1
|
Chen B, Liu M, Huang C. Current diagnostic and therapeutic strategies for COVID-19. J Pharm Anal 2021; 11:129-137. [PMID: 33520327 PMCID: PMC7832669 DOI: 10.1016/j.jpha.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023] Open
Abstract
The outbreak and spread of novel coronavirus disease 2019 (COVID-19) with pandemic features, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have greatly threatened global public health. Given the perniciousness of COVID-19 pandemic, acquiring a deeper understanding of this viral illness is critical for the development of new vaccines and therapeutic options. In this review, we introduce the systematic evolution of coronaviruses and the structural characteristics of SARS-CoV-2. We also summarize the current diagnostic tools and therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Binbin Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengli Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing, 400715, China
- Key Laboratory of Luminescence and Real-Time Analytical System, Chongqing Science and Technology Bureau, College of Pharmaceutical Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
2
|
Morris G, Athan E, Walder K, Bortolasci CC, O'Neil A, Marx W, Berk M, Carvalho AF, Maes M, Puri BK. Can endolysosomal deacidification and inhibition of autophagy prevent severe COVID-19? Life Sci 2020; 262:118541. [PMID: 33035581 PMCID: PMC7537668 DOI: 10.1016/j.lfs.2020.118541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
The possibility is examined that immunomodulatory pharmacotherapy may be clinically useful in managing the pandemic coronavirus disease 2019 (COVID-19), known to result from infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense single-stranded RNA virus. The dominant route of cell entry of the coronavirus is via phagocytosis, with ensconcement in endosomes thereafter proceeding via the endosomal pathway, involving transfer from early (EEs) to late endosomes (LEs) and ultimately into lysosomes via endolysosomal fusion. EE to LE transportation is a rate-limiting step for coronaviruses. Hence inhibition or dysregulation of endosomal trafficking could potentially inhibit SARS-CoV-2 replication. Furthermore, the acidic luminal pH of the endolysosomal system is critical for the activity of numerous pH-sensitive hydrolytic enzymes. Golgi sub-compartments and Golgi-derived secretory vesicles also depend on being mildly acidic for optimal function and structure. Activation of endosomal toll-like receptors by viral RNA can upregulate inflammatory mediators and contribute to a systemic inflammatory cytokine storm, associated with a worsened clinical outcome in COVID-19. Such endosomal toll-like receptors could be inhibited by the use of pharmacological agents which increase endosomal pH, thereby reducing the activity of acid-dependent endosomal proteases required for their activity and/or assembly, leading to suppression of antigen-presenting cell activity, decreased autoantibody secretion, decreased nuclear factor-kappa B activity and decreased pro-inflammatory cytokine production. It is also noteworthy that SARS-CoV-2 inhibits autophagy, predisposing infected cells to apoptosis. It is therefore also suggested that further pharmacological inhibition of autophagy might encourage the apoptotic clearance of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Eugene Athan
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Infectious Disease, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Victoria, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Wolf Marx
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Maes
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
3
|
Abstract
As of September 9, 2020, Worldwide coronavirus disease 2019 (COVID-19) has caused 894 000 deaths with over 27.5 million confirmed cases. There is an urgent need for effective treatment. Considerable efforts have been placed on developing novel therapeutics, including antivirals and vaccines. Current management of COVID-19 is supportive, with several experimental drugs. Respiratory failure from acute respiratory distress syndrome overshadowed by severe cytokine storm appears to be the leading cause of mortality. This article has reviewed several unique case studies published from December 2019 through July 31, 2020 with the above perspectives.
Collapse
|