1
|
Akinola OT, Dahunsi SO. Whole genome sequencing reveals antibiotic resistance pattern and virulence factors in Klebsiella quasipneumoniae subsp. Similipneumoniae from Hospital wastewater in South-West, Nigeria. Microb Pathog 2024; 197:107040. [PMID: 39427715 DOI: 10.1016/j.micpath.2024.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/22/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Klebsiella quasipneumoniae is a distinct species from K. pneumoniae, even though it is sometimes mistaken phenotypically for the latter in clinical situations. K. quasipneumoniae is a pathogen and this study aims at understanding the genomic antibiotic resistance and virulence characteristics of Klebsiella quasipneumoniae subsp. similipneumoniae (B105 strain) isolated from tertiary hospital wastewater and the potential risks associated with its environmental spread. The Illumina platform was used for whole-genome sequencing (WGS), the generated raw reads (de novo) was assembled using RAPT NCBI, while other standardized bioinformatics tools were utilized to validate and examine the landscape of the genome's antibiotic resistance and virulence factors. The K. quasipneumoniae subsp. similipneumoniae (B105 strain), belonged to sequence type 1422 and was resistant to ampicillin, amoxicillin-clavulanic acid, ceftazidime, cefepime, meropenem, tetracycline, but susceptible to gentamicin. The annotated genome acknowledged the presence of blaOKP-B-2, ompK 36, fosA5, oqxAB, virulence genes responsible for capsule formation, lipopolysaccharide, iron uptake aerobactin (iutA), salmochelins (iroE, iroN), enterobactin siderophore, efllux pump (acrA, acrB) adherence, (mrkC, mrkD, and fimD) and two plasmids replicon IncFIB(K) and IncR. The study resonates the inadequacy of conventional microbiological identification methods to distinguish K. pneumoniae and K. quasipneumoniae and at the same time heightens the importance of using a genomic platform to extol the identity of K. quasipneumoniae subsp. similipneumoniae strain. Furthermore, the peculiarities of the acquired antimicrobial resistance and virulence genes, in this strain, are a potential risk to the environment.
Collapse
Affiliation(s)
- Omowumi T Akinola
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria.
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria; The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
2
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Pachanon R, Khine NO, Phumthanakorn N, Wongsurawat T, Niyomtham W, Chatsuwan T, Hampson DJ, Prapasarakul N. Genomic characterization of carbapenem and colistin-resistant Klebsiella pneumoniae isolates from humans and dogs. Front Vet Sci 2024; 11:1386496. [PMID: 38835891 PMCID: PMC11148352 DOI: 10.3389/fvets.2024.1386496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Carbapenem and colistin-resistant Enterobacteriaceae, including Klebsiella pneumoniae, have become a growing global concern, posing a significant threat to public health. Currently, there is limited information about the genetic background of carbapenem and colistin-resistant K. pneumoniae isolates infecting humans and dogs in Thailand. This study aimed to characterize carbapenem and colistin-resistant genes in six resistant K. pneumoniae clinical isolates (three from humans and three from dogs) which differed in their pulse field gel electrophoresis profiles. Methods Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), antimicrobial susceptibility testing, and whole-genome sequencing were employed to identify and analyze the isolates. Results and discussion All six isolates were carbapenemase-producing K. pneumoniae isolates with chromosomally carried blaSHV, fosA, oqxA and oqxB genes, as well as nine to 21 virulence genes. The isolates belonged to five multilocus sequence types (STs): one isolate from a human and one from a dog belonged to ST16, with the other two human isolates being from ST340 and ST1269 and the other two dog isolates were ST147 and ST15. One human isolate and two dog isolates harbored the same blaOXA-232 gene on the ColKP3 plasmid, and one dog isolate carried the blaOXA-48 gene on the IncFII plasmid. Notably, one human isolate exhibited resistance to colistin mediated by the mcr-3.5 gene carried on the IncFII plasmid, which co-existed with resistance determinants to other antibiotics, including aminoglycosides and quinolones. In conclusion, this study provides a comprehensive characterization of both chromosome- and plasmid-mediated carbapenem and colistin resistance in a set of K. pneumoniae clinical isolates from unrelated humans and dogs in Thailand. The similarities and differences found contribute to our understanding of the potential widescale dissemination of these important resistance genes among clinical isolates from humans and animals, which in turn may contribute to outbreaks of emerging resistant clones in hospital settings.
Collapse
Affiliation(s)
- Ruttana Pachanon
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nwai Oo Khine
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nathita Phumthanakorn
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Thidathip Wongsurawat
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Waree Niyomtham
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - David J Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Bangkok, Thailand
| |
Collapse
|
4
|
Aihara M, Gotoh Y, Shirahama S, Matsushima Y, Uchiumi T, Kang D, Hayashi T. Generation and maintenance of the circularized multimeric IS26-associated translocatable unit encoding multidrug resistance. Commun Biol 2024; 7:597. [PMID: 38762617 PMCID: PMC11102541 DOI: 10.1038/s42003-024-06312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
In gram-negative bacteria, IS26 often exists in multidrug resistance (MDR) regions, forming a pseudocompound transposon (PCTn) that can be tandemly amplified. It also generates a circular intermediate called the "translocatable unit (TU)", but the TU has been detected only by PCR. Here, we demonstrate that in a Klebsiella pneumoniae MDR clone, mono- and multimeric forms of the TU were generated from the PCTn in a preexisting MDR plasmid where the inserted form of the TU was also tandemly amplified. The two modes of amplification were reproduced by culturing the original clone under antimicrobial selection pressure, and the amplified state was maintained in the absence of antibiotics. Mono- and multimeric forms of the circularized TU were generated in a RecA-dependent manner from the tandemly amplified TU, which can be generated in RecA-dependent and independent manners. These findings provide novel insights into the dynamic processes of genome amplification in bacteria.
Collapse
Affiliation(s)
- Masamune Aihara
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan.
- Department of Health Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saki Shirahama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yuichi Matsushima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Health Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Novais Â, Gonçalves AB, Ribeiro TG, Freitas AR, Méndez G, Mancera L, Read A, Alves V, López-Cerero L, Rodríguez-Baño J, Pascual Á, Peixe L. Development and validation of a quick, automated, and reproducible ATR FT-IR spectroscopy machine-learning model for Klebsiella pneumoniae typing. J Clin Microbiol 2024; 62:e0121123. [PMID: 38284762 PMCID: PMC10865814 DOI: 10.1128/jcm.01211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
The reliability of Fourier-transform infrared (FT-IR) spectroscopy for Klebsiella pneumoniae typing and outbreak control has been previously assessed, but issues remain in standardization and reproducibility. We developed and validated a reproducible FT-IR with attenuated total reflectance (ATR) workflow for the identification of K. pneumoniae lineages. We used 293 isolates representing multidrug-resistant K. pneumoniae lineages causing outbreaks worldwide (2002-2021) to train a random forest classification (RF) model based on capsular (KL)-type discrimination. This model was validated with 280 contemporaneous isolates (2021-2022), using wzi sequencing and whole-genome sequencing as references. Repeatability and reproducibility were tested in different culture media and instruments throughout time. Our RF model allowed the classification of 33 capsular (KL)-types and up to 36 clinically relevant K. pneumoniae lineages based on the discrimination of specific KL- and O-type combinations. We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), including from cultures obtained directly from the clinical sample, allowing to obtain typing information the same day bacteria are identified. The workflow was reproducible in different instruments throughout time (>98% correct predictions). Direct colony application, spectral acquisition, and automated KL prediction through Clover MS Data analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR ATR spectroscopy provides meaningful, reproducible, and accurate information at a very early stage (as soon as bacterial identification) to support infection control and public health surveillance. The high robustness together with automated and flexible workflows for data analysis provide opportunities to consolidate real-time applications at a global level. IMPORTANCE We created and validated an automated and simple workflow for the identification of clinically relevant Klebsiella pneumoniae lineages by FT-IR spectroscopy and machine-learning, a method that can be extremely useful to provide quick and reliable typing information to support real-time decisions of outbreak management and infection control. This method and workflow is of interest to support clinical microbiology diagnostics and to aid public health surveillance.
Collapse
Affiliation(s)
- Ângela Novais
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana Beatriz Gonçalves
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa G. Ribeiro
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CCP, Culture Collection of Porto, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Gema Méndez
- CLOVER Bioanalytical Software, Granada, Spain
| | | | - Antónia Read
- Clinical Microbiology Laboratory, Local Healthcare Unit, Matosinhos, Portugal
| | - Valquíria Alves
- Clinical Microbiology Laboratory, Local Healthcare Unit, Matosinhos, Portugal
| | - Lorena López-Cerero
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Álvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Vírgen Macarena, Instituto de Biomedicina de Sevilla (IBIS; CSIC/Hospital Virgen Macarena/Universidad de Sevilla), Sevilla, Spain
- Departamentos de Microbiología y Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Luísa Peixe
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CCP, Culture Collection of Porto, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Anderson JR, Lam NB, Jackson JL, Dorenkott SM, Ticer T, Maldosevic E, Velez A, Camden MR, Ellis TN. Progressive Sub-MIC Exposure of Klebsiella pneumoniae 43816 to Cephalothin Induces the Evolution of Beta-Lactam Resistance without Acquisition of Beta-Lactamase Genes. Antibiotics (Basel) 2023; 12:antibiotics12050887. [PMID: 37237790 DOI: 10.3390/antibiotics12050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial exposure to antibiotic concentrations below the minimum inhibitory concentration (MIC) may result in a selection window allowing for the rapid evolution of resistance. These sub-MIC concentrations are commonly found in soils and water supplies in the greater environment. This study aimed to evaluate the adaptive genetic changes in Klebsiella pneumoniae 43816 after prolonged but increasing sub-MIC levels of the common antibiotic cephalothin over a fourteen-day period. Over the course of the experiment, antibiotic concentrations increased from 0.5 μg/mL to 7.5 μg/mL. At the end of this extended exposure, the final adapted bacterial culture exhibited clinical resistance to both cephalothin and tetracycline, altered cellular and colony morphology, and a highly mucoid phenotype. Cephalothin resistance exceeded 125 μg/mL without the acquisition of beta-lactamase genes. Whole genome sequencing identified a series of genetic changes that could be mapped over the fourteen-day exposure period to the onset of antibiotic resistance. Specifically, mutations in the rpoB subunit of RNA Polymerase, the tetR/acrR regulator, and the wcaJ sugar transferase each fix at specific timepoints in the exposure regimen where the MIC susceptibility dramatically increased. These mutations indicate that alterations in the secretion of colanic acid and attachment of colonic acid to LPS may contribute to the resistant phenotype. These data demonstrate that very low sub-MIC concentrations of antibiotics can have dramatic impacts on the bacterial evolution of resistance. Additionally, this study demonstrates that beta-lactam resistance can be achieved through sequential accumulation of specific mutations without the acquisition of a beta-lactamase gene.
Collapse
Affiliation(s)
- Jasmine R Anderson
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Nghi B Lam
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Jazmyne L Jackson
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Sean M Dorenkott
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Taylor Ticer
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Emir Maldosevic
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Amanda Velez
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Megan R Camden
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Terri N Ellis
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
7
|
Yang F, Zhao Q, Wang L, Wu J, Jiang L, Sheng L, Zhang L, Xue Z, Yi M. Diminished Susceptibility to Cefoperazone/Sulbactam and Piperacillin/Tazobactam in Enterobacteriaceae Due to Narrow-Spectrum β-Lactamases as Well as Omp Mutation. Pol J Microbiol 2022; 71:251-256. [PMID: 35716168 PMCID: PMC9252146 DOI: 10.33073/pjm-2022-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/30/2022] [Indexed: 11/05/2022] Open
Abstract
Cefoperazone/sulbactam (CSL) and piperacillin/tazobactam (TZP) are commonly used in clinical practice in China because of their excellent antimicrobial activity. CSL and TZP-nonsusceptible Enterobacteriaceae are typically resistant to extended-spectrum cephalosporins such as ceftriaxone (CRO). However, 11 nonrepetitive Enterobacteriaceae strains, which were resistant to CSL and TZP yet susceptible to CRO, were collected from January to December 2020. Antibiotic susceptibility tests and whole-genome sequencing were conducted to elucidate the mechanism for this rare phenotype. Antibiotic susceptibility tests showed that all isolates were amoxicillin/clavulanic-acid resistant and sensitive to ceftazidime, cefepime, cefepime/tazobactam, cefepime/zidebactam, ceftazidime/avibactam, and ceftolozane/tazobactam. Whole-genome sequencing revealed three of seven Klebsiella pneumoniae strains harbored bla SHV-1 only, and four harbored bla SHV-1 and bla TEM-1B. Two Escherichia coli strains carried bla TEM-1B only, while two Klebsiella oxytoca isolates harbored bla OXY-1-3 and bla OXY-1-1, respectively. No mutation in the β-lactamase gene and promoter sequence was found. Outer membrane protein (Omp) gene detection revealed that numerous missense mutations of OmpK36 and OmpK37 were found in all strains of K. pneumoniae. Numerous missense mutations of OmpK36 and OmpK35 and OmpK37 deficiency were found in one K. oxytoca strain, and no OmpK gene was found in the other. No Omp mutations were found in E. coli isolates. These results indicated that narrow spectrum β-lactamases, TEM-1, SHV-1, and OXY-1, alone or in combination with Omp mutation, contributed to the resistance to CSL and TZP in CRO-susceptible Enterobacteriaceae. Antibiotic susceptibility tests Antibiotics Breakpoint, (μg/ml) Klebsiella pneumoniae Escherichia cou Klebriehd axyoca E1 E3 E4 E7 E9 E10 E11 E6 E8 E2 E5 CRO ≤1≥4 ≤0.5 ≤0.5 ≤0.5 ≤0.5 1 ≤0.5 1 ≤0.5 ≤0.5 1 1 CAZ 4 ≥16 1 2 1 4 4 4 4 2 4 1 1 FEP ≤2 216 1 1 0.25 1 2 2 2 0.5 2 1 1 AMC ≤8 ≥32 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 CSL ≤16 ≥64 64 64 64 64 ≥128 128 ≥128 64 128 128 ≥128 TZP ≤16 ≥128 ≥256 ≥256 ≥256 ≥256 2256 2256 ≥256 ≥256 ≥256 ≥256 ≥256 FPT ≤2 ≥16 1 0.5 0.06 0.125 2 1 2 0.25 1 0.125 0.25 FPZ ≤2 216 0.25 0.25 0.06 0.125 0.25 0.25 1 0.125 0.25 0.125 0.125 CZA ≤8 216 1 0.5 0.25 0.25 1 0.25 1 0.5 0.5 0.5 0.25 CZT ≤2 28 2 1 0.5 1 2 2 2 1 1 2 2 CROceftriaxone, CAZceftazidime, FEPcefepime, AMC:amoxicillin clavulanic-acid, CSLcefoperazone/sulbactam, TZP:piperadllin/tazobactam, FPT:cefepime tazobactam, FPZ:cefepime/zidebactam, CZA:ceftazidime/avibactam, CZTceftolozane/tazobactam Gene sequencing results Number Strain ST p-Lactamase gene Promoter sequence mutation Omp mutation El Kpn 45 blaSHV-1, blaTEM-lB none OmpK36, OmpK3 7 E3 Kpn 45 blaSHV-1, blaTEM-lB none OmpK36. OmpK3 7 E4 Kpn 2854 blaSHV-1 none OmpK36, OmpK3 7 E7 Kpn 2358 blaSHV-1 - blaTEM-lB none OmpK36, OmpK3 7 E9 Kpn 2358 blaSHV-1. blaTEM-lB none OmpK36. OmpK3 7 E10 Kpn 18 9 blaSHV-1 none OmpK36. OmpK3 7 Ell Kpn 45 blaSHV-1 none OmpK36, OmpK3 7 E6 Eco 88 blaTEM-lB none none ES Eco 409 blaTEM-1B none none E2 Kox 194 blaOXY-1-3 none OmpK36 mutations. OmpK35 and OmpK 37 deficiency E5 Kox 11 blaOXY-1-1 none no OmpK (OmpK3 5, OmpK36 and OmpK37) gene found.
Collapse
Affiliation(s)
- Fengzhen Yang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Qi Zhao
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Lipeng Wang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Jinying Wu
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Lihua Jiang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Li Sheng
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Leyan Zhang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Zhaoping Xue
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Maoli Yi
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
8
|
Hayashi T. [Genome analysis-based studies on bacterial genetic diversity]. Nihon Saikingaku Zasshi 2022; 77:145-160. [PMID: 36418109 DOI: 10.3412/jsb.77.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There are a huge number of bacterial species on earth, and a huge intra-species genomic diversity are also observed in many bacteria. The high ability of bacteria to acquire foreign DNA and the presence of various mobile genetic elements contribute the generation of such genomic diversity. During the biochemical and genetic analysis of a Pseudomonas aeruginosa toxin, called cytotoxin, and its converting phage, which I first engaged in my research carrier, I became very interested in the genetic diversity of bacteria and mobile genetic elements such as bacteriophages, and realized the usefulness and power of genome analysis. Since then, I have been involved in genome analyses of various pathogenic bacteria such as enterohemorrhagic Escherichia coli (EHEC), commensal bacteria of human and other animals, and bacteria or bacterial communities in natural environments. I was so lucky that I jumped in this research field at the very begging of genome analyses and experienced a very exciting time of surprisingly rapid advance in genome sequencing technologies which revolutionized a wide range of biology. In this article, I first review the main findings which our group obtained from the genome analyses on the P. aeruginosa cytotoxin converting phage and those on the evolution and genomic diversity of EHEC and related bacteria. The results of our analyses of Rickettsiaceae family genomes, which show surprisingly very low genomic diversity, and genome sequence-based analyses of an intrahospital bacterial outbreak and within-host genomic diversity are also summarized.
Collapse
Affiliation(s)
- Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University
| |
Collapse
|
9
|
Stepwise Evolution of a Klebsiella pneumoniae Clone within a Host Leading to Increased Multidrug Resistance. mSphere 2021; 6:e0073421. [PMID: 34817239 PMCID: PMC8612250 DOI: 10.1128/msphere.00734-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five blaCTX-M-14-positive Klebsiella pneumoniae isolates (KpWEA1, KpWEA2, KpWEA3, KpWEA4-1, and KpWEA4-2) were consecutively obtained from a patient with relapsed acute myeloid leukemia who was continuously administered antimicrobials. Compared with KpWEA1 and KpWEA2, KpWEA3 showed decreased susceptibility to antimicrobials, and KpWEA4-1 and KpWEA4-2 (isolated from a single specimen) showed further-elevated multidrug-resistance (MDR) phenotypes. This study aims to clarify the clonality of the five isolates and their evolutionary processes leading to MDR by comparison of these complete genomes. The genome comparison revealed KpWEA1 was the antecedent of the other four isolates, and KpWEA4-1 and KpWEA4-2 independently emerged from KpWEA3. Increasing levels of MDR were acquired by gradual accumulation of genetic alterations related to outer membrane protein expression: the loss of OmpK35 and upregulation of AcrAB-TolC occurred in KpWEA3 due to ramA overexpression caused by a mutation in ramR; then OmpK36 was lost in KpWEA4-1 and KpWEA4-2 by different mechanisms. KpWEA4-2 further acquired colistin resistance by the deletion of mgrB. In addition, we found that exuR and kdgR, which encode repressors of hexuronate metabolism-related genes, were disrupted in different ways in KpWEA4-1 and KpWEA4-2. The two isolates also possessed different amino acid substitutions in AtpG, which occurred at very close positions. These genetic alterations related to metabolisms may compensate for the deleterious effects of major porin loss. Thus, our present study reveals the evolutionary process of a K. pneumoniae clone leading to MDR and also suggests specific survival strategies in the bacteria that acquired MDR by the genome evolution. IMPORTANCE Within-host evolution is a survival strategy that can occur in many pathogens and is often associated with the emergence of novel antimicrobial-resistant (AMR) bacteria. To analyze this process, suitable sets of clinical isolates are required. Here, we analyzed five Klebsiella pneumoniae isolates which were consecutively isolated from a patient and showed a gradual increase in the AMR level. By genome sequencing and other analyses, we show that the first isolate was the antecedent of the later isolates and that they gained increased levels of antimicrobial resistance leading to multidrug resistance (MDR) by stepwise changes in the expression of outer membrane proteins. The isolates showing higher levels of MDR lost major porins but still colonized the patient’s gut, suggesting that the deleterious effects of porin loss were compensated for by the mutations in hexuronate metabolism-related genes and atpG, which were commonly detected in the MDR isolates.
Collapse
|