1
|
Papalia M, González-Espinosa F, Castedo FQ, Gutkind G, Ramírez MS, Power P, Radice M. Genetic and Biochemical Characterization of AXC-2 from Achromobacter ruhlandii. Pathogens 2024; 13:115. [PMID: 38392853 PMCID: PMC10893412 DOI: 10.3390/pathogens13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Achromobacter spp. are intrinsically resistant to multiple antibiotics and can also acquire resistance to those commonly used for the treatment of respiratory infections, especially in patients with cystic fibrosis. The aim of this study was to perform the genetic and biochemical characterization of AXC-2 from A. ruhlandii and to analyze all available AXC variants. Steady-state kinetic parameters were determined on a purified AXC-2 enzyme. It exhibited higher catalytic efficiencies towards amino-penicillins and older cephalosporins, while carbapenems behaved as poor substrates. Phylogenetic analysis of all blaAXC variants available in the NCBI was conducted. AXC was encoded in almost all A. ruhlandii genomes, whereas it was only found in 30% of A. xylosoxidans. AXC-1 was prevalent among A. xylosoxidans. AXC variants were clustered in two main groups, correlating with the Achromobacter species. No association could be established between the presence of blaAXC variants and a specific lineage of A. xylosoxidans; however, a proportion of AXC-1-producing isolates corresponded to ST 182 and ST 447. In conclusion, this study provides valuable insights into the genetic context and kinetic properties of AXC-2, identified in A. ruhlandii. It also provides a thorough description of all AXC variants and their association with Achromobacter species and various lineages.
Collapse
Affiliation(s)
- Mariana Papalia
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Francisco González-Espinosa
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Fátima Quiroga Castedo
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
| | - Gabriel Gutkind
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Pablo Power
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Marcela Radice
- Laboratorio de Resistencia Bacteriana, Instituto de Bacteriología y Virología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina; (F.G.-E.); (F.Q.C.); (G.G.); (P.P.); (M.R.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| |
Collapse
|
2
|
Pedrosa-Silva F, Venancio TM. Comparative Genomics Reveals Novel Species and Insights into the Biotechnological Potential, Virulence, and Resistance of Alcaligenes. Genes (Basel) 2023; 14:1783. [PMID: 37761923 PMCID: PMC10530903 DOI: 10.3390/genes14091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Alcaligenes is a cosmopolitan bacterial genus that exhibits diverse properties which are beneficial to plants. However, the genomic versatility of Alcaligenes has also been associated with the ability to cause opportunistic infections in humans, raising concerns about the safety of these microorganisms in biotechnological applications. Here, we report an in-depth comparative analysis of Alcaligenes species using all publicly available genomes to investigate genes associated with species, biotechnological potential, virulence, and resistance to multiple antibiotics. Phylogenomic analysis revealed that Alcaligenes consists of at least seven species, including three novel species. Pan-GWAS analysis uncovered 389 species-associated genes, including cold shock proteins (e.g., cspA) and aquaporins (e.g., aqpZ) found exclusively in the water-isolated species, Alcaligenes aquatilis. Functional annotation of plant-growth-promoting traits revealed enrichment of genes for auxin biosynthesis, siderophores, and organic acids. Genes involved in xenobiotic degradation and toxic metal tolerance were also identified. Virulome and resistome profiles provide insights into selective pressures exerted in clinical settings. Taken together, the results presented here provide the grounds for more detailed clinical and ecological studies of the genus Alcaligenes.
Collapse
Affiliation(s)
| | - Thiago M. Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil;
| |
Collapse
|
3
|
Bai B, Chen C, Zhao Y, Xu G, Yu Z, Tam VH, Wen Z. In vitro activity of tigecycline and proteomic analysis of tigecycline adaptation strategies in clinical Enterococcus faecalis isolates from China. J Glob Antimicrob Resist 2022; 30:66-74. [PMID: 35508286 DOI: 10.1016/j.jgar.2022.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/02/2022] [Accepted: 04/27/2022] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the in vitro activities of tigecycline (TGC) and the underlying molecular mechanisms of TGC stress response and resistance in clinical Enterococcus faecalis isolates from China. METHODS Antimicrobial susceptibility and antibiofilm activities of TGC in 399 E. faecalis isolates were evaluated. Heteroresistance was evaluated by population analysis profiling. Resistance and heteroresistance mechanisms were investigated by identifying genetic mutations in tetracycline (tet) target sites and through analysis of efflux protein inhibitors (EPIs). Furthermore, quantitative proteomics was used to investigate the global proteomic response of E. faecalis to TGC stress, as well as the resistance mechanisms of TGC within in vitro induced resistant isolate. RESULTS TGC minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates were ≤0.5 mg/L. TGC displayed remarkable inhibitory activity against biofilm formation. The occurrence rate of TGC heteroresistance was 1.75% (7/399), and the increased TGC MIC values of heteroresistance-derived clones could be reversed by EPI. TGC resistance was associated with mutations in the 16S rRNA site or 30S ribosomal protein S10. A total of 105 and 356 differentially expressed proteins was identified after being exposed to 1/2× MIC concentrations of TGC, while 356 differentially expressed proteins was identified in TGC-resistant isolate. The differentially expressed proteins were enriched in the translation and DNA replication process. In addition, multiple adenosine triphosphate (ATP)-binding cassette (ABC) transporters were upregulated. CONCLUSIONS TGC exhibited excellent activity against a substantial proportion of clinical isolates from China. However, E. faecalis exhibited a strong adaptation mechanism during TGC exposure: mutation of TGC target sites and elevated expression of efflux pumps under TGC selection, resulting in TGC resistance.
Collapse
Affiliation(s)
- Bing Bai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China; Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas
| | - Chengchun Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuxi Zhao
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Guangjian Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas.
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
4
|
Chalhoub H, Kampmeier S, Kahl BC, Van Bambeke F. Role of Efflux in Antibiotic Resistance of Achromobacter xylosoxidans and Achromobacter insuavis Isolates From Patients With Cystic Fibrosis. Front Microbiol 2022; 13:762307. [PMID: 35418957 PMCID: PMC8996194 DOI: 10.3389/fmicb.2022.762307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/07/2022] [Indexed: 01/22/2023] Open
Abstract
Achromobacter genus (including Achromobacter xylosoxidans, the most prevalent Achromobacter species in patients with cystic fibrosis) is poorly susceptible to most conventional antibiotics. Contribution of efflux by AxyABM, AxyXY-OprZ, and AxyEF-OprN and of target mutations were studied in clinical isolates of A. xylosoxidans and Achromobacter insuavis. Forty-one isolates longitudinally collected from 21 patients with CF were studied by whole-genome sequencing (WGS)-typing, determination of minimum inhibitory concentrations (MICs) of β-lactams, aminoglycosides, colistin, azithromycin, ciprofloxacin, chloramphenicol, and doxycycline, and expression (quantitative RT-PCR) and function (measure of the uptake of a fluorescent substrate) of efflux pumps. WGS-based typing resulted in 10 clusters comprising 2 or 3 isolates and 20 singletons. The efflux activity was high in strains with elevated MICs for amikacin or azithromycin. This work sheds a new light on the impact of efflux and target mutations in resistance of Achromobacter to several drugs.
Collapse
Affiliation(s)
- Hussein Chalhoub
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Magallon A, Amoureux L, Garrigos T, Sonois M, Varin V, Neuwirth C, Bador J. Role of AxyABM overexpression in acquired resistance in Achromobacter xylosoxidans. J Antimicrob Chemother 2022; 77:926-929. [PMID: 35029278 DOI: 10.1093/jac/dkab479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Acquired antimicrobial resistance among Achromobacter isolates from cystic fibrosis (CF) patients is frequent. Data concerning the mechanisms involved are scarce. The role of the AxyXY-OprZ and AxyEF-OprN Resistance Nodulation Division (RND) efflux systems has been demonstrated, but not that of AxyABM. OBJECTIVES To explore the role of efflux systems in the acquired multiresistance observed in a one-step mutant selected after ofloxacin exposure. METHODS The in vitro resistant mutant NCF-39-Bo2 and its parental strain NCF-39 (MICs of meropenem of 8 and 0.19 mg/L, of ceftazidime of 12 and 3 mg/L, of cefiderocol of 0.094 and 0.032 mg/L and of ciprofloxacin of 8 and 1.5 mg/L, respectively) were investigated by RNA-seq and WGS. Gene inactivation and reverse transcription quantitative PCR (RT-qPCR) were used to explore the role of the efflux systems of interest. RESULTS RNA-seq showed that the AxyABM efflux system was overproduced (about 40-fold) in the in vitro mutant NCF-39-Bo2 versus its parental strain NCF-39. A substitution in AxyR, the putative regulator of AxyABM, was detected in NCF-39-Bo2. Gene inactivation of axyB (encoding the transporter component) in NCF-39-Bo2 led to a decrease in MICs of ciprofloxacin (5-fold), meropenem (64-fold), ceftazidime (12-fold) and cefiderocol (24-fold). Inactivation of axyB in the clinical isolate AXX-H2 harbouring a phenotype of resistance close to that of NCF-39-Bo2 enhanced the activity of the same molecules, especially meropenem. CONCLUSIONS AxyABM overproduction is involved in acquired resistance of Achromobacter to ciprofloxacin, meropenem and ceftazidime, antibiotics widely used in CF patients, and increases the MIC of the new promising antibiotic cefiderocol.
Collapse
Affiliation(s)
- Arnaud Magallon
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Lucie Amoureux
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Thomas Garrigos
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Marine Sonois
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Véronique Varin
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Catherine Neuwirth
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Julien Bador
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| |
Collapse
|
6
|
Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E, Buroni S. Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics (Basel) 2021; 10:863. [PMID: 34356783 PMCID: PMC8300704 DOI: 10.3390/antibiotics10070863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Elena Perrin
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| |
Collapse
|