1
|
Gomez-Simmonds A, Annavajhala MK, Seeram D, Hokunson TW, Park H, Uhlemann AC. Genomic epidemiology of carbapenem-resistant Enterobacterales at a New York City hospital over a 10-year period reveals complex plasmid-clone dynamics and evidence for frequent horizontal transfer of bla KPC. Genome Res 2024; 34:1895-1907. [PMID: 39366703 PMCID: PMC11610580 DOI: 10.1101/gr.279355.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Transmission of carbapenem-resistant Enterobacterales (CRE) in hospitals has been shown to occur through complex, multifarious networks driven by both clonal spread and horizontal transfer mediated by plasmids and other mobile genetic elements. We performed nanopore long-read sequencing on CRE isolates from a large urban hospital system to determine the overall contribution of plasmids to CRE transmission and identify specific plasmids implicated in the spread of bla KPC (the Klebsiella pneumoniae carbapenemase [KPC] gene). Six hundred and five CRE isolates collected between 2009 and 2018 first underwent Illumina sequencing for genome-wide genotyping; 435 bla KPC-positive isolates were then successfully nanopore sequenced to generate hybrid assemblies including circularized bla KPC-harboring plasmids. Phylogenetic analysis and Mash clustering were used to define putative clonal and plasmid transmission clusters, respectively. Overall, CRE isolates belonged to 96 multilocus sequence types (STs) encoding bla KPC on 447 plasmids which formed 54 plasmid clusters. We found evidence for clonal transmission in 66% of CRE isolates, over half of which belonged to four clades comprising K. pneumoniae ST258. Plasmid-mediated acquisition of bla KPC occurred in 23%-27% of isolates. While most plasmid clusters were small, several plasmids were identified in multiple different species and STs, including a highly promiscuous IncN plasmid and an IncF plasmid putatively spreading bla KPC from ST258 to other clones. Overall, this points to both the continued dominance of K. pneumoniae ST258 and the dissemination of bla KPC across clones and species by diverse plasmid backbones. These findings support integrating long-read sequencing into genomic surveillance approaches to detect the hitherto silent spread of carbapenem resistance driven by mobile plasmids.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Dwayne Seeram
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Todd W Hokunson
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
2
|
Cai M, Song K, Wang R, Wang S, Chen H, Wang H. Tracking intra-species and inter-genus transmission of KPC through global plasmids mining. Cell Rep 2024; 43:114351. [PMID: 38923465 DOI: 10.1016/j.celrep.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) poses a major public health risk. Understanding its transmission dynamics requires examining the epidemiological features of related plasmids. Our study compiled 15,660 blaKPC-positive isolates globally over the past two decades. We found extensive diversity in the genetic background of KPC, with 23 Tn4401-related and 341 non-Tn4401 variants across 163 plasmid types in 14 genera. Intra-K. pneumoniae and cross-genus KPC transmission patterns varied across four distinct periods. In the initial periods, plasmids with narrow host ranges gradually established a survival advantage. In later periods, broad-host-range plasmids became crucial for cross-genera transmission. In total, 61 intra-K. pneumoniae and 66 cross-genus transmission units have been detected. Furthermore, phylogenetic reconstruction dated the origin of KPC transmission back to 1991 and revealed frequent exchanges across countries. Our research highlights the frequent and transient spread events of KPC mediated by plasmids across multiple genera and offers theoretical support for high-risk plasmid monitoring.
Collapse
Affiliation(s)
- Meng Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Kaiwen Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China.
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
3
|
Macesic N, Dennis A, Hawkey J, Vezina B, Wisniewski JA, Cottingham H, Blakeway LV, Harshegyi T, Pragastis K, Badoordeen GZ, Bass P, Stewardson AJ, Dennison A, Spelman DW, Jenney AW, Peleg AY. Genomic investigation of multispecies and multivariant blaNDM outbreak reveals key role of horizontal plasmid transmission. Infect Control Hosp Epidemiol 2024; 45:709-716. [PMID: 38344902 PMCID: PMC11102827 DOI: 10.1017/ice.2024.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 05/18/2024]
Abstract
OBJECTIVES New Delhi metallo-β-lactamases (NDMs) are major contributors to the spread of carbapenem resistance globally. In Australia, NDMs were previously associated with international travel, but from 2019 we noted increasing incidence of NDM-positive clinical isolates. We investigated the clinical and genomic epidemiology of NDM carriage at a tertiary-care Australian hospital from 2016 to 2021. METHODS We identified 49 patients with 84 NDM-carrying isolates in an institutional database, and we collected clinical data from electronic medical record. Short- and long-read whole genome sequencing was performed on all isolates. Completed genome assemblies were used to assess the genetic setting of blaNDM genes and to compare NDM plasmids. RESULTS Of 49 patients, 38 (78%) were identified in 2019-2021 and only 11 (29%) of 38 reported prior travel, compared with 9 (82%) of 11 in 2016-2018 (P = .037). In patients with NDM infection, the crude 7-day mortality rate was 0% and the 30-day mortality rate was 14% (2 of 14 patients). NDMs were noted in 41 bacterial strains (ie, species and sequence type combinations). Across 13 plasmid groups, 4 NDM variants were detected: blaNDM-1, blaNDM-4, blaNDM-5, and blaNDM-7. We noted a change from a diverse NDM plasmid repertoire in 2016-2018 to the emergence of conserved blaNDM-1 IncN and blaNDM-7 IncX3 epidemic plasmids, with interstrain spread in 2019-2021. These plasmids were noted in 19 (50%) of 38 patients and 35 (51%) of 68 genomes in 2019-2021. CONCLUSIONS Increased NDM case numbers were due to local circulation of 2 epidemic plasmids with extensive interstrain transfer. Our findings underscore the challenges of outbreak detection when horizontal transmission of plasmids is the primary mode of spread.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Adelaide Dennis
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Ben Vezina
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Jessica A. Wisniewski
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Hugh Cottingham
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Luke V. Blakeway
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Taylor Harshegyi
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Katherine Pragastis
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Gnei Zweena Badoordeen
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Pauline Bass
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Andrew J. Stewardson
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | | | - Denis W. Spelman
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Hospital, Melbourne, Australia
| | - Adam W.J. Jenney
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Hospital, Melbourne, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Cao S, Jiang X, Suo J, Lu Y, Ju M, Zeng Q, Zheng Q, Zhang Z, Tang W. Molecular Characteristics and Antimicrobial Susceptibility Profiles of blaKPC-Producing Escherichia Coli Isolated from a Teaching Hospital in Shanghai, China. Infect Drug Resist 2024; 17:319-327. [PMID: 38293312 PMCID: PMC10826548 DOI: 10.2147/idr.s444117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Introduction Carbapenem-Resistant Enterobacteriaceae (CRE) has posed a significant threat to humans.The aim of this study was to investigate the molecular characteristics of blaKPC-producing Escherichia coli in a university-affiliated tertiary hospital. Methods Polymerase chain reaction (PCR) and BLAST+ software were used to detect the prevalence of blaKPC in E. coli and Klebsiella pneumoniae. Whole-genome sequencing was performed for the blaKPC-harboring clinical E. coli isolates. Antimicrobial resistance genes, MLSTs, KPC-carrying plasmid typing and genetic environment of blaKPC were analyzed. A maximum likelihood core single nucleotide polymorphism (SNP)-based phylogeny tree was constructed to determine the evolutionary relationships within this ST131 collection. Conjugation experiments were performed to determine the mobilization of blaKPC. The minimal inhibitory concentrations of the common antimicrobial agents were determined using the broth microdilution method. Results The prevalence of blaKPC in 424 clinical E. coli isolates and 1636 E. coli strains from GenBank database were 2.2% (45/2060) whereas the detection rate of blaKPC in K. pneumoniae from the GenBank database was 29.8% (415/1394). The blaKPC-harboring conjugants exhibited resistance to multiple β-lactams, except for cefepime-zidebactam and ceftazidime-avibactam. All blaKPC-carring E. coli isolates were susceptible to tigecycline and polymyxin B. ST131 was the dominant sequence type of blaKPC-carring E. coli, accounting for 40.0% (18/45). Most of the blaKPC-producing ST131 E. coli (89.5%,17/19) belonged to clade C ST131 lineage. Genetic environment analysis revealed that 57.8% (26/45) of blaKPC gene was linked to Tn4401-associated structure ISKpn6-blaKPC-ISKpn7. IncN was the most common plasmid type in KPC-producing E. coli whereas IncFII was the dominant plasmid type in KPC-producing K. pneumoniae. Conclusion The detection rate of blaKPC was lower in E. coli compared with K. pneumoniae. The dominant sequence and plasmid types of blaKPC-harboring isolates differed between E. coli and K. pneumoniae. Further studies about the role of the defense system in acquisition of KPC-plasmids in E. coli will be performed to provide new insights into the low prevalence of blaKPC.
Collapse
Affiliation(s)
- Shuaijun Cao
- Department of Critical Care Medicine, Shanghai Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Xiaoying Jiang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jinshan Suo
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yanyan Lu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Mohan Ju
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Qixiang Zeng
- Department of Critical Care Medicine, Shanghai Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Qingru Zheng
- Department of Critical Care Medicine, Shanghai Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Zuoyan Zhang
- Department of Critical Care Medicine, Shanghai Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Wenqi Tang
- Department of Critical Care Medicine, Shanghai Sixth People’s Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Moses IB, Ribeiro ÁCDS, Valiatti TB, Santos FF, Cayô R, Gales AC. First Detection of International High‐Risk blaKPC-2‐Harbouring Escherichia coli Pandemic Lineage ST648 in Pet Food Packages. Transbound Emerg Dis 2024; 2024. [DOI: 10.1155/2024/9995914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/24/2024] [Indexed: 01/05/2025]
Abstract
The continued worldwide increase in pet ownership has significantly boosted the growth of the pet food industry accompanied by new food safety risks and challenges. This study was designed to determine the occurrence and molecularly characterize multidrug‐resistant (MDR) Enterobacterales in pet food. Eighty‐six (86) packages of dry and wet pet food purchased in different retail stores were screened for carbapenem‐resistant Enterobacterales (CRE). Antimicrobial susceptibility testing was performed by agar dilution technique using EUCAST/BrCAST recommendations. Blue‐Carba test was further used to screen for carbapenemase‐producing isolates. Isolated CRE strains were identified at the species level using matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOF MS). Detection of carbapenemase‐encoding genes was carried out by PCR, Sanger sequencing, and whole genome sequencing (WGS). A total of 15 (17.4%) MDR‐CRE (Escherichia coli (n = 2), Enterobacter cloacae (n = 10), Leclercia adecarboxylata (n = 2), and Cronobacter spp. (n = 1)) were isolated from 86 pet food samples. In addition to being resistant to beta‐lactams, the Gram‐negative bacterial isolates were also resistant to aminoglycosides, fluoroquinolones, and tigecycline. Interestingly, two carbapenem‐resistant E. coli isolates harboured blaKPC-2 gene. WGS analysis of the two blaKPC-2‐producing E. coli isolates revealed that they both belong to ST648 and serotype O153:H2 group. The genetic context of the blaKPC-2 showed that they were carried by an IncN plasmid on a Tn4401b transposon element. To the best of our knowledge, this is the first description of blaKPC-2‐harbouring E. coli ST648 pathogens in pet food. The detection of blaKPC-2‐harbouring E. coli ST648 pandemic high‐risk lineage in pet food is worrisome and a serious “One Health” issue. Therefore, pet food should be considered as a potential vehicle for the transmission of MDR pathogens to companion animals, and a risk factor for the dissemination of these bacterial pathogens to pet animals and their human guardians.
Collapse
|
6
|
Boralli CMDS, Paganini JA, Meneses RS, Mata CPSMD, Leite EMM, Schürch AC, Paganelli FL, Willems RJL, Camargo ILBC. Characterization of blaKPC-2 and blaNDM-1 Plasmids of a K. pneumoniae ST11 Outbreak Clone. Antibiotics (Basel) 2023; 12:antibiotics12050926. [PMID: 37237829 DOI: 10.3390/antibiotics12050926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The most common resistance mechanism to carbapenems is the production of carbapenemases. In 2021, the Pan American Health Organization warned of the emergence and increase in new carbapenemase combinations in Enterobacterales in Latin America. In this study, we characterized four Klebsiella pneumoniae isolates harboring blaKPC and blaNDM from an outbreak during the COVID-19 pandemic in a Brazilian hospital. We assessed their plasmids' transference ability, fitness effects, and relative copy number in different hosts. The K. pneumoniae BHKPC93 and BHKPC104 strains were selected for whole genome sequencing (WGS) based on their pulsed-field gel electrophoresis profile. The WGS revealed that both isolates belong to ST11, and 20 resistance genes were identified in each isolate, including blaKPC-2 and blaNDM-1. The blaKPC gene was present on a ~56 Kbp IncN plasmid and the blaNDM-1 gene on a ~102 Kbp IncC plasmid, along with five other resistance genes. Although the blaNDM plasmid contained genes for conjugational transfer, only the blaKPC plasmid conjugated to E. coli J53, without apparent fitness effects. The minimum inhibitory concentrations (MICs) of meropenem/imipenem against BHKPC93 and BHKPC104 were 128/64 and 256/128 mg/L, respectively. Although the meropenem and imipenem MICs against E. coli J53 transconjugants carrying the blaKPC gene were 2 mg/L, this was a substantial increment in the MIC relative to the original J53 strain. The blaKPC plasmid copy number was higher in K. pneumoniae BHKPC93 and BHKPC104 than in E. coli and higher than that of the blaNDM plasmids. In conclusion, two ST11 K. pneumoniae isolates that were part of a hospital outbreak co-harbored blaKPC-2 and blaNDM-1. The blaKPC-harboring IncN plasmid has been circulating in this hospital since at least 2015, and its high copy number might have contributed to the conjugative transfer of this particular plasmid to an E. coli host. The observation that the blaKPC-containing plasmid had a lower copy number in this E. coli strain may explain why this plasmid did not confer phenotypic resistance against meropenem and imipenem.
Collapse
Affiliation(s)
- Camila Maria Dos Santos Boralli
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | | | - Rodrigo Silva Meneses
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | - Anita C Schürch
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Fernanda L Paganelli
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ilana Lopes Baratella Cunha Camargo
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| |
Collapse
|
7
|
Detection of KPC and VIM Genes in Carbapenem-resistant Klebsiella pneumoniae Isolates from Blood Culture in Southern Anhui, China. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Background: Klebsiella pneumoniae is one of the main pathogens of lower respiratory tract infections. Carbapenems are considered the last line of defense for the treatment of Gram-negative bacteria with multidrug resistance. In recent years, with the increase of bacteria producing carbapenemase, the resistance rate of carbapenems has increased gradually. Objectives: The main objective of this study was to detect the blaKPC and blaVIM genes in K. pneumoniae isolates from blood culture specimens. Methods: Within September 2020 to August 2022, 1033 bacterial strains were isolated from blood cultures in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui province, China, including 141 strains of K. pneumoniae. All K. pneumoniae strains were processed for antimicrobial susceptibility testing (AST) using the minimum inhibitory concentration method. Meanwhile, the isolates were phenotypically identified for carbapenemase production by the colloidal gold method. Finally, the confirmed carbapenem enzyme phenotype was further verified for the production of blaKPC and blaVIM by polymerase chain reaction (PCR). Results: Regarding the rate of isolated strains in blood culture, positivity was 11.16% (1033/9255), and the proportion of K. pneumoniae was 13.65% (141/1033). Overall, according to AST results, 7.80% (11/141) of the isolates demonstrated resistance to carbapenems, such as ertapenem, imipenem, and meropenem; nevertheless, they showed sensitivity to colistin and ceftazidime/avibactam. Colloidal gold phenotypically confirmed 81.82% (9/11) of the isolates as carbapenemase producers. Subsequently, nine isolates’ strains were verified to be positive for blaKPC and blaVIM by PCR; the proportions of the blaKPC and blaVIM genes were 88.89% (8/9) and 11.11% (1/9), respectively. Conclusions: The identification of carbapenemase phenotype and genotype is helpful for the accurate understanding of drug resistance and management of the disease.
Collapse
|
8
|
Qiao J, Ge H, Xu H, Guo X, Liu R, Li C, Chen R, Zheng B, Gou J. Detection of IMP-4 and SFO-1 co-producing ST51 Enterobacter hormaechei clinical isolates. Front Cell Infect Microbiol 2022; 12:998578. [PMID: 36389152 PMCID: PMC9647121 DOI: 10.3389/fcimb.2022.998578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose To explore the genetic characteristics of the IMP-4 and SFO-1 co-producing multidrug-resistant (MDR) clinical isolates, Enterobacter hormaechei YQ13422hy and YQ13530hy. Methods MALDI-TOF MS was used for species identification. Antibiotic resistance genes (ARGs) were tested by PCR and Sanger sequencing analysis. In addition to agar dilution, broth microdilution was used for antimicrobial susceptibility testing (AST). Whole-genome sequencing (WGS) analysis was conducted using the Illumina NovaSeq 6000 and Oxford Nanopore platforms. Annotation was performed by RAST on the genome. The phylogenetic tree was achieved using kSNP3.0. Plasmid characterization was conducted using S1-pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and whole genome sequencing (WGS). An in-depth study of the conjugation module was conducted using the OriTFinder website. The genetic context of bla IMP-4 and bla SFO-1 was analyzed using BLAST Ring Image Generator (BRIG) and Easyfig 2.3. Results YQ13422hy and YQ13530hy, two MDR strains of ST51 E. hormaechei harboring bla IMP-4 and bla SFO-1, were identified. They were only sensitive to meropenem, amikacin and polymyxin B, and were resistant to cephalosporins, aztreonam, piperacillin/tazobactam and aminoglycosides, intermediate to imipenem. The genetic context surrounding bla IMP-4 was 5'CS-hin-1-IS26-IntI1-bla IMP-4-IS6100-ecoRII. The integron of bla IMP-4 is In823, which is the array of gene cassettes of 5'CS-bla IMP-4. Phylogenetic analysis demonstrated that E. hormaechei YQ13422hy and YQ13530hy belonged to the same small clusters with a high degree of homology. Conclusion This observation revealed the dissemination of the bla IMP-4 gene in E. hormaechei in China. We found that bla IMP-4 and bla SFO-1 co-exist in MDR clinical E. hormaechei isolates. This work showed a transferable IncN-type plasmid carrying the bla IMP-4 resistance gene in E. hormaechei. We examined the potential resistance mechanisms of pYQ13422-IMP-4 and pYQ13422-SFO-1, along with their detailed genetic contexts.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|