1
|
Pintea-Simon IA, Bancu L, Mare AD, Ciurea CN, Toma F, Man A. Rapid Molecular Diagnostics of Pneumonia Caused by Gram-Negative Bacteria: A Clinician's Review. Antibiotics (Basel) 2024; 13:805. [PMID: 39334980 PMCID: PMC11429159 DOI: 10.3390/antibiotics13090805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
With approximately half a billion events per year, lower respiratory tract infections (LRTIs) represent a major challenge for the global public health. Among LRTI cases, those caused by Gram-negative bacteria (GNB) are associated with a poorer prognostic. Standard-of-care etiologic diagnostics is lengthy and difficult to establish, with more than half of cases remaining microbiologically undocumented. Recently, syndromic molecular diagnostic panels became available, enabling simultaneous detection of tens of pathogen-related and antimicrobial-resistance genetic markers within a few hours. In this narrative review, we summarize the available data on the performance of molecular diagnostics in GNB pneumonia, highlighting the main strengths and limitations of these assays, as well as the main factors influencing their clinical utility. We searched MEDLINE and Web of Science databases for relevant English-language articles. Molecular assays have higher analytical sensitivity than cultural methods, and show good agreement with standard-of-care diagnostics regarding detection of respiratory pathogens, including GNB, and identification of frequent patterns of resistance to antibiotics. Clinical trials reported encouraging results on the usefulness of molecular assays in antibiotic stewardship. By providing early information on the presence of pathogens and their probable resistance phenotypes, these assays assist in the choice of targeted therapy, in shortening the time from sample collection to appropriate antimicrobial treatment, and in reducing unnecessary antibiotic use.
Collapse
Affiliation(s)
- Ionela-Anca Pintea-Simon
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania
- Department of Internal Medicine M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Ligia Bancu
- Department of Internal Medicine M3, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
| | - Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
| | - Felicia Toma
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
| |
Collapse
|
2
|
Koenig C, Kuti JL. Evolving resistance landscape in gram-negative pathogens: An update on β-lactam and β-lactam-inhibitor treatment combinations for carbapenem-resistant organisms. Pharmacotherapy 2024; 44:658-674. [PMID: 38949413 DOI: 10.1002/phar.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024]
Abstract
Antibiotic resistance has become a global threat as it is continuously growing due to the evolution of β-lactamases diminishing the activity of classic β-lactam (BL) antibiotics. Recent antibiotic discovery and development efforts have led to the availability of β-lactamase inhibitors (BLIs) with activity against extended-spectrum β-lactamases as well as Klebsiella pneumoniae carbapenemase (KPC)-producing carbapenem-resistant organisms (CRO). Nevertheless, there is still a lack of drugs that target metallo-β-lactamases (MBL), which hydrolyze carbapenems efficiently, and oxacillinases (OXA) often present in carbapenem-resistant Acinetobacter baumannii. This review aims to provide a snapshot of microbiology, pharmacology, and clinical data for currently available BL/BLI treatment options as well as agents in late stage development for CRO harboring various β-lactamases including MBL and OXA-enzymes.
Collapse
Affiliation(s)
- Christina Koenig
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
3
|
Fratoni AJ, Gethers ML, Nicolau DP, Kuti JL. Non-KPC Attributes of Newer β-lactam/β-lactamase Inhibitors, Part 1: Enterobacterales and Pseudomonas aeruginosa. Clin Infect Dis 2024; 79:33-42. [PMID: 38306487 DOI: 10.1093/cid/ciae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Gram-negative antibiotic resistance continues to grow as a global problem due to the evolution and spread of β-lactamases. The early β-lactamase inhibitors (BLIs) are characterized by spectra limited to class A β-lactamases and ineffective against carbapenemases and most extended spectrum β-lactamases. In order to address this therapeutic need, newer BLIs were developed with the goal of treating carbapenemase producing, carbapenem resistant organisms (CRO), specifically targeting the Klebsiella pneumoniae carbapenemase (KPC). These BL/BLI combination drugs, avibactam/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have proven to be indispensable tools in this effort. However, non-KPC mechanisms of resistance are rising in prevalence and increasingly challenging to treat. It is critical for clinicians to understand the unique spectra of these BL/BLIs with respect to non-KPC CRO. In Part 1of this 2-part series, we describe the non-KPC attributes of the newer BL/BLIs with a focus on utility against Enterobacterales and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Matthew L Gethers
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
4
|
Russo C, Humphries R. Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory. Antibiotics (Basel) 2023; 12:1700. [PMID: 38136734 PMCID: PMC10740869 DOI: 10.3390/antibiotics12121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The rapid emergence of multi-drug resistant Gram-negative pathogens has driven the introduction of novel β-lactam combination agents (BLCs) to the antibiotic market: ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and sulbactam-durlobactam. These agents are equipped with innovative mechanisms that confer broad Gram-negative activity, notably against certain challenging carbapenemases. While their introduction offers a beacon of hope, clinical microbiology laboratories must navigate the complexities of susceptibility testing for these agents due to their diverse activity profiles against specific β-lactamases and the possibility of acquired resistance mechanisms in some bacterial isolates. This review explores the complexities of these novel antimicrobial agents detailing the intricacies of their application, providing guidance on the nuances of susceptibility testing, interpretation, and result reporting in clinical microbiology laboratories.
Collapse
Affiliation(s)
| | - Romney Humphries
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
5
|
Fouad A, Gill CM, Simner PJ, Nicolau DP, Asempa TE. Cefepime in vivo activity against carbapenem-resistant Enterobacterales that test as cefepime susceptible or susceptible-dose dependent in vitro: implications for clinical microbiology laboratory and clinicians. J Antimicrob Chemother 2023; 78:2242-2253. [PMID: 37522258 DOI: 10.1093/jac/dkad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CRE) are a public health concern. Among these isolates, there are reports of isolates that test as cefepime susceptible or susceptible-dose dependent (SDD) in vitro despite presence of a carbapenemase. This study aimed to evaluate the pharmacokinetic/pharmacodynamic profile of cefepime against carbapenemase-producing (CP-CRE) and non-producing (non-CP-CRE) isolates with a range of cefepime MICs. METHODS Reference broth microdilution and modified carbapenem inactivation method (mCIM) were performed on genotypically characterized clinical CRE isolates. Ultimately, CP-CRE (n = 21; blaKPC) and non-CP-CRE (n = 19) isolates with a distribution of cefepime MICs (≤0.5 to >256 mg/L) were utilized in the murine thigh infection model. Mice were treated with cefepime human-simulated regimens (HSRs) representative of a standard dose (1 g q12h 0.5 h infusion) or the SDD dose (2 g q8h 0.5 h infusion). Efficacy was assessed as the change in bacterial growth at 24 h compared with 0 h control, where ≥1 log bacterial reduction is considered translational value for clinical efficacy. RESULTS Among both cohorts of CRE isolates, i.e. CP-CRE and non-CP-CRE, that tested as SDD to cefepime in vitro, 1 log bacterial reduction was not attainable with cefepime. Further blunting of cefepime efficacy was observed among CP-CRE isolates compared with non-CP-CRE across both susceptible and SDD categories. CONCLUSIONS Data indicate to avoid cefepime for the treatment of serious infections caused by CRE isolates that test as cefepime susceptible or SDD. Data also provide evidence that isolates with the same antibiotic MIC may have different pharmacokinetic/pharmacodynamic profiles due to their antimicrobial resistance mechanism.
Collapse
Affiliation(s)
- Aliaa Fouad
- Center for Anti-Infective Research and Development (CAIRD), Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development (CAIRD), Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development (CAIRD), Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Tomefa E Asempa
- Center for Anti-Infective Research and Development (CAIRD), Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| |
Collapse
|
6
|
Fratoni AJ, Berry AV, Liu X, Chen X, Wu Y, Nicolau DP, Abdelraouf K. Imipenem/funobactam (formerly XNW4107) in vivo pharmacodynamics against serine carbapenemase-producing Gram-negative bacteria: a novel modelling approach for time-dependent killing. J Antimicrob Chemother 2023; 78:2343-2353. [PMID: 37667103 PMCID: PMC10477119 DOI: 10.1093/jac/dkad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/15/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Imipenem/funobactam (formerly XNW4107) is a novel β-lactam/β-lactamase inhibitor with activity against MDR Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacterales strains. Using a neutropenic murine thigh infection model, we aimed to determine the pharmacokinetic/pharmacodynamic (PK/PD) index, relative to funobactam exposure, that correlated most closely with the in vivo efficacy of imipenem/funobactam combination and the magnitude of index required for efficacy against serine carbapenemase-producing clinical strains. METHODS Dose-fractionation was conducted against three strains. Imipenem human-simulated regimen (HSR, 500 mg q6h 1 h infusion) efficacy in combination with escalating funobactam exposures against seven A. baumannii, four P. aeruginosa and four Klebsiella pneumoniae (imipenem/funobactam MICs 0.25-16 mg/L) was assessed as 24 h change in log10cfu/thigh. RESULTS Increased funobactam fractionation enhanced efficacy, indicating time-dependent killing. Changes in log10cfu/thigh versus %fT > MIC were poorly predictive of efficacy; bactericidal activity was observed at %fT > MIC = 0%. Across different threshold plasma funobactam concentrations (CTs), %fT > CT(1 mg/L) had the highest correlation with efficacy. Normalizing the %fT > CT = 1 mg/L index to the respective isolate imipenem/funobactam MIC ([%fT > CT]/MIC) allowed integration of the isolate's susceptibility, which further enhanced the correlation. Median (%fT > CT[1 mg/L])/MIC values associated with 1-log reductions were 9.82 and 9.90 for A. baumannii and P. aeruginosa, respectively. Median (%fT > CT[1 mg/L])/MIC associated with stasis was 55.73 for K. pneumoniae. Imipenem/funobactam 500/250 mg q6h 1 h infusion HSR produced >1-log kill against 6/7 A. baumannii, 4/4 P. aeruginosa and stasis against 4/4 K. pneumoniae. CONCLUSIONS Imipenem/funobactam showed potent in vivo efficacy against serine carbapenemase-producers. The novel PK/PD index (%fT > CT)/MIC appeared to best describe in vivo activity.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - Angela V Berry
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - Xiao Liu
- Department of Research and Development, Evopoint Biosciences Co., Ltd, Beijing, China
| | - Xi Chen
- Department of Research and Development, Evopoint Biosciences Co., Ltd, Beijing, China
| | - Yuchuan Wu
- Department of Research and Development, Evopoint Biosciences Co., Ltd, Beijing, China
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| |
Collapse
|