1
|
Harada S, Aoki K, Nomura Y, Ohama Y, Araoka H, Hayama B, Sakurai T, Ueda A, Ishii Y, Tsutsumi T. Transmission of global clones of NDM-producing Enterobacterales and interspecies spread of IncX3 plasmid harbouring bla NDM-5 in Tokyo. J Glob Antimicrob Resist 2024; 38:309-316. [PMID: 39004343 DOI: 10.1016/j.jgar.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVE The aim of this study is to characterise the molecular characteristics of NDM-producing Enterobacterales, which have been on the increase in recent years in Japan, where IMP-producing bacteria are dominant among carbapenemase-producing Enterobacterales. METHODS We collected 21 strains of NDM-producing Enterobacterales detected between 2015 and 2022 at five hospitals in Tokyo and performed illumina whole genome sequencing. For the seven selected strains, nanopore long-read sequencing was also performed to characterise the plasmids harbouring blaNDM. RESULTS Fourteen strains were Escherichia coli and all carried blaNDM-5. Among these strains, eight and three were sequence type (ST) 410 and ST167, respectively, and both groups of strains were spread clonally in different hospitals. Two strains of Klebsiella pneumoniae ST147 carrying blaNDM-1 were detected in a hospital, and these strains had also spread clonally. The remainder included Enterobacter hormaechei, Klebsiella quasipneumoniae, Citrobacter amalonaticus, and Klebsiella michiganensis. Plasmid analysis revealed that an identical IncX3 plasmid harbouring blaNDM-5 was shared among four strains of different bacterial species (E. coli, C. amalonaticus, K. michiganensis, and E. hormaechei) detected at the same hospital. In addition, a Klebsiella quasipneumoniae strain detected at a different hospital also carried an IncX3 plasmid with a similar genetic structure. CONCLUSIONS Nosocomial spread of multiple multidrug-resistant global clones and transmission of IncX3 plasmids harbouring blaNDM-5 among multiple species were detected as the major pathways of spread of NDM-producing Enterobacterales in Tokyo. Early detection of carriers and measures to prevent nosocomial spread are important to prevent further spread of NDM-producing organisms.
Collapse
Affiliation(s)
- Sohei Harada
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan.
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Yusuke Nomura
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuki Ohama
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan; Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Araoka
- Department of Infectious Diseases, Toranomon Hospital, Tokyo, Japan
| | - Brian Hayama
- Department of Infectious Diseases, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Sakurai
- Department of Infectious Diseases, NTT Medical Center Tokyo, Tokyo, Japan
| | - Akihiro Ueda
- Department of Infectious Diseases, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Takeya Tsutsumi
- Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Zhang Y, Liu M, Zhang J, Wu J, Hong L, Zhu L, Long J. Large-scale comparative analysis reveals phylogenomic preference of bla NDM-1 and bla KPC-2 transmission among Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107225. [PMID: 38810941 DOI: 10.1016/j.ijantimicag.2024.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
blaNDM-1 and blaKPC-2 are responsible for the global increase in carbapenem-resistant Klebsiella pneumoniae, posing a great challenge to public health. However, the impact of phylogenetic factors on the dissemination of blaNDM-1 and blaKPC-2 is not yet fully understood. This study established a global dataset of 4051 blaNDM-1+ and 10,223 blaKPC-2+ K. pneumoniae genomes, and compared their transmission modes on a global scale. The results showed that blaNDM-1+ K. pneumoniae genomes exhibited a broader geographical distribution and higher sequence type (ST) richness than blaKPC-2+ genomes, indicating higher transmissibility of the blaNDM-1 gene. Furthermore, blaNDM-1+ genomes displayed significant differences in ST lineage, antibiotic resistance gene composition, virulence gene composition and genetic environments compared with blaKPC-2+ genomes, suggesting distinct dissemination mechanisms. blaNDM-1+ genomes were predominantly associated with ST147 and ST16, whereas blaKPC-2+ genomes were mainly found in ST11 and ST258. Significantly different accessory genes were identified between blaNDM-1+ and blaKPC-2+ genomes. The preference for blaKPC-2 distribution across certain countries, ST lineages and genetic environments underscores vertical spread as the primary mechanism driving the expansion of blaKPC-2. In contrast, blaNDM-1+ genomes did not display such a strong preference, confirming that the dissemination of blaNDM-1 mainly depends on horizontal gene transfer. Overall, this study demonstrates different phylogenetic drivers for the dissemination of blaNDM-1 and blaKPC-2, providing new insights into their global transmission dynamics.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyue Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangfeng Zhang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lijuan Hong
- Department Hospital-Acquired Infection Control, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - LiQiang Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Talat A, Khan F, Khan AU. Genome analyses of colistin-resistant high-risk bla NDM-5 producing Klebsiella pneumoniae ST147 and Pseudomonas aeruginosa ST235 and ST357 in clinical settings. BMC Microbiol 2024; 24:174. [PMID: 38769479 PMCID: PMC11103832 DOI: 10.1186/s12866-024-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT). RESULTS This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 μg/mL), while broth microdilution identified 48 (MIC = 32-128 μg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357). CONCLUSION The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.
Collapse
Affiliation(s)
- Absar Talat
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Fatima Khan
- Microbiology Department, JNMC and Hospital, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Loconsole D, Sallustio A, Sacco D, Santantonio M, Casulli D, Gatti D, Accogli M, Parisi A, Zagaria R, Colella V, Centrone F, Chironna M. Genomic surveillance of carbapenem-resistant Klebsiella pneumoniae reveals a prolonged outbreak of extensively drug-resistant ST147 NDM-1 during the COVID-19 pandemic in the Apulia region (Southern Italy). J Glob Antimicrob Resist 2024; 36:260-266. [PMID: 38280719 DOI: 10.1016/j.jgar.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024] Open
Abstract
OBJECTIVES The recent worldwide spread of New Delhi metallo-beta-lactamase-producing Klebsiella pneumoniae (NDM-KP) in health-care settings remains a concern. The aim of the study was to describe an outbreak of extensively drug-resistant ST147 NDM-1-KP in the Apulia region of Southern Italy that occurred between 2020 and 2022 through genomic surveillance of carbapenem-resistant Enterobacterales. METHODS A total of 459 carbapenem-resistant KP isolates collected from patients hospitalised with bloodstream infections were tested using a commercial multiplex real-time polymerase chain reaction to identify carbapenemase genes. A subset of 27 isolates was subjected to whole-genome sequencing. Core-genome multilocus sequence typing was performed by analysing a panel of 4884 genes. RESULTS Molecular testing revealed that 104 (22.6%) isolates carried the carbapenemase NDM gene. Phylogenetic analysis of the 27 isolates subjected to whole-genome sequencing revealed high genetic relatedness among strains. All isolates were resistant to all first-line antibiotics. Virulome analysis identified the ybt locus, the two well-recognised virulence factors iucABCDiutA and rmpA, and the genes encoding the type 3 pilus virulence factor. Plasmids IncFIB(pkPHS1), IncFIB(pNDM-Mar), IncFIB(pQil), IncHI1B(pNDM-MAR), IncR, and Col(pHAD28) were identified in all isolates. Moreover, further analysis identified the IncFIB-type plasmid carrying the NDM-1 genes. CONCLUSION The increasing circulation of extensively drug-resistant NDM-1 ST147 KP strains in Southern Italy in recent years is worrisome, because these clones pose a real risk, particularly in hospital settings. Genomic surveillance is a crucial tool for early identification of emerging threats such as the spread of high-risk pathogens. Rapid infection control measures and antimicrobial stewardship are key to preventing further spread of hypervirulent KP strains.
Collapse
Affiliation(s)
- Daniela Loconsole
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy
| | - Anna Sallustio
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Davide Sacco
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy
| | - Marilina Santantonio
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Daniele Casulli
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Domenico Gatti
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Marisa Accogli
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Italy
| | - Riccardo Zagaria
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy
| | - Vito Colella
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy
| | - Francesca Centrone
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Maria Chironna
- Department of Interdisciplinary Medicine, Hygiene Section, University of Bari, Bari, Italy.
| |
Collapse
|
5
|
Di Pilato V, Pollini S, Miriagou V, Rossolini GM, D'Andrea MM. Carbapenem-resistant Klebsiella pneumoniae: the role of plasmids in emergence, dissemination, and evolution of a major clinical challenge. Expert Rev Anti Infect Ther 2024; 22:25-43. [PMID: 38236906 DOI: 10.1080/14787210.2024.2305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024]
Abstract
INTRODUCTION Klebsiella pneumoniae is a major agent of healthcare-associated infections and a cause of some community-acquired infections, including severe bacteremic infections associated with metastatic abscesses in liver and other organs. Clinical relevance is compounded by its outstanding propensity to evolve antibiotic resistance. In particular, the emergence and dissemination of carbapenem resistance in K. pneumoniae has posed a major challenge due to the few residual treatment options, which have only recently been expanded by some new agents. The epidemiological success of carbapenem-resistant K. pneumoniae (CR-Kp) is mainly linked with clonal lineages that produce carbapenem-hydrolyzing enzymes (carbapenemases) encoded by plasmids. AREAS COVERED Here, we provide an updated overview on the mechanisms underlying the emergence and dissemination of CR-Kp, focusing on the role that plasmids have played in this phenomenon and in the co-evolution of resistance and virulence in K. pneumoniae. EXPERT OPINION CR-Kp have disseminated on a global scale, representing one of the most important contemporary public health issues. These strains are almost invariably associated with complex multi-drug resistance (MDR) phenotypes, which can also include recently approved antibiotics. The heterogeneity of the molecular bases responsible for these phenotypes poses significant hurdles for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Vivi Miriagou
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | | |
Collapse
|
6
|
Emeraud C, Mahamat A, Jousset AB, Bernabeu S, Goncalves T, Pommier C, Girlich D, Birer A, Rodriguez C, Pawlotsky JM, Naas T, Bonnin RA, Dortet L. Emergence and rapid dissemination of highly resistant NDM-14-producing Klebsiella pneumoniae ST147, France, 2022. Euro Surveill 2023; 28:2300095. [PMID: 37855905 PMCID: PMC10588306 DOI: 10.2807/1560-7917.es.2023.28.42.2300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/26/2023] [Indexed: 10/20/2023] Open
Abstract
BackgroundSince 2021, an emergence of New Delhi metallo-β-lactamase (NDM)-14-producing Klebsiella pneumoniae has been identified in France. This variant with increased carbapenemase activity was not previously detected in Enterobacterales.AimWe investigated the rapid dissemination of NDM-14 producers among patients in hospitals in France.MethodsAll NDM-14-producing non-duplicate clinical isolates identified in France until June 2022 (n = 37) were analysed by whole genome sequencing. The phylogeny of NDM-14-producers among all K. pneumoniae sequence type (ST) 147 reported in France since 2014 (n = 431) was performed. Antimicrobial susceptibility testing, conjugation experiments, clonal relationship and molecular clock analysis were performed.ResultsThe 37 NDM-14 producers recovered in France until 2022 belonged to K. pneumoniae ST147. The dissemination of NDM-14-producing K. pneumoniae was linked to a single clone, likely imported from Morocco and responsible for several outbreaks in France. The gene bla NDM-14 was harboured on a 54 kilobase non-conjugative IncFIB plasmid that shared high homology with a known bla NDM-1-carrying plasmid. Using Bayesian analysis, we estimated that the NDM-14-producing K. pneumoniae ST147 clone appeared in 2020. The evolutionary rate of this clone was estimated to 5.61 single nucleotide polymorphisms per genome per year. The NDM-14 producers were highly resistant to all antimicrobials tested except to colistin, cefiderocol (minimum inhibitory concentration 2 mg/L) and the combination of aztreonam/avibactam.ConclusionHighly resistant NDM-14 producing K. pneumoniae can rapidly spread in healthcare settings. Surveillance and thorough investigations of hospital outbreaks are critical to evaluate and limit the dissemination of this clone.
Collapse
Affiliation(s)
- Cécile Emeraud
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UMR-1184, INSERM, University Paris-Saclay, CEA, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Aba Mahamat
- Corsica Centre for Healthcare-Associated Infections Control and Prevention, Hôpital Eugénie, Ajaccio, France
| | - Agnès B Jousset
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UMR-1184, INSERM, University Paris-Saclay, CEA, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Sandrine Bernabeu
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UMR-1184, INSERM, University Paris-Saclay, CEA, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Tania Goncalves
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Camille Pommier
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Delphine Girlich
- UMR-1184, INSERM, University Paris-Saclay, CEA, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Aurélien Birer
- Centre National de Référence de la Résistance aux antibiotiques, Service de Bactériologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Christophe Rodriguez
- Université Paris-Est-Créteil (UPEC), Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- INSERM U955, Team Viruses, Hepatology, Cancer, Créteil, France
| | - Jean-Michel Pawlotsky
- Université Paris-Est-Créteil (UPEC), Créteil, France
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- INSERM U955, Team Viruses, Hepatology, Cancer, Créteil, France
| | - Thierry Naas
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UMR-1184, INSERM, University Paris-Saclay, CEA, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- UMR-1184, INSERM, University Paris-Saclay, CEA, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UMR-1184, INSERM, University Paris-Saclay, CEA, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Carlsen L, Büttner H, Christner M, Cordts L, Franke G, Hoffmann A, Knobling B, Lütgehetmann M, Nakel J, Werner T, Knobloch JK. Long time persistence and evolution of carbapenemase-producing Enterobacterales in the wastewater of a tertiary care hospital in Germany. J Infect Public Health 2023; 16:1142-1148. [PMID: 37267681 DOI: 10.1016/j.jiph.2023.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Worldwide observations revealed increased frequencies of multi-resistant Enterobacterales and resistance genes in hospital wastewater compared to any other type of wastewater. Despite the description of clonal lineages possibly adapted to hospital wastewater, little is known about long term persistence as well as evolution of these lineages. METHODS In this study, wastewater isolates of different Enterobacterales species from a tertiary care hospital were investigated with 2.5 years distance. Whole Genome Sequencing (WGS) and resistance gene identification were performed for E. coli, C. freundii, S. marcescens, K. pneumoniae, K. oxytoca, and E. cloacae isolates (n = 59), isolated in 2022 and compared with strains isolated from the same wastewater pipeline in 2019 (n = 240). RESULTS Individual clonal lineages with highly related isolates could be identified in all species identified more than once in 2022 that appear to persist in the wastewater drainage. A common motif of all persistent clonal lineages was the carriage of mobile genetic elements encoding carbapenemase genes with hints for horizontal gene transfer in persistent clones in this environment observed over the 2.5-year period. Multiple plasmid replicons could be detected in both years. In 2022 isolates blaVIM-1 replaced blaOXA-48 as the most common carbapenemase gene compared to 2019. Interestingly, despite a similar abundance of carbapenemase genes (>80% of all isolates) at both time points genes encoding extended spectrum β-lactamases decreased over time. CONCLUSIONS This data indicates that hospital wastewater continuously releases genes encoding carbapenemases to the urban wastewater system. The evolution of the resident clones as well as the reasons for the selection advantage in this specific ecological niche needs to be further investigated in the future.
Collapse
Affiliation(s)
- Laura Carlsen
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Henning Büttner
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Martin Christner
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Lukas Cordts
- HAMBURG WASSER, Billhorner Deich 2, 20539 Hamburg, Germany
| | - Gefion Franke
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Armin Hoffmann
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Birte Knobling
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jacqueline Nakel
- Virus Genomics, Heinrich-Pette-Institute, Leibniz Institute for Experimental Biology, Martinistraße 52, 20251 Hamburg, Germany
| | - Thomas Werner
- HAMBURG WASSER, Billhorner Deich 2, 20539 Hamburg, Germany
| | - Johannes K Knobloch
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
8
|
Liu C, Du P, Yang P, Lu M, Shen N. Fusion plasmid enhanced the endemic extensively drug resistant Klebsiella pneumoniae clone ST147 harbored bla OXA-48 to acquire the hypervirulence and cause fatal infection. Ann Clin Microbiol Antimicrob 2023; 22:11. [PMID: 36788555 PMCID: PMC9927049 DOI: 10.1186/s12941-022-00551-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Klebsiella Pneumoniae (Kp) sequence type (ST) 147 has emerged globally and spread rapidly, particularly the extensively drug resistant (XDR) isolates. However, the infections caused by this subtype is rare reported in China for now. The clinical, microbiological and genomic characteristics are unclear. METHODS A systemic retrospective study was conducted in a Chinese tertiary hospital. Clinical information of the infection cases was collected, and whole-genome sequencing and phenotypic experiments were performed on the ST147 isolates. The resistance and virulence genes were identified, and the plasmids harboring these genes were further studied. RESULTS Six ST147 isolates from six patients among 720 available clincial Kp isolates were detected. Notably, two isolates, PEKP4035 and PEKP4265, represented both XDR and hypervirulence by acquiring blaOXA-48, blaCTX-M-15 and key virulence genes, iucA + rmpA2, representing no fitness cost and resulting fatal infection. Four of the six ST147 isolates presented with more nucleotide differences, whereas the PEKP4035 and PEKP4265 both isolated from the intensive care unit possessed 20 single nucleotide polymorphisms among one year, indicating the prolonged survive and transmission. Interestingly, the two isolates harbored the same fused plasmid composed of sul2 and iucA + rmpA2, which might be generated by recombination of a plasmid like KpvST101_OXA-48 with the pLVPK plasmid via IS26. Besides, two ~ 70 kb plasmids conferring multiple-drug resistance were also identified among the two isolates, which presented resistance genes including blaOXA-48, blaCTX-M-16, strA and strB. Interestingly, we reported that blaCTX-M-15, a common resistance gene within ST147, has successfully transferred into the chromosome by ISEcp1. CONCLUSIONS XDR hypervirulent ST147 Kp is emerging, suggesting enhanced surveillance is essential.
Collapse
Affiliation(s)
- Chao Liu
- grid.411642.40000 0004 0605 3760Department of Infectious Disease, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | | | - Ping Yang
- grid.411642.40000 0004 0605 3760Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ming Lu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China. .,Center of Infectious Disease, Peking University Third Hospital, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
| | - Ning Shen
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China. .,Center of Infectious Disease, Peking University Third Hospital, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China. .,Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
9
|
Biedrzycka M, Izdebski R, Urbanowicz P, Polańska M, Hryniewicz W, Gniadkowski M, Literacka E. MDR carbapenemase-producing Klebsiella pneumoniae of the hypervirulence-associated ST23 clone in Poland, 2009-19. J Antimicrob Chemother 2022; 77:3367-3375. [PMID: 36177793 DOI: 10.1093/jac/dkac326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To characterize carbapenemase-producing isolates of the Klebsiella pneumoniae hypervirulent (hvKp) clone ST23 in Poland. METHODS Fifteen K. pneumoniae ST23 isolates were identified by the Polish surveillance of carbapenemase-producing Enterobacterales. These comprised a cluster with KPC-2 + NDM-1 (n = 7), KPC-2 (n = 1) or NDM-1 (n = 1) enzymes from one hospital from 2018, and sporadic isolates with KPC-2 (n = 1), NDM-1 (n = 1), VIM-1 (n = 1) or OXA-48 (n = 3), recovered from 2009 to 2019 in different towns. The isolates were sequenced by Illumina MiSeq, followed by MinION for six representatives. Clonality, phylogeny, serotypes, virulomes, resistomes and plasmids of the isolates were analysed and compared with international ST23 strains, using various bioinformatic tools. RESULTS Only two diverse isolates with KPC-2 or VIM-1 were of typical hvKp ST23 serotypes K1 and O1v.2, and its predominant phylogenetic clade. These contained multiple chromosomal (ybt, clb) and pK2044/KpVP-1 plasmid (iuc, iro, rmpADC, rmpA2) virulence loci, whereas carbapenemase and other antimicrobial resistance (AMR) genes were on single additional plasmids. All remaining isolates were of K57 and O2v.2 serotypes, and a minor, distant clade of unclear phylogeny, including also ∼10 isolates from other European countries. These had fewer virulence loci (ybt, iuc, rmpADC, rmpA2) but abounded in plasmids, which with several chromosomal AMR mutations conferred more extensive MDR phenotypes than in K1 O1v.2. Lower clonal diversity than in K1, and numerous common characteristics of the isolates supported the hypothesis of the emerging character of the ST23 K57 clade. CONCLUSIONS A new MDR ST23 lineage has emerged in Europe, causing a potential threat to public health.
Collapse
Affiliation(s)
| | - R Izdebski
- National Medicines Institute, Warsaw, Poland
| | | | - M Polańska
- Faculty of Biology, Warsaw University, Warsaw, Poland
| | | | | | - E Literacka
- National Medicines Institute, Warsaw, Poland
| |
Collapse
|
10
|
Di Pilato V, Henrici De Angelis L, Aiezza N, Baccani I, Niccolai C, Parisio EM, Giordano C, Camarlinghi G, Barnini S, Forni S, Righi L, Mechi MT, Giani T, Antonelli A, Rossolini GM. Resistome and virulome accretion in an NDM-1-producing ST147 sublineage of Klebsiella pneumoniae associated with an outbreak in Tuscany, Italy: a genotypic and phenotypic characterisation. THE LANCET MICROBE 2022; 3:e224-e234. [DOI: 10.1016/s2666-5247(21)00268-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 10/24/2022] Open
|
11
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1561-1569. [DOI: 10.1093/jac/dkac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
|