 ± 10.4 liters; clearance (CL), 8.7 ± 1.7 and 7.8 ± 1.4 liters/h; renal clearance (CLR), 6.6 ± 1.9 and 6.3 ± 1.6 liters/h; area under the concentration-time curve from 0 to infinity (AUC0-∞), 120 ± 28.5 and 1,060 ± 192 μg·h/ml; and half-life (t1/2), 2.4 ± 0.4 and 2.8 ± 0.6 h. After oral administration, the parameters were the following: Cmax, 26.8 ± 6.4 μg/ml; Tmax, 2.25 ± 0.4 h; V/F, 204 ± 70.7 liters; CL/F, 17 ± 4.7 liters/h; CLR, 6.5 ± 1.8 liters/h; AUC0-∞, 191 ± 57.6 μg · h/ml; and t1/2, 9.04 ± 4.5 h. The percent relative bioavailability of orally administered fosfomycin was 52.8% in relation to the 1-g i.v. dose. Approximately 74% and 80% of the 1-g and 8-g i.v. doses were excreted unchanged in the urine by 48 h compared to 37% after oral administration, with the majority of this excretion occurring by 12 h regardless of dosage form. No new safety concerns were identified during this study. The results of this study support further investigation of i.v. fosfomycin in the target patient population, including patients with complicated urinary tract infections and pyelonephritis.
Collapse
|
24
|
Compatibility of fosfomycin with different commercial peritoneal dialysis solutions. Eur J Clin Microbiol Infect Dis 2017; 36:2237-2242. [PMID: 28685187 PMCID: PMC5653715 DOI: 10.1007/s10096-017-3051-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 06/19/2017] [Indexed: 10/24/2022]
Abstract
For treatment of peritoneal dialysis-related peritonitis, intraperitoneal administration of antibiotics remains the preferable route. For home-based therapy, patients are commonly supplied with peritoneal dialysis fluids already containing antimicrobial agents. The present study set out to investigate the compatibility of fosfomycin with different peritoneal dialysis fluids, namely, Extraneal®, Nutrineal®, Physioneal® 1.36% and Physioneal® 2.27%, under varying storage conditions. The peritoneal dialysis fluid bags including 4 g fosfomycin were stored over 14 days at refrigeration temperature (6°C) and room temperature (25°C) and over 24 h at body temperature (37°C). Drug concentrations over time were determined by using high-performance liquid chromatography coupled to a mass spectrometer. In addition, drug activity was assessed by a disk diffusion method, diluent stability by visual inspection and drug adsorption by comparison of the measured and calculated concentrations. Blank peritoneal dialysis fluids and deionized water were used as comparator solutions. Fosfomycin was stable in all peritoneal dialysis fluids and at each storage condition investigated over the whole study period. The remaining drug concentrations ranged between 94% and 104% of the respective initial concentrations. No significant drug adsorption was observed for any peritoneal dialysis fluid at any storage condition. No relevant reduction of antimicrobial activity was observed. Fosfomycin is compatible with Extraneal®, Nutrineal® and Physioneal® for up to two weeks at refrigeration or room temperature and may be used for home-based therapy. No dose adjustment is needed due to adsorption or degradation.
Collapse
|
25
|
Kurabayashi K, Tanimoto K, Tomita H, Hirakawa H. Cooperative Actions of CRP-cAMP and FNR Increase the Fosfomycin Susceptibility of Enterohaemorrhagic Escherichia coli (EHEC) by Elevating the Expression of glpT and uhpT under Anaerobic Conditions. Front Microbiol 2017; 8:426. [PMID: 28360903 PMCID: PMC5352689 DOI: 10.3389/fmicb.2017.00426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/28/2017] [Indexed: 11/15/2022] Open
Abstract
Bacterial infections to anaerobic site are often hard to be treated because the activity of most of antimicrobials decreases under anaerobic conditions. However, fosfomycin rather provides a greater activity under anaerobic conditions than aerobic conditions. Previously, we found that expression of glpT and uhpT, fosfomycin symporters in enterohaemorrhagic Escherichia coli (EHEC) was upregulated by FNR, a global regulator during the anaerobiosis of the bacterium, which led to increased uptake and susceptibility to this drug. In this study, we showed that expression of glpT and uhpT is induced by CRP-cAMP, the regulator complex under both aerobic and anaerobic conditions. The activity of CRP-cAMP in EHEC was elevated under anaerobic conditions because levels of both CRP and cAMP were higher in the cells when grown anaerobically than those when grown aerobically. Results of expression study using mutants indicated that CRP-cAMP is indispensable for expression of glpT but not uhpT—whereas that of uhpT requires UhpA that is the response regulator composing of two-component system with the sensor kinase, UhpB. The CRP-cAMP protein bound to a region that overlaps RNA polymerase binding site for glpT and region upstream of UhpA binding site for uhpT. FNR bound to a region further upstream of CRP-cAMP binding site on region upstream of the glpT gene. These combined results suggested that increased antibacterial activity of fosfomycin to EHEC under anaerobic conditions is due to activation of FNR and increment of CRP-cAMP activity. Then, FNR enhances the expression of glpT activated by CRP-cAMP while CRP-cAMP and FNR cooperatively aids the action of UhpA to express uhpT to maximum level.
Collapse
Affiliation(s)
- Kumiko Kurabayashi
- Advanced Scientific Research Leaders Development Unit, Graduate School of Medicine, Gunma University Gunma, Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance, Gunma University, Graduate School of Medicine Gunma, Japan
| | - Haruyoshi Tomita
- Laboratory of Bacterial Drug Resistance, Gunma University, Graduate School of MedicineGunma, Japan; Department of Bacteriology, Gunma University, Graduate School of MedicineGunma, Japan
| | - Hidetada Hirakawa
- Advanced Scientific Research Leaders Development Unit, Graduate School of Medicine, Gunma University Gunma, Japan
| |
Collapse
|
26
|
Romaniuk JAH, Cegelski L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0024. [PMID: 26370936 DOI: 10.1098/rstb.2015.0024] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms.
Collapse
Affiliation(s)
- Joseph A H Romaniuk
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Nygaard R, Romaniuk JAH, Rice DM, Cegelski L. Spectral snapshots of bacterial cell-wall composition and the influence of antibiotics by whole-cell NMR. Biophys J 2016; 108:1380-1389. [PMID: 25809251 DOI: 10.1016/j.bpj.2015.01.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/13/2015] [Indexed: 01/28/2023] Open
Abstract
Gram-positive bacteria surround themselves with a thick cell wall that is essential to cell survival and is a major target of antibiotics. Quantifying alterations in cell-wall composition are crucial to evaluating drug modes of action, particularly important for human pathogens that are now resistant to multiple antibiotics such as Staphylococcus aureus. Macromolecular and whole-cell NMR spectroscopy allowed us to observe the full panel of carbon and nitrogen pools in S. aureus cell walls and intact whole cells. We discovered that one-dimensional (13)C and (15)N NMR spectra, together with spectroscopic selections based on dipolar couplings as well as two-dimensional spin-diffusion measurements, revealed the dramatic compositional differences between intact cells and cell walls and allowed the identification of cell-wall signatures in whole-cell samples. Furthermore, the whole-cell NMR approach exhibited the sensitivity to detect distinct compositional changes due to treatment with the antibiotics fosfomycin (a cell-wall biosynthesis inhibitor) and chloramphenicol (a protein synthesis inhibitor). Whole cells treated with fosfomycin exhibited decreased peptidoglycan contributions while those treated with chloramphenicol contained a higher percentage of peptidoglycan as cytoplasmic protein content was reduced. Thus, general antibiotic modes of action can be identified by profiling the total carbon pools in intact whole cells.
Collapse
Affiliation(s)
- Rie Nygaard
- Department of Chemistry, Stanford University, Stanford, California
| | | | - David M Rice
- Department of Chemistry, Stanford University, Stanford, California
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California.
| |
Collapse
|
28
|
Shen F, Tang X, Cheng W, Wang Y, Wang C, Shi X, An Y, Zhang Q, Liu M, Liu B, Yu L. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species. Sci Rep 2016; 6:19262. [PMID: 26778774 PMCID: PMC4726045 DOI: 10.1038/srep19262] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
Abstract
The successful treatment of bacterial infections is the achievement of a synergy between the host's immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host's immune defences and antibiotic interactions in microbial infections.
Collapse
Affiliation(s)
- Fengge Shen
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Wei Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Chao Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Xiaochen Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Yanan An
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Qiaoli Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bo Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Lu Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
29
|
Sharma R, Lambu MR, Jamwal U, Rani C, Chib R, Wazir P, Mukherjee D, Chaubey A, Khan IA. Escherichia coli N-Acetylglucosamine-1-Phosphate-Uridyltransferase/Glucosamine-1-Phosphate-Acetyltransferase (GlmU) Inhibitory Activity of Terreic Acid Isolated from Aspergillus terreus. ACTA ACUST UNITED AC 2016; 21:342-53. [PMID: 26762501 DOI: 10.1177/1087057115625308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
Secondary metabolite of Aspergillus terreus, terreic acid, is a reported potent antibacterial that was identified more than 60 years ago, but its cellular target(s) are still unknown. Here we screen its activity against the acetyltransferase domain of a bifunctional enzyme, Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). An absorbance-based assay was used to screen terreic acid against the acetyltransferase activity of E. coli GlmU. Terreic acid was found to inhibit the acetyltransferase domain of E. coli GlmU with an IC50 of 44.24 ± 1.85 µM. Mode of inhibition studies revealed that terreic acid was competitive with AcCoA and uncompetitive with GlcN-1-P. It also exhibited concentration-dependent killing of E. coli ATCC 25922 up to 4× minimum inhibitory concentration and inhibited the growth of biofilms generated by E. coli. Characterization of resistant mutants established mutation in the acetyltransferase domain of GlmU. Terreic acid was also found to be metabolically stable in the in vitro incubations with rat liver microsome in the presence of a NADPH regenerating system. The studies reported here suggest that terreic acid is a potent antimicrobial agent and support that E. coli GlmU acetyltransferase is a molecular target of terreic acid, resulting in its antibacterial activity.
Collapse
Affiliation(s)
- Rashmi Sharma
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| | - Mallikharjuna Rao Lambu
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India Natural Products Chemistry: Microbes, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, India
| | - Urmila Jamwal
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Chitra Rani
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| | - Reena Chib
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India
| | - Priya Wazir
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India Natural Products Chemistry: Microbes, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, India
| | - Asha Chaubey
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, India Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| |
Collapse
|
30
|
Fosfomycin plus β-Lactams as Synergistic Bactericidal Combinations for Experimental Endocarditis Due to Methicillin-Resistant and Glycopeptide-Intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2015; 60:478-86. [PMID: 26525803 DOI: 10.1128/aac.02139-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023] Open
Abstract
The urgent need of effective therapies for methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) is a cause of concern. We aimed to ascertain the in vitro and in vivo activity of the older antibiotic fosfomycin combined with different beta-lactams against MRSA and glycopeptide-intermediate-resistant S. aureus (GISA) strains. Time-kill tests with 10 isolates showed that fosfomycin plus imipenem (FOF+IPM) was the most active evaluated combination. In an aortic valve IE model with two strains (MRSA-277H and GISA-ATCC 700788), the following intravenous regimens were compared: fosfomycin (2 g every 8 h [q8h]) plus imipenem (1 g q6h) or ceftriaxone (2 g q12h) (FOF+CRO) and vancomycin at a standard dose (VAN-SD) (1 g q12h) and a high dose (VAN-HD) (1 g q6h). Whereas a significant reduction of MRSA-227H load in the vegetations (veg) was observed with FOF+IPM compared with VAN-SD (0 [interquartile range [IQR], 0 to 1] versus 2 [IQR, 0 to 5.1] log CFU/g veg; P = 0.01), no statistical differences were found with VAN-HD. In addition, FOF+IPM sterilized more vegetations than VAN-SD (11/15 [73%] versus 5/16 [31%]; P = 0.02). The GISA-ATCC 700788 load in the vegetations was significantly lower after FOF+IPM or FOF+CRO treatment than with VAN-SD (2 [IQR, 0 to 2] and 0 [IQR, 0 to 2] versus 6.5 [IQR, 2 to 6.9] log CFU/g veg; P < 0.01). The number of sterilized vegetations after treatment with FOF+CRO was higher than after treatment with VAN-SD or VAN-HD (8/15 [53%] versus 4/20 [20%] or 4/20 [20%]; P = 0.03). To assess the effect of FOF+IPM on penicillin binding protein (PBP) synthesis, molecular studies were performed, with results showing that FOF+IPM treatment significantly decreased PBP1, PBP2 (but not PBP2a), and PBP3 synthesis. These results allow clinicians to consider the use of FOF+IPM or FOF+CRO to treat MRSA or GISA IE.
Collapse
|
31
|
No Outbreak of Vancomycin and Linezolid Resistance in Staphylococcal Pneumonia over a 10-Year Period. PLoS One 2015; 10:e0138895. [PMID: 26398276 PMCID: PMC4580637 DOI: 10.1371/journal.pone.0138895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/04/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Staphylococci can cause wound infections and community- and nosocomial-acquired pneumonia, among a range of illnesses. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) have been rapidly increasing as a cause of infections worldwide in recent decades. Numerous reports indicate that S. aureus and MRSA are becoming resistant to many antibiotics, which makes them very dangerous. Therefore, this study retrospectively investigated the resistance to antimicrobial agents in all hospitalized patients suffering from community- or nosocomial-acquired pneumonia due to S. aureus and MRSA. METHODS Information from the study groups suffering from either community- or nosocomial-acquired pneumonia caused by S. aureus or MRSA was gathered by searching records from 2004 to 2014 at the HELIOS Clinic Wuppertal, Witten/Herdecke University, Germany. The findings of antibiotic resistance were analyzed after the evaluation of susceptibility testing for S. aureus and MRSA. RESULTS Total of 147 patients (63.9%, 95% CI 57.5%-69.8%), mean age 67.9 ± 18.5 years, with pneumonia triggered by S. aureus, and 83 patients (36.1%, 95% CI 30.2%-42.5%), mean age 72.3 ± 13.8 years, with pneumonia due to MRSA. S. aureus and MRSA developed no resistance to vancomycin (P = 0.019 vs. < 0.0001, respectively) or linezolid (P = 0.342 vs. < 0.0001, respectively). MRSA (95.3%) and S. aureus (56.3%) showed a high resistance to penicillin. MRSA (87.7%) was also found to have a high antibiotic resistance against ß-lactam antibiotics, compared to S. aureus (9.6%). Furthermore, MRSA compared to S. aureus, respectively, had increased antibiotic resistance to ciprofloxacin (90.1% vs. 17.0%), cefazolin (89.7% vs. 10.2%), cefuroxime (89.0% vs. 9.1%), levofloxacin (88.2% vs. 18.4%), clindamycin (78.0% vs. 14.7%), and erythromycin (76.5% vs. 20.8%). CONCLUSION No development of resistance was found to vancomycin and linezolid in patients with pneumonia caused by S. aureus and MRSA.
Collapse
|
32
|
Gotsko MD, Sobenina LN, Tomilin DN, Ushakov IA, Dogadina AV, Trofimov BA. Topochemical mechanoactivated phosphonylethynylation of pyrroles with chloroethynylphosphonates on solid Al2O3 or K2CO3 media. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Elevated Expression of GlpT and UhpT via FNR Activation Contributes to Increased Fosfomycin Susceptibility in Escherichia coli under Anaerobic Conditions. Antimicrob Agents Chemother 2015; 59:6352-60. [PMID: 26248376 DOI: 10.1128/aac.01176-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022] Open
Abstract
Because a shortage of new antimicrobial agents is a critical issue at present, and with the spread of multidrug-resistant (MDR) pathogens, the use of fosfomycin to treat infections is being revisited as a "last-resort option." This drug offers a particular benefit in that it is more effective against bacteria growing under oxygen-limited conditions, unlike other commonly used antimicrobials, such as fluoroquinolones and aminoglycosides. In this study, we showed that Escherichia coli strains, including enterohemorrhagic E. coli (EHEC), were more susceptible to fosfomycin when grown anaerobically than when grown aerobically, and we investigated how the activity of this drug was enhanced during anaerobic growth of E. coli. Our quantitative PCR analysis and a transport assay showed that E. coli cells grown under anaerobic conditions had higher levels of expression of glpT and uhpT, encoding proteins that transport fosfomycin into cells with their native substrates, i.e., glycerol-3-phosphate and glucose-6-phosphate, and led to increased intracellular accumulation of the drug. Elevation of expression of these genes during anaerobic growth requires FNR, a global transcriptional regulator that is activated under anaerobic conditions. Purified FNR bound to DNA fragments from regions upstream of glpT and uhpT, suggesting that it is an activator of expression of glpT and uhpT during anaerobic growth. We concluded that the increased antibacterial activity of fosfomycin toward E. coli under anaerobic conditions can be attributed to elevated expression of GlpT and UhpT following activation of FNR, leading to increased uptake of the drug.
Collapse
|
34
|
Walsh CC, McIntosh MP, Peleg AY, Kirkpatrick CM, Bergen PJ. In vitro pharmacodynamics of fosfomycin against clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 2015. [PMID: 26209311 DOI: 10.1093/jac/dkv221] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The use of fosfomycin for treatment of systemic infections due to MDR Pseudomonas aeruginosa is increasing. However, pharmacodynamic data for fosfomycin are limited. METHODS Sixty-four clinical isolates of P. aeruginosa (MDR and non-MDR) from two Australian hospitals were collected; 59 isolates were from patients with cystic fibrosis and 5 isolates were from critically ill patients. The in vitro pharmacodynamic properties of fosfomycin (disodium) were investigated via MICs (all isolates) and, for selected isolates, via time-kill kinetics (static and dynamic models; concentration range, 1-1024 mg/L), population analysis profiles (PAPs) and post-antibiotic effect (PAE). Two inocula (∼10(6) and ∼10(8) cfu/mL) were included in static time-kill studies to examine the effect of inocula on bacterial killing. RESULTS MICs ranged from 1 to >512 mg/L, with 61% of isolates considered fosfomycin susceptible (MIC ≤64 mg/L). The MIC distributions for MDR and non-MDR isolates were similar. Baseline PAPs indicated heteroresistance in all isolates tested. Time-kill studies showed moderate (maximum killing ∼3 log10 cfu/mL), time-dependent killing at the low inoculum with regrowth at 24 h. Most concentrations resulted in complete replacement of fosfomycin-susceptible colonies by fosfomycin-resistant colonies. Bacterial killing was virtually eliminated at the high inoculum. The PAE ranged from 0.3 to 5.5 h. CONCLUSIONS These data suggest monotherapy with fosfomycin may be problematic for the treatment of infections caused by P. aeruginosa. Further investigation of fosfomycin combination therapy is warranted.
Collapse
Affiliation(s)
- Clare C Walsh
- Centre for Medicine Use and Safety, Monash University, Parkville, Victoria, Australia
| | - Michelle P McIntosh
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Carl M Kirkpatrick
- Centre for Medicine Use and Safety, Monash University, Parkville, Victoria, Australia
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
35
|
DiCicco M, Neethirajan S, Weese JS, Singh A. In vitro synergism of fosfomycin and clarithromycin antimicrobials against methicillin-resistant Staphylococcus pseudintermedius. BMC Microbiol 2014; 14:129. [PMID: 24886369 PMCID: PMC4036705 DOI: 10.1186/1471-2180-14-129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bacterial biofilms are of tremendous concern for clinicians, as they can compromise the ability of the immune system and antimicrobial therapy to resolve chronic and recurrent infections. Novel antimicrobial therapies or combinations targeted against biofilm establishment and growth subsequently represent a promising new option for the treatment of chronic infectious diseases. In this study, we treated bacterial biofilms produced by methicillin-resistant Staphylococcus pseudintermedius (MRSP) with a combination of fosfomycin and clarithromycin. We selected these agents, because they prevent biofilm formation and induce antimicrobial synergism that may also target other staphylococci. RESULTS We determined that the combination of fosfomycin and clarithromycin better impairs S. pseudintermedius biofilm formation compared to treatment with either therapy alone (P < 0.05). Morphological examination of these biofilms via scanning electron microscopy demonstrated that fosfomycin alone does impact biofilm formation on orthopaedic implants. However, this activity is enhanced in the presence of clarithromycin. We propose that the bacteriostatic activity of clarithromycin is accentuated when fosfoymcin is present, as it may allow better penetration into the biofilm matrix, allowing fosfomycin access to sessile bacteria near the surface of attachment. CONCLUSIONS Here, we demonstrate that the combination of fosfomycin and clarithromycin may be a useful therapy that could improve the clinical outcomes of treating antimicrobial resistant MRSP biofilms.
Collapse
Affiliation(s)
- Matthew DiCicco
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph N1G 2 W1, Canada
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph N1G 2 W1, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph N1G 2 W1, Canada
| | - Ameet Singh
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Guelph N1G 2 W1, Canada
| |
Collapse
|
36
|
Mihailescu R, Furustrand Tafin U, Corvec S, Oliva A, Betrisey B, Borens O, Trampuz A. High activity of Fosfomycin and Rifampin against methicillin-resistant staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother 2014; 58:2547-53. [PMID: 24550327 PMCID: PMC3993211 DOI: 10.1128/aac.02420-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/07/2014] [Indexed: 12/24/2022] Open
Abstract
Increasing antimicrobial resistance reduces treatment options for implant-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the activity of fosfomycin alone and in combination with vancomycin, daptomycin, rifampin, and tigecycline against MRSA (ATCC 43300) in a foreign-body (implantable cage) infection model. The MICs of the individual agents were as follows: fosfomycin, 1 μg/ml; daptomycin, 0.125 μg/ml; vancomycin, 1 μg/ml; rifampin, 0.04 μg/ml; and tigecycline, 0.125 μg/ml. Microcalorimetry showed synergistic activity of fosfomycin and rifampin at subinhibitory concentrations against planktonic and biofilm MRSA. In time-kill curves, fosfomycin exhibited time-dependent activity against MRSA with a reduction of 2.5 log10 CFU/ml at 128 × the MIC. In the animal model, planktonic bacteria in cage fluid were reduced by <1 log10 CFU/ml with fosfomycin and tigecycline, 1.7 log10 with daptomycin, 2.2 log10 with fosfomycin-tigecycline and fosfomycin-vancomycin, 3.8 log10 with fosfomycin-daptomycin, and >6.0 log10 with daptomycin-rifampin and fosfomycin-rifampin. Daptomycin-rifampin cured 67% of cage-associated infections and fosfomycin-rifampin cured 83%, whereas all single drugs (fosfomycin, daptomycin, and tigecycline) and rifampin-free fosfomycin combinations showed no cure of MRSA cage-associated infections. No emergence of fosfomycin resistance was observed in animals; however, a 4-fold increase in fosfomycin MIC (from 2 to 16 μg/ml) occurred in the fosfomycin-vancomycin group. In summary, the highest eradication of MRSA cage-associated infections was achieved with fosfomycin in combination with rifampin (83%). Fosfomycin may be used in combination with rifampin against MRSA implant-associated infections, but it cannot replace rifampin as an antibiofilm agent.
Collapse
Affiliation(s)
- Raluca Mihailescu
- Infectious Diseases Service, Department of Medicine, University Hospital Lausanne, Lausanne, Switzerland
- National Institute of Infectious Diseases Prof. Dr. Matei Bals, Bucharest, Romania
| | - Ulrika Furustrand Tafin
- Infectious Diseases Service, Department of Medicine, University Hospital Lausanne, Lausanne, Switzerland
- Septic Surgical Unit, Department of Surgery and Anesthesiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Stéphane Corvec
- Infectious Diseases Service, Department of Medicine, University Hospital Lausanne, Lausanne, Switzerland
- Institut de Biologie des Hôpitaux de Nantes, Service de Bactériologie-Hygiène, CHU de Nantes, Nantes, France
| | - Alessandra Oliva
- Infectious Diseases Service, Department of Medicine, University Hospital Lausanne, Lausanne, Switzerland
| | - Bertrand Betrisey
- Infectious Diseases Service, Department of Medicine, University Hospital Lausanne, Lausanne, Switzerland
| | - Oliver Borens
- Septic Surgical Unit, Department of Surgery and Anesthesiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Andrej Trampuz
- Infectious Diseases Service, Department of Medicine, University Hospital Lausanne, Lausanne, Switzerland
- Center for Musculoskeletal Surgery, Charité-University Medicine, Berlin, Germany
| |
Collapse
|
37
|
Weise CF, Lauridsen VH, Rambo RS, Iversen EH, Olsen ML, Jørgensen KA. Organocatalytic access to enantioenriched dihydropyran phosphonates via an inverse-electron-demand hetero-Diels-Alder reaction. J Org Chem 2014; 79:3537-46. [PMID: 24673394 DOI: 10.1021/jo500347a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The enantioselective inverse-electron-demand hetero-Diels-Alder reaction of the remote olefin functionality in dienamines has been developed by the simultaneous activation of α,β-unsaturated aldehydes and acyl phosphonates. The dual activation is based on an organocatalyst that activates both the α,β-unsaturated aldehyde, through dienamine formation, and the acyl phosphonate by hydrogen-bonding. The enantioselective reaction results in the formation of dihydropyran frameworks with three contiguous stereogenic centers. Different substitution patterns are possible for both the heterodiene and the dienophile, and the target products are obtained in good yields and up to 92% ee. The potential of the reaction is demonstrated by transformation of the products into valuable and complex synthons.
Collapse
Affiliation(s)
- Christian F Weise
- Center for Catalysis, Department of Chemistry, Aarhus University , DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
38
|
In vitro activity of fosfomycin in combination with linezolid against clinical isolates of methicillin-resistant Staphylococcus aureus. J Antibiot (Tokyo) 2014; 67:369-71. [PMID: 24517925 DOI: 10.1038/ja.2014.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 11/02/2012] [Accepted: 01/14/2014] [Indexed: 11/08/2022]
Abstract
The objective of this paper was to investigate the in vitro effects of fosfomycin combined with linezolid against methicillin-resistant Staphylococcus aureus (MRSA). A total of 102 MRSA isolates isolated from clinical specimens of human infections from three hospitals in China were studied. The microdilution checkerboard method was used to determine whether combinations act synergistically against these isolates. The susceptibility results for fosfomycin and linezolid were interpreted according to the guidelines of the Clinical and Laboratory Standards Institute. Synergy and indifference were defined as a fractional inhibitory concentration index of ⩽0.5 and >0.5 but ⩽4, respectively. The combination of fosfomycin and linezolid demonstrated the following interactions: 98.04% (100/102) synergism; 1.96% (2/102) indifference; no antagonism was seen. Thus, the combination between fosfomycin and linezolid shows synergism for most of the MRSA isolates tested in this study. If these findings are confirmed in further in vitro or in vivo studies, the above combination could be tested clinically for difficulty to treat MRSA infections, particularly those warranting prolonged oral therapy.
Collapse
|
39
|
Anstead GM, Cadena J, Javeri H. Treatment of infections due to resistant Staphylococcus aureus. Methods Mol Biol 2014; 1085:259-309. [PMID: 24085702 DOI: 10.1007/978-1-62703-664-1_16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This chapter reviews data on the treatment of infections caused by drug-resistant Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA). This review covers findings reported in the English language medical literature up to January of 2013. Despite the emergence of resistant and multidrug-resistant S. aureus, we have seven effective drugs in clinical use for which little resistance has been observed: vancomycin, quinupristin-dalfopristin, linezolid, tigecycline, telavancin, ceftaroline, and daptomycin. However, vancomycin is less effective for infections with MRSA isolates that have a higher MIC within the susceptible range. Linezolid is probably the drug of choice for the treatment of complicated MRSA skin and soft tissue infections (SSTIs); whether it is drug of choice in pneumonia remains debatable. Daptomycin has shown to be non-inferior to either vancomycin or β-lactams in the treatment of staphylococcal SSTIs, bacteremia, and right-sided endocarditis. Tigecycline was also non-inferior to comparator drugs in the treatment of SSTIs, but there is controversy about whether it is less effective than other therapeutic options in the treatment of more serious infections. Telavancin has been shown to be non-inferior to vancomycin in the treatment of SSTIs and pneumonia, but has greater nephrotoxicity. Ceftaroline is a broad-spectrum cephalosporin with activity against MRSA; it is non-inferior to vancomycin in the treatment of SSTIs. Clindamycin, trimethoprim-sulfamethoxazole, doxycycline, rifampin, moxifloxacin, and minocycline are oral anti-staphylococcal agents that may have utility in the treatment of SSTIs and osteomyelitis, but the clinical data for their efficacy is limited. There are also several drugs with broad-spectrum activity against Gm-positive organisms that have reached the phase II and III stages of clinical testing that will hopefully be approved for clinical use in the upcoming years: oritavancin, dalbavancin, omadacycline, tedizolid, delafloxacin, and JNJ-Q2. Thus, there are currently many effective drugs to treat resistant S. aureus infections and many promising agents in the pipeline. Nevertheless, S. aureus remains a formidable adversary, and despite our deep bullpen of potential therapies, there are still frequent treatment failures and unfortunate clinical outcomes. The following discussion summarizes the clinical challenges presented by MRSA, the clinical experience with our current anti-MRSA antibiotics, and the gaps in our knowledge on how to use these agents to most effectively combat MRSA infections.
Collapse
Affiliation(s)
- Gregory M Anstead
- Medicine Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | | | | |
Collapse
|
40
|
Lee WS, Chen YC, Chen HP, Chen TH, Cheng CY. Vertebral osteomyelitis caused by vancomycin-tolerant methicillin-resistant Staphylococcus aureus bacteremia: Experience with teicoplanin plus fosfomycin combination therapy. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 49:600-3. [PMID: 24269007 DOI: 10.1016/j.jmii.2013.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022]
Abstract
An 85-year-old female presented with fever and consciousness disturbance for 3 days. The patient's blood culture subsequently revealed persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia despite the administration of vancomycin or teicoplanin monotherapy. Gallium inflammation scan and magnetic resonance image of the spine disclosed osteomyelitis and discitis at the level of L4-5. Surgical debridement was not feasible in this debilitated patient. Because of the creeping minimal inhibitory concentration of vancomycin of the causative isolate (1.5 μg/mL) and clinical failure with glycopeptide monotherapy, we changed the antibiotic therapy to a fosfomycin and teicoplanin combination therapy. The patient showed improved clinical response in terms of her enhanced consciousness as well as subsidence of persisted bacteremia. Despite the potential side effects of fosfomycin (such as diarrhea and hypernatremia), it combined with a glycopeptide may be an alternative therapy for invasive refractory MRSA infections.
Collapse
Affiliation(s)
- Wen-Sen Lee
- Section of Infectious Disease, Department of Internal Medicine, Wan Fang Medical Center, Taipei Medical University, Taiwan.
| | - Yen-Chuo Chen
- Section of Nephrology, Department of Internal Medicine, Wan Fang Medical Center, Taipei Medical University, Taiwan
| | - Hung-Ping Chen
- Section of Nephrology, Department of Internal Medicine, Wan Fang Medical Center, Taipei Medical University, Taiwan
| | - Tso-Hsiao Chen
- Section of Nephrology, Department of Internal Medicine, Wan Fang Medical Center, Taipei Medical University, Taiwan
| | - Chung-Yi Cheng
- Section of Nephrology, Department of Internal Medicine, Wan Fang Medical Center, Taipei Medical University, Taiwan.
| |
Collapse
|
41
|
Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. J Bacteriol 2013; 196:248-56. [PMID: 24163343 DOI: 10.1128/jb.01151-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although fosfomycin is an old antibiotic, it has resurfaced with particular interest. The antibiotic is still effective against many pathogens that are resistant to other commonly used antibiotics. We have found that fosfomycin resistance of enterohemorrhagic Escherichia coli (EHEC) O157:H7 is controlled by the bacterial two-component signal transduction system CpxAR. A cpxA mutant lacking its phosphatase activity results in constitutive activation of its cognate response regulator, CpxR, and fosfomycin resistance. We have shown that fosfomycin resistance requires CpxR because deletion of the cpxR gene in the cpxA mutant restores fosfomycin sensitivity. We have also shown that CpxR directly represses the expression of two genes, glpT and uhpT, which encode transporters that cotransport fosfomycin with their native substrates glycerol-3-phosphate and glucose-6-phosphate, and repression of these genes leads to a decrease in fosfomycin transport into the cpxA mutant. However, the cpxA mutant had an impaired growth phenotype when cultured with glycerol-3-phosphate or glucose-6-phosphate as a sole carbon substrate and was outcompeted by the parent strain, even in nutrient-rich medium. This suggests a trade-off between fosfomycin resistance and the biological fitness associated with carbon substrate uptake. We propose a role for the CpxAR system in the reversible control of fosfomycin resistance. This may be a beneficial strategy for bacteria to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin.
Collapse
|
42
|
Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother 2013; 58:1284-93. [PMID: 24145537 DOI: 10.1128/aac.02583-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcal implant-associated infections are difficult to treat because antibiotics generally lack activity against enterococcal biofilms. We investigated fosfomycin, rifampin, and their combinations against planktonic and adherent Enterococcus faecalis (ATCC 19433) in vitro and in a foreign-body infection model. The MIC/MBClog values were 32/>512 μg/ml for fosfomycin, 4/>64 μg/ml for rifampin, 1/2 μg/ml for ampicillin, 2/>256 μg/ml for linezolid, 16/32 μg/ml for gentamicin, 1/>64 μg/ml for vancomycin, and 1/5 μg/ml for daptomycin. In time-kill studies, fosfomycin was bactericidal at 8× and 16× MIC, but regrowth of resistant strains occurred after 24 h. With the exception of gentamicin, no complete inhibition of growth-related heat production was observed with other antimicrobials on early (3 h) or mature (24 h) biofilms. In the animal model, fosfomycin alone or in combination with daptomycin reduced planktonic counts by ≈4 log10 CFU/ml below the levels before treatment. Fosfomycin cleared planktonic bacteria from 74% of cage fluids (i.e., no growth in aspirated fluid) and eradicated biofilm bacteria from 43% of cages (i.e., no growth from removed cages). In combination with gentamicin, fosfomycin cleared 77% and cured 58% of cages; in combination with vancomycin, fosfomycin cleared 33% and cured 18% of cages; in combination with daptomycin, fosfomycin cleared 75% and cured 17% of cages. Rifampin showed no activity on planktonic or adherent E. faecalis, whereas in combination with daptomycin it cured 17% and with fosfomycin it cured 25% of cages. Emergence of fosfomycin resistance was not observed in vivo. In conclusion, fosfomycin showed activity against planktonic and adherent E. faecalis. Its role against enterococcal biofilms should be further investigated, especially in combination with rifampin and/or daptomycin treatment.
Collapse
|
43
|
Comparative study of the mutant prevention concentrations of vancomycin alone and in combination with levofloxacin, rifampicin and fosfomycin against methicillin-resistant Staphylococcus epidermidis. J Antibiot (Tokyo) 2013; 66:709-12. [PMID: 23981959 DOI: 10.1038/ja.2013.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/13/2012] [Accepted: 05/08/2013] [Indexed: 11/08/2022]
Abstract
No mutant-prevention concentration (MPC) with methicillin-resistant Staphylococcus epidermidis (MRSE) has been reported. The study aimed to evaluate the propensity of vancomycin individually and in combination to prevent MRSE from mutation. A total of 10 MRSE clinical isolates were included in the study. Susceptibility testing demonstrated that the susceptibility rates to vancomycin, rifampicin, levofloxacin and fosfomycin were 100, 100, 50 and 90%, respectively. The fractional inhibition concentration indices (FICI) for vancomycin combined with rifampicin, levofloxacin or fosfomycin were ≥1.5 but ≤2, ≥1.5 but ≤2, and >0.5 but ≤1.5, respectively, implying indifferent interactivity. The MPC with susceptible strains was determined to be the lowest antibiotic concentration inhibiting visible growth among 10(10) CFU on four agar plates (9 cm in diameter) after a 72-h incubation at 37°C. The MPCs were 16~32, >64, ≥64 and 4~16 μg ml(-1) for vancomycin, rifampicin, fosfomycin and levofloxacin, respectively. The vancomycin MPCs of combinations with fosfomycin (32 μg ml(-1)), levofloxacin (2 μg ml(-1)) and rifampicin (2 or 4 μg ml(-1)) were 1~4, 16~32 and 16~32 μg ml(-1), respectively. Against mutants selected by vancomycin, rifampicin, levofloxacin and fosfomycin individually, antibiotics had standard MICs of 2~4 μg ml(-1) for vancomycin, >64 μg ml(-1) for rifampicin, 4~8 μg ml(-1) for levofloxacin and 64 μg ml(-1) for fosfomycin. Thus single-step mutation can lead to resistance of MRSE to rifampicin, levofloxacin and fosfomycin, rather than non-susceptibility to vancomycin. Vancomycin-fosfomycin combination might be a superior alternative to vancomycin in blocking the growth of MRSE mutants, especially for high-organism-burden infections.
Collapse
|
44
|
Central venous catheter-related biofilm infections: An up-to-date focus on meticillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist 2013; 1:71-78. [DOI: 10.1016/j.jgar.2013.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 11/17/2022] Open
|
45
|
Lingscheid T, Tobudic S, Poeppl W, Mitteregger D, Burgmann H. In vitro activity of doripenem plus fosfomycin against drug-resistant clinical blood isolates. Pharmacology 2013; 91:214-8. [PMID: 23548688 DOI: 10.1159/000348572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022]
Abstract
The in vitro activity of doripenem in combination with fosfomycin was evaluated against a wide range of clinical blood isolates. Bacterial isolates of methicillin-resistant Staphylococcus aureus (MRSA; n = 39), Pseudomonas aeruginosa (n = 18), multidrug-resistant Escherichia coli (n = 10), Enterobacter cloacae (n = 3) and Klebsiella pneumoniae (n = 5) were investigated. For synergism testing the checkerboard test was applied and determined by calculation of the fractional inhibitory concentration index. Checkerboard results were verified by time-kill curve tests on selected isolates. Among MRSA, E. coli and K. pneumoniae, 94.9, 80 and 100% of isolates demonstrated synergism, respectively. Selected isolates demonstrated synergism in time-kill curve tests. P. aeruginosa isolates demonstrated no interaction in all isolates. Doripenem plus fosfomycin shows high efficacy with promising results in vitro.
Collapse
Affiliation(s)
- T Lingscheid
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
46
|
Descourouez JL, Jorgenson MR, Wergin JE, Rose WE. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant Enterococcus faecium from renal transplant patients with infected urinary stents. Antimicrob Agents Chemother 2013; 57:1518-20. [PMID: 23263002 PMCID: PMC3591908 DOI: 10.1128/aac.02099-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/16/2012] [Indexed: 02/02/2023] Open
Abstract
Fosfomycin is a potential option for vancomycin-resistant enterococcus (VRE) infections despite limited in vitro and clinical data. In this study, 32 VRE isolates from renal transplant patients with urinary stent infections were susceptible to fosfomycin, daptomycin, and linezolid and resistant to amoxicillin, minocycline, and nitrofurantoin based on their MIC(50)s and MIC(90)s. Fosfomycin was bacteriostatic at 0.5 to 16× the MIC (32 to 2,048 μg/ml); synergy occurred when fosfomycin was combined with daptomycin (2.8 to 3.9 log(10) CFU/ml kill; P < 0.001) or amoxicillin (2.6 to 3.4; P < 0.05). These combinations may be potent options to treat VRE urinary infections pending investigation of clinical efficacy.
Collapse
Affiliation(s)
- Jillian L. Descourouez
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
| | - Margaret R. Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
| | - Justine E. Wergin
- Pharmacy Practice Division, University of Wisconsin School of Pharmacy, Madison, Wisconsin, USA
| | - Warren E. Rose
- Pharmacy Practice Division, University of Wisconsin School of Pharmacy, Madison, Wisconsin, USA
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Pharmacokinetics of intraperitoneal and intravenous fosfomycin in automated peritoneal dialysis patients without peritonitis. Antimicrob Agents Chemother 2012; 56:3992-5. [PMID: 22564843 DOI: 10.1128/aac.00126-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood and dialysate concentrations of fosfomycin were determined after intravenous and intraperitoneal application of 4 mg/liter in patients undergoing automated peritoneal dialysis. Maximum serum concentrations after intravenous (287.75 ± 86.34 mg/liter) and intraperitoneal (205.78 ± 66.78 mg/liter) administration were comparable. Ratios of intraperitoneal to systemic exposure were 1.12 (intraperitoneal administration) and 0.22 (intravenous administration), indicating good systemic exposure after intraperitoneal application but limited penetration of fosfomycin into the peritoneal fluid after the intravenous dose.
Collapse
|
48
|
Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions. J Cyst Fibros 2012; 11:163-72. [DOI: 10.1016/j.jcf.2011.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/31/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022]
|
49
|
Tang HJ, Chen CC, Cheng KC, Toh HS, Su BA, Chiang SR, Ko WC, Chuang YC. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother 2012; 67:944-50. [PMID: 22258931 DOI: 10.1093/jac/dkr535] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To compare the in vitro antibacterial efficacy of antistaphylococcal antibiotics in combination with fosfomycin or rifampicin, using a biofilm model. METHODS The antibacterial activities of fusidic acid, linezolid, vancomycin, teicoplanin, rifampicin, minocycline, fosfomycin and tigecycline, individually and in fosfomycin or rifampicin combinations, were measured against planktonic or biofilm-embedded methicillin-resistant Staphylococcus aureus (MRSA) with susceptible and resistant breakpoint concentrations (SBCs and RBCs, respectively), using the MTT-staining method and by counting the number of cfu in the biofilms. RESULTS Linezolid alone at its SBC, and fosfomycin, linezolid, minocycline and tigecycline at their RBCs, exhibited killing effects on biofilm-embedded MRSA (P < 0.0001). Of the eight fosfomycin combinations studied, fosfomycin combined with linezolid, minocycline, vancomycin or teicoplanin at their respective SBCs, exhibited enhanced antibacterial activities (P < 0.0001) when compared with the control group, and outperformed rifampicin combinations (P < 0.01). The killing effects of fosfomycin combinations at their respective RBCs were better than those at their respective SBCs (P < 0.05). Significantly enhanced killing effects were observed with fosfomycin in combination with vancomycin or teicoplanin, compared with vancomycin or teicoplanin alone. For 10 randomly selected MRSA isolates, the results of colony counting in biofilms were comparable with those of the MTT-staining method. CONCLUSIONS Fosfomycin enhanced the activities of linezolid, minocycline, vancomycin and teicoplanin. These combinatorial treatments were even better than rifampicin combination regimens, and may provide therapeutic advantages in catheter-related or prosthetic joint infections.
Collapse
Affiliation(s)
- Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Trapnell BC, McColley SA, Kissner DG, Rolfe MW, Rosen JM, McKevitt M, Moorehead L, Montgomery AB, Geller DE. Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with pseudomonas airway infection. Am J Respir Crit Care Med 2011; 185:171-8. [PMID: 22095545 DOI: 10.1164/rccm.201105-0924oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Fosfomycin/tobramycin for inhalation (FTI), a unique, broad-spectrum antibiotic combination, may have therapeutic potential for patients with cystic fibrosis (CF). OBJECTIVES To evaluate safety and efficacy of FTI (160/40 mg or 80/20 mg), administered twice daily for 28 days versus placebo, in patients greater than or equal to 18 years of age, with CF, chronic Pseudomonas aeruginosa (PA) airway infection, and FEV(1) greater than or equal to 25% and less than or equal to 75% predicted. METHODS This double-blind, placebo-controlled, multicenter study assessed whether FTI/placebo maintained FEV(1) % predicted improvements achieved following a 28-day, open-label, run-in course of aztreonam for inhalation solution (AZLI). MEASUREMENTS AND MAIN RESULTS A total of 119 patients were randomized to FTI (160/40 mg: n = 41; 80/20 mg: n = 38) or placebo (n = 40). Mean age was 32 years and mean FEV(1) was 49% predicted at screening. Relative improvements in FEV(1) % predicted achieved by the AZLI run-in were maintained in FTI groups compared with placebo (160/40 mg vs. placebo: 6.2% treatment difference favoring FTI, P = 0.002 [primary endpoint]; 80/20 mg vs. placebo: 7.5% treatment difference favoring FTI, P < 0.001). The treatment effect on mean PA sputum density was statistically significant for the FTI 80/20 mg group versus placebo (-1.04 log(10) PA colony-forming units/g sputum difference, favoring FTI; P = 0.01). Adverse events, primarily cough, were consistent with CF disease. Respiratory events, including dyspnea and wheezing, were less common with FTI 80/20 mg than FTI 160/40 mg. No clinically significant differences between groups were reported for laboratory values. CONCLUSIONS FTI maintained the substantial improvements in FEV(1) % predicted achieved during the AZLI run-in and was well tolerated. FTI is a promising antipseudomonal therapy for patients with CF.
Collapse
|