1
|
Urrutikoetxea-Gutierrez M, Gual-de-Torrella A, Vidal-García M, Berdonces González P. Usefulness of decentralized sequencing networks on antimicrobial resistance surveillance. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:462-463. [PMID: 38902153 DOI: 10.1016/j.eimce.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Mikel Urrutikoetxea-Gutierrez
- Clinical Microbiology Service-Basurto University Hospital, Bizkaia, Spain; Biocruces-Bizkaia Health Research Institute, Bizkaia, Spain.
| | - Ana Gual-de-Torrella
- Biocruces-Bizkaia Health Research Institute, Bizkaia, Spain; Clinical Microbiology Service-Galdakao University Hospital, Bizkaia, Spain
| | - Matxalen Vidal-García
- Clinical Microbiology Service-Basurto University Hospital, Bizkaia, Spain; Biocruces-Bizkaia Health Research Institute, Bizkaia, Spain
| | - Pilar Berdonces González
- Biocruces-Bizkaia Health Research Institute, Bizkaia, Spain; Clinical Microbiology Service-Galdakao University Hospital, Bizkaia, Spain
| |
Collapse
|
2
|
Fonton P, Hassoun-Kheir N, Harbarth S. Epidemiology of Citrobacter spp. infections among hospitalized patients: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:662. [PMID: 38956542 PMCID: PMC11221093 DOI: 10.1186/s12879-024-09575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Infections due to Citrobacter species are increasingly observed in hospitalized patients and are often multidrug-resistant. Yet, the magnitude and burden of Citrobacter spp. resistance in the hospital setting have not been reported. We aimed to evaluate the epidemiology of Citrobacter spp. infections among hospitalized patients, their main resistance patterns and Citrobacter spp. involvement in hospital outbreaks. METHODS We conducted a systematic review and meta-analysis of published literature (PROSPERO registration Jan-2023, CRD42023390084). We searched Embase, Medline and grey literature for studies on hospitalized patients diagnosed with Citrobacter spp. infections, and nosocomial outbreaks due to Citrobacter spp. published during the years 2000-2022. We included observational, interventional, surveillance studies and outbreak reports. Outcomes of interest were the frequency of Citrobacter spp. infections among hospitalized patients and 3rd generation cephalosporin and/or carbapenem resistance percentages in these infections. We used random-effects models to generate pooled outcome estimates and evaluated risk of bias and quality of reporting of outbreaks. RESULTS We screened 1609 deduplicated publications, assessed 148 full-texts, and included 41 studies (15 observational, 13 surveillance and 13 outbreak studies). Citrobacter spp. urinary tract- and bloodstream infections were most frequently reported, with Citrobacter freundii being the main causative species. Hospital-acquired infection occurred in 85% (838/990) of hospitalized patients with Citrobacter infection. After 2010, an increasing number of patients with Citrobacter spp. infections was reported in observational studies. Pooled frequency estimates for Citrobacter spp. infections could not be generated due to lack of data. The pooled prevalence of ESBL and carbapenemase producers among Citrobacter isolates were 22% (95%CI 4-50%, 7 studies) and 18% (95%CI 0-63%, 4 studies), respectively. An increased frequency of reported Citrobacter outbreaks was observed after 2016, with an infection/colonization ratio of 1:3 and a case-fatality ratio of 7% (6/89 patients). Common outbreak sources were sinks, toilets, contaminated food and injection material. Implemented preventive measures included environmental cleaning, isolation of positive patients and reinforcement of hand hygiene. Only seven out of 13 outbreaks (54%) were definitively controlled. CONCLUSION This review highlights the clinical importance of endemic and epidemic Citrobacter spp. in healthcare settings. As an emerging, multidrug‑resistant nosocomial pathogen it requires heightened awareness and further dedicated surveillance efforts.
Collapse
Affiliation(s)
- Pérince Fonton
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, WHO Collaborating Center, Rue Gabrielle-Perret-Gentil 4, CH-1205, Geneva, Switzerland
| | - Nasreen Hassoun-Kheir
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, WHO Collaborating Center, Rue Gabrielle-Perret-Gentil 4, CH-1205, Geneva, Switzerland
| | - Stephan Harbarth
- Infection Control Program, Geneva University Hospitals and Faculty of Medicine, WHO Collaborating Center, Rue Gabrielle-Perret-Gentil 4, CH-1205, Geneva, Switzerland.
| |
Collapse
|
3
|
Tiwari A, Krolicka A, Tran TT, Räisänen K, Ásmundsdóttir ÁM, Wikmark OG, Lood R, Pitkänen T. Antibiotic resistance monitoring in wastewater in the Nordic countries: A systematic review. ENVIRONMENTAL RESEARCH 2024; 246:118052. [PMID: 38163547 DOI: 10.1016/j.envres.2023.118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) have effectively kept lower antibiotic-resistant bacterial (ARB) pathogen rates than many other countries. However, in recent years, these five countries have encountered a rise in ARB cases and challenges in treating infections due to the growing prevalence of ARB pathogens. Wastewater-based surveillance (WBS) is a valuable supplement to clinical methods for ARB surveillance, but there is a lack of comprehensive understanding of WBS application for ARB in the Nordic countries. This review aims to compile the latest state-of-the-art developments in WBS for ARB monitoring in the Nordic countries and compare them with clinical surveillance practices. After reviewing 1480 papers from the primary search, 54 were found relevant, and 15 additional WBS-related papers were included. Among 69 studies analyzed, 42 dedicated clinical epidemiology, while 27 focused on wastewater monitoring. The PRISMA review of the literature revealed that Nordic countries focus on four major WBS objectives of ARB: assessing ARB in the human population, identifying ARB evading wastewater treatment, quantifying removal rates, and evaluating potential ARB evolution during the treatment process. In both clinical and wastewater contexts, the most studied targets were pathogens producing carbapenemase and extended-spectrum beta-lactamase (ESBL), primarily Escherichia coli and Klebsiella spp. However, vancomycin-resistant Enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) have received more attention in clinical epidemiology than in wastewater studies, probably due to their lower detection rates in wastewater. Clinical surveillance has mostly used culturing, antibiotic susceptibility testing, and genotyping, but WBS employed PCR-based and metagenomics alongside culture-based techniques. Imported cases resulting from international travel and hospitalization abroad appear to have frequently contributed to the rise in ARB pathogen cases in these countries. The many similarities between the Nordic countries (e.g., knowledge exchange practices, antibiotic usage patterns, and the current ARB landscape) could facilitate collaborative efforts in developing and implementing WBS for ARB in population-level screening.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland.
| | - Adriana Krolicka
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Tam T Tran
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Kati Räisänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Odd-Gunnar Wikmark
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway; Unit for Environmental Science and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
4
|
Wu T, Zou H, Xia H, Zhou Z, Zhao L, Meng M, Li Q, Guan Y, Li X. Genomic insight into transmission mechanisms of carbapenem-producing Citrobacter spp. isolates between the WWTP and connecting rivers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115150. [PMID: 37336090 DOI: 10.1016/j.ecoenv.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) poses major health risks worldwide. Most studies have focused on carbapenem resistance in Klebsiella pneumoniae and Escherichia coli; however, the occurrence and transmission of carbapenem-resistant Citrobacter spp. (CRCS) are poorly understood. In this study, we investigated the occurrence and potential transmission patterns of CRCS in different functional areas of an urban wastewater treatment plant (WWTP) and connecting rivers during one-year monitoring in Shandong Province, China. In total, 14 CRCS were detected in 376 environmental samples, including those from the WWTP inlet (n = 7), WWTP anaerobic tank (n = 2), and rivers (n = 5). Citrobacter braakii (n = 6) was the dominant subtype among 14 CRCS isolates, followed by Citrobacter freundii (n = 5), Citrobacter sedlakii (n = 2), and Citrobacter werkmanii (n = 1). All CRCS were resistant to imipenem, meropenem, ampicillin, amoxicillin/clavulanic acid, cefotaxime, ceftazidime, trimethoprim/sulfamethoxazole, and ciprofloxacin. Plasmid analysis showed that the blaKPC-2 gene was located on IncN and IncFII (Yp) plasmids, whereas the blaNDM gene was located on IncX3 and IncN2 plasmids. Clonal transmission of CRCS harboring carbapenem genes occurred between the WWTP and connecting rivers on a temporal or spatial scale. High genomic relatedness of NDM-5-producing C. sedlakii was identified between river water and WWTP aerosol, suggesting a potential exposure risk of CRCS for workers and surrounding residents near the WWTP. Furthermore, NDM-5-producing C. sedlakii isolated from rivers was related to C. sedlakii isolated from soil and well water in different regions of China, indicating that NDM-5-producing C. sedlakii may be widespread in China. These findings indicate that rare healthcare-associated pathogens such as CRCS can contribute to widespread carbapenem production in the environment; thus, CRCS should be continuously monitored.
Collapse
Affiliation(s)
- Tianle Wu
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huiyun Zou
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huiyu Xia
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ziyu Zhou
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhao
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Meng
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qi Li
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yanyu Guan
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Itoh N, Akazawa N, Yanaidani T, Kuwahara T. Clinical and microbiological features of intratumor abscess with bloodstream infection caused by Plesiomonas shigelloides, Citrobacter freundii, Streptococcus mitis/oralis, Clostridium perfringens, and Candida albicans in a patient with cholangiocarcinoma: A case report. J Infect Chemother 2022; 28:1677-1681. [PMID: 36067910 DOI: 10.1016/j.jiac.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Plesiomonas shigelloides is a gram-negative facultative anaerobic bacillus, usually found in soil and freshwater, which causes self-limited diarrhea, although reports of bacteremia are rare. Here, we report the first case of an intratumoral abscess with mixed bacteremia caused by P. shigelloides, Citrobacter freundii, Streptococcus mitis/oralis, Clostridium perfringens, and Candida albicans in a patient with recurrent postoperative cholangiocarcinoma. A 77-year-old man with hilar cholangiocarcinoma and hypertension was admitted to our hospital with fever and abdominal pain. He had visited Vietnam for 3 years, 20 years ago. Abdominal computed tomography showed air within the recurrent tumor at the left liver lobectomy resection margin site, which was diagnosed as an intratumor abscess perforating the intestinal tract. P. shigelloides, C. freundii, S. mitis/oralis, C. perfringens, and C. albicans were isolated in blood culture. P. shigelloides was identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and 16S ribosomal RNA (16S rRNA) sequencing. Piperacillin-tazobactam was administered for almost a week, ampicillin-sulbactam and levofloxacin for almost 3 weeks, and antifungal agents for almost 2 weeks, and the patient was discharged thereafter. Although bloodstream infections caused by P. shigelloides in patients with cancer are extremely rare, long-term colonization and the potential for future intra-abdominal infections were implicated.
Collapse
Affiliation(s)
- Naoya Itoh
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan; Collaborative Chairs Emerging and Reemerging Infectious Diseases, National Center for Global Health and Medicine, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Nana Akazawa
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Takafumi Yanaidani
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Takamichi Kuwahara
- Department of Gastroenterology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| |
Collapse
|
6
|
Liu L, Zhang L, Zhou H, Yuan M, Hu D, Wang Y, Sun H, Xu J, Lan R. Antimicrobial Resistance and Molecular Characterization of Citrobacter spp. Causing Extraintestinal Infections. Front Cell Infect Microbiol 2021; 11:737636. [PMID: 34513738 PMCID: PMC8429604 DOI: 10.3389/fcimb.2021.737636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives This prospective study was carried out to investigate molecular characteristics and antimicrobial susceptibility patterns of Citrobacter spp. from extraintestinal infections. Methods Forty-six clinical Citrobacter spp. isolates were isolated from hospital patients with extraintestinal infections and analyzed by multilocus sequence typing (MLST) using seven housekeeping genes. Antimicrobial susceptibility testing was performed by disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI) recommendations. Adhesion and cytotoxicity to HEp-2 cells were assessed. Results The 46 clinical Citrobacter spp. isolates were typed into 38 sequence types (STs), 9 of which belonged to four clonal complexes (CCs). None of the isolates shared the same ST or CCs with isolates from other countries or from other parts of China. Over half of the isolates were multidrug-resistant (MDR), with 17/26 C. freundii, 5/6 C. braakii, and 3/14 C. koseri isolates being MDR. Moreover, four isolates were carbapenem resistant with resistance to imipenem or meropenem. Among eight quinolone resistant C. freundii, all had a mutation in codon 59 (Thr59Ile) in quinolone resistance determining region of the gyrA gene. Only a small proportion of the isolates were found to be highly cytotoxic and adhesive with no correlation to sample sources. Conclusions There was a diverse range of Citrobacter isolates causing extraintestinal infections and a high prevalence of MDR.
Collapse
Affiliation(s)
- Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhang
- Microbiology Department, Maanshan Center for Clinical Laboratory, Ma'anshan, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Min Yuan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Dalong Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yonglu Wang
- Microbiology Department, Maanshan Center for Disease Control and Prevention, Ma'anshan, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|