1
|
Jacobs MR, Good CE, Abdelhamed AM, Mack AR, Bethel CR, Marshall SH, Hujer AM, Hujer KM, Patel R, van Duin D, Fowler VG, Rhoads DD, Six DA, Moeck G, Uehara T, Papp-Wallace KM, Bonomo RA. ARGONAUT-IV: susceptibility of carbapenemase-producing Klebsiella pneumoniae to the oral bicyclic boronate β-lactamase inhibitor ledaborbactam combined with ceftibuten. Antimicrob Agents Chemother 2024; 68:e0112724. [PMID: 39475259 PMCID: PMC11619242 DOI: 10.1128/aac.01127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/18/2024] [Indexed: 12/06/2024] Open
Abstract
Ledaborbactam (formerly VNRX-5236), a bicyclic boronate β-lactamase inhibitor with activity against class A, C, and D β-lactamases, is under development as an orally bioavailable etzadroxil prodrug (VNRX-7145) in combination with ceftibuten for the treatment of urinary tract infections. At ceftibuten breakpoints of ≤1 mg/L (EUCAST) and ≤8 mg/L (CLSI), 92.5% and 99.0%, respectively, of 200 carbapenem-resistant Klebsiella pneumoniae isolates, predominantly K. pneumoniae carbapenemase producing, were susceptible to ceftibuten-ledaborbactam (ledaborbactam tested at a fixed concentration of 4 mg/L) compared to 4.5% and 30.5%, respectively, to ceftibuten alone.
Collapse
Affiliation(s)
- Michael R. Jacobs
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Caryn E. Good
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Andrew R. Mack
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Steven H. Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristine M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vance G. Fowler
- Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel D. Rhoads
- Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - David A. Six
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | | | - Krisztina M. Papp-Wallace
- Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Biochemistry, Pharmacology, Proteomics and Bioinformatics Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
2
|
Noel AR, Attwood M, Bowker KE, MacGowan AP. Pharmacodynamics of taniborbactam in combination with cefepime studied in an in vitro model of infection. Int J Antimicrob Agents 2024; 64:107304. [PMID: 39146998 DOI: 10.1016/j.ijantimicag.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES To define the in vitro pharmacodynamics of taniborbactam against Enterobacterales with CTXM-15, KPC, AmpC, and OXA-48 β-lactamases. METHODS An in vitro pharmacokinetic model was used to simulate serum concentrations associated with cefepime 2G by 1 h infusion 8 h. Taniborbactam was given in exposure ranging and fractionation simulations. Reduction in viable count at 24 h (Δ 24) was the primary end point and four strains were used: Escherichia coli expressing CTXM-15 or AmpC and Klebsiella pneumoniae expressing KPC or OXA-48 enzymes. RESULTS Taniborbactam was administered as continuous infusions; ≥4 log kill was attained with taniborbactam concentrations of ≥0.01 mg/L against CTXM-15 E. coli, ≥0.5 mg/L against KPC- and OXA-48 K. pneumoniae, and ≥4 mg/L against AmpC E. coli. Analyses were conducted to determine the pharmacokinetic/dynamic driver for each strain. For E. coli (CTXM-15) and E. coli (AmpC), area under the concentration-time curve (AUC) was best related to change in viable count (R20.74 and 0.72, respectively). For K. pneumoniae (KPC) AUC and T > 0.25 mg/L were equally related to bacterial clearance (R20.72 for both), and for K. pneumoniae (OXA-48) T > 0.25 mg/L was the best predictor (R20.94). The taniborbactam AUC range to produce a 1-log10 reduction in viable count was 4.4-11.2 mg·h/L. Analysis of data from all strains indicated T > MIC divided by 4 was best related to change in viable count; however, curve fit was poor R2 < 0.49. CONCLUSIONS Taniborbactam was effective in combination with cefepime in producing bacterial clearance for B lactam resistant Enterobacterales. The primary pharmacodynamic driver was AUC or time > threshold, both being closely related to antibacterial effect.
Collapse
Affiliation(s)
- A R Noel
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Infection Sciences, North Bristol NHS Trust, Pathology Quarter, Southmead Hospital, Bristol, UK
| | - M Attwood
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Infection Sciences, North Bristol NHS Trust, Pathology Quarter, Southmead Hospital, Bristol, UK
| | - K E Bowker
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Infection Sciences, North Bristol NHS Trust, Pathology Quarter, Southmead Hospital, Bristol, UK
| | - A P MacGowan
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Infection Sciences, North Bristol NHS Trust, Pathology Quarter, Southmead Hospital, Bristol, UK.
| |
Collapse
|
3
|
O'Donnell J, Tanudra A, Chen A, Newman J, McLeod SM, Tommasi R. In vivo dose response and efficacy of the β-lactamase inhibitor, durlobactam, in combination with sulbactam against the Acinetobacter baumannii-calcoaceticus complex. Antimicrob Agents Chemother 2024; 68:e0080023. [PMID: 38092671 PMCID: PMC10777848 DOI: 10.1128/aac.00800-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024] Open
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii is emerging as a pathogen of increasing prevalence and concern. Infections associated with this Gram-negative pathogen are often associated with increased morbidity and mortality and few therapeutic options. The β-lactamase inhibitor sulbactam used commonly in combination with ampicillin demonstrates intrinsic antibacterial activity against A. baumannii acting as an inhibitor of PBP1 and PBP3, which participate in cell wall biosynthesis. The production of β-lactamases, particularly class D oxacillinases, however, has limited the utility of sulbactam resorting to increased doses and the need for alternate therapies. Durlobactam is a non-β-lactam β-lactamase inhibitor that demonstrates broad β-lactamase inhibition including class D enzymes produced by A. baumannii and has shown potent in vitro activity against MDR A. baumannii, particularly carbapenem-resistant isolates in susceptibility and pharmacodynamic model systems. The objective of this study is to evaluate the exposure-response relationship of sulbactam and durlobactam in combination using in vivo neutropenic thigh and lung models to establish PK/PD exposure magnitudes to project clinically effective doses. Utilizing established PK/PD determinants of %T>MIC and AUC/MIC for sulbactam and durlobactam, respectively, non-linear regressional analysis of drug exposure was evaluated relative to the 24-hour change in bacterial burden (log10 CFU/g). Co-modeling of the data across multiple strains exhibiting a broad range of MIC susceptibility suggested net 1-log10 CFU/g0 reduction can be achieved when sulbactam T>MIC exceeds 50% of the dosing interval and durlobactam AUC/MIC is 10. These data were ultimately used to support sulbactam-durlobactam dose selection for Phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | - April Chen
- Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| | | | | | - Rubén Tommasi
- Entasis Therapeutics Inc., Waltham, Massachusetts, USA
| |
Collapse
|