1
|
Coppens J, Xavier BB, Loens K, Lammens C, Ieven M, Matheeussen V, Goossens H, Malhotra-Kumar S. Remarkable Genome Stability among emm1 Group A Streptococcus in Belgium over 19 Years. Genome Biol Evol 2019; 11:1432-1439. [PMID: 31065672 PMCID: PMC6521816 DOI: 10.1093/gbe/evz093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
During the last two decades, there has been a public health concern of severe invasive infections caused by Group A Streptococcus (GAS) of the emm1 genotype. This study investigated the dynamics of emm1 GAS during 1994–2013 in Belgium. emm1 GAS isolated from blood, tissue, and wounds of patients with invasive infections (n = 23, S1–S23), and from patients with uncomplicated pharyngitis (n = 15, NS1–NS15) were subjected to whole-genome mapping (WGM; kpn) (Opgen). Whole-genome sequencing was performed on 25 strains (WGS; S1–S23 and NS6–NS7) (Illumina Inc.). Belgian GAS belonged to the M1T1 clone typified by the 36-kb chromosomal region encoding extracellular toxins, NAD+-glycohydrolase and streptolysin O. Strains from 1994–1999 clustered together with published strains (MGAS5005 and M1476). From 2001 onward, invasive GAS showed higher genomic divergence in the accessory genome and harbored on average 7% prophage content. Low evolutionary rate (2.49E-008; P > 0.05) was observed in this study, indicating a highly stable genome. The studied invasive and pharyngitis isolates were no genetically distinct populations based on the WGM and core genome phylogeny analyses. Two copies of the speJ superantigen were present in the 1999 and 2010 study strains (n = 3), one being chromosomal and one being truncated and associated with phage remnants. This study showed that emm1 GAS in Belgium, compared with Canada and UK M1 strains, were highly conserved by harboring a remarkable genome stability over a 19-year period with variations observed in the accessory genome.
Collapse
Affiliation(s)
- Jasmine Coppens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Katherine Loens
- Belgian Reference Centre for Group A Streptococcus, Antwerp University Hospital, Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Margareta Ieven
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium.,Belgian Reference Centre for Group A Streptococcus, Antwerp University Hospital, Antwerp, Belgium
| | - Veerle Matheeussen
- Belgian Reference Centre for Group A Streptococcus, Antwerp University Hospital, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium.,Belgian Reference Centre for Group A Streptococcus, Antwerp University Hospital, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| |
Collapse
|
2
|
Sharkey LKR, O’Neill AJ. Antibiotic Resistance ABC-F Proteins: Bringing Target Protection into the Limelight. ACS Infect Dis 2018; 4:239-246. [PMID: 29376318 DOI: 10.1021/acsinfecdis.7b00251] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Members of the ATP-binding cassette (ABC)-F protein subfamily collectively mediate resistance to a broader range of clinically important antibiotic classes than any other group of resistance proteins and are widespread in pathogenic bacteria. Following over 25 years' of controversy regarding the mechanism by which these proteins work, it has recently been established that they provide antibiotic resistance through the previously recognized but underappreciated phenomenon of target protection; they bind to the ribosome to effect the release of ribosome-targeted antibiotics, thereby rescuing the translation apparatus from antibiotic-mediated inhibition. Here we review the ABC-F resistance proteins with an emphasis on their mechanism of action, first exploring the history of the debate about how these proteins work and outlining our current state of knowledge and then considering key questions to be addressed in understanding the molecular detail of their function.
Collapse
Affiliation(s)
- Liam K. R. Sharkey
- Antimicrobial Research Centre and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Alex J. O’Neill
- Antimicrobial Research Centre and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
3
|
Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol 2017; 174:2967-2983. [PMID: 28664582 DOI: 10.1111/bph.13936] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022] Open
Abstract
Macrolides represent a large family of protein synthesis inhibitors of great clinical interest due to their applicability to human medicine. Macrolides are composed of a macrocyclic lactone of different ring sizes, to which one or more deoxy-sugar or amino sugar residues are attached. Macrolides act as antibiotics by binding to bacterial 50S ribosomal subunit and interfering with protein synthesis. The high affinity of macrolides for bacterial ribosomes, together with the highly conserved structure of ribosomes across virtually all of the bacterial species, is consistent with their broad-spectrum activity. Since the discovery of the progenitor macrolide, erythromycin, in 1950, many derivatives have been synthesised, leading to compounds with better bioavailability and acid stability and improved pharmacokinetics. These efforts led to the second generation of macrolides, including well-known members such as azithromycin and clarithromycin. Subsequently, in order to address increasing antibiotic resistance, a third generation of macrolides displaying improved activity against many macrolide resistant strains was developed. However, these improvements were accompanied with serious side effects, leading to disappointment and causing many researchers to stop working on macrolide derivatives, assuming that this procedure had reached the end. In contrast, a recent published breakthrough introduced a new chemical platform for synthesis and discovery of a wide range of diverse macrolide antibiotics. This chemical synthesis revolution, in combination with reduction in the side effects, namely, 'Ketek effects', has led to a macrolide renaissance, increasing the hope for novel and safe therapeutic agents to combat serious human infectious diseases.
Collapse
Affiliation(s)
- George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
4
|
Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to Macrolide Antibiotics in Public Health Pathogens. Cold Spring Harb Perspect Med 2016; 6:a025395. [PMID: 27527699 PMCID: PMC5046686 DOI: 10.1101/cshperspect.a025395] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrolide resistance mechanisms can be target-based with a change in a 23S ribosomal RNA (rRNA) residue or a mutation in ribosomal protein L4 or L22 affecting the ribosome's interaction with the antibiotic. Alternatively, mono- or dimethylation of A2058 in domain V of the 23S rRNA by an acquired rRNA methyltransferase, the product of an erm (erythromycin ribosome methylation) gene, can interfere with antibiotic binding. Acquired genes encoding efflux pumps, most predominantly mef(A) + msr(D) in pneumococci/streptococci and msr(A/B) in staphylococci, also mediate resistance. Drug-inactivating mechanisms include phosphorylation of the 2'-hydroxyl of the amino sugar found at position C5 by phosphotransferases and hydrolysis of the macrocyclic lactone by esterases. These acquired genes are regulated by either translation or transcription attenuation, largely because cells are less fit when these genes, especially the rRNA methyltransferases, are highly induced or constitutively expressed. The induction of gene expression is cleverly tied to the mechanism of action of macrolides, relying on antibiotic-bound ribosomes stalled at specific sequences of nascent polypeptides to promote transcription or translation of downstream sequences.
Collapse
Affiliation(s)
- Corey Fyfe
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | | - Kathy Kerstein
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | |
Collapse
|
5
|
Catalanotti P, Catania MR, Lucido M, Martini S, Gallè F, Ortega De Luna L, Rossano F. T Serotyping and Genomic Profile of Erythromycin- Resistant or -SensitiveStreptococcus pyogenesIsolated in Campania Region, Italy. J Chemother 2013; 17:131-7. [PMID: 15920897 DOI: 10.1179/joc.2005.17.2.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Streptococcus pyogenes causes mild infections, such as pharyngitis, and severe infections, such as necrotizing fascitis. In recent years, erythromycin-resistant strains of S. pyogenes have been reported in many countries. In some areas of Italy, increased rates of erythromycin resistance were first observed in the mid-1990s. Here, we report epidemiological T serotyping, invasiveness, erythromycin resistance, and PFGE patterns of 99 S. pyogenes strains isolated at the Laboratory of Clinical Microbiology of the Second University of Naples, Italy. Regarding T serotyping, 26 of 99 strains were W+, 16 strains were U+, 16 were X+, and 14 were agglutinated by anti T serum. A low percentage revealed Y+. Twelve strains were not T serotyped. PFGE patterns showed species polymorphism; however, inside the various serotypes, we demonstrated a fair homogeneity. No correlation among invasiveness and T serotype or PFGE pattern has been shown. Twenty-two of 99 strains were erythromycin-resistant.
Collapse
Affiliation(s)
- P Catalanotti
- Dipartimento di Medicina Sperimentale, Sezione di Microbiologia e Microbiologia Clinica, Seconda Università di Napoli, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Mazzariol A, Koncan R, Bahar G, Cornaglia G. Susceptibilities ofStreptococcus pyogenesandStreptococcus pneumoniaeto Macrolides and Telithromycin: Data from an Italian Multicenter Study. J Chemother 2013; 19:500-7. [DOI: 10.1179/joc.2007.19.5.500] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
8
|
Wierzbowski AK, Karlowsky JA, Hoban DJ, Zhanel GG. In vitro activity of the investigational ketolide cethromycin against macrolide- and penicillin-resistant Streptococcus pneumoniae: review of the 1998 to 2006 Canadian Respiratory Organism Susceptibility Study (CROSS). J Antimicrob Chemother 2009; 63:620-2. [DOI: 10.1093/jac/dkn532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Van Bambeke F, Harms JM, Van Laethem Y, Tulkens PM. Ketolides: pharmacological profile and rational positioning in the treatment of respiratory tract infections. Expert Opin Pharmacother 2008; 9:267-83. [DOI: 10.1517/14656566.9.2.267] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Mazzariol A, Koncan R, Vitali LA, Cornaglia G. Activities of 16-membered ring macrolides and telithromycin against different genotypes of erythromycin-susceptible and erythromycin-resistant Streptococcus pyogenes and Streptococcus pneumoniae. J Antimicrob Chemother 2007; 59:1171-6. [PMID: 17405779 DOI: 10.1093/jac/dkm089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To test four 16-membered macrolides (josamycin, spiramycin, midecamycin and rokitamycin) along with other compounds in the same class (erythromycin, clarithromycin, roxithromycin and azithromycin) plus clindamycin and telithromycin, against Streptococcus pyogenes and Streptococcus pneumoniae isolates with well-characterized resistance genotypes. METHODS Four hundred and eighty-six isolates of S. pyogenes and 375 isolates of S. pneumoniae were assayed for their macrolide susceptibilities and investigated by PCR to detect their different erythromycin resistance genes. All strains had been isolated over the period 2002-2003 from specimens of different human origin obtained in 14 different Italian centres. RESULTS All 16-membered macrolides showed very low MICs (MIC(50)s and MIC(90)s, < or =0.06-0.5 mg/L) for the erythromycin-susceptible isolates and for those with the M phenotype, but the telithromycin MICs for the M-type isolates were at least four times higher (MIC(90)s, 0.5 mg/L). In S. pyogenes, the MIC(50)s of 16-membered macrolides for the cMLS(B) isolates were > or = 256 mg/L, whereas that for telithromycin was 4 mg/L; the MIC(50)s of 16-membered macrolides and telithromycin ranged from < or = 0.06 to 0.5 mg/L for the iMLS(B) isolates with erm(A) and from 0.12 to > or = 256 mg/L for those with erm(B). In S. pneumoniae, the MIC(50)s of the 16-membered macrolides for the cMLS(B) isolates ranged from 0.5 to 128 mg/L, whereas for the iMLS(B) isolates their values ranged from < or = 0.06 to 4 mg/L; the MIC(50)s and MIC(90)s of telithromycin for both the cMLS(B) and the iMLS(B) isolates ranged from < or = 0.06 to 0.12 mg/L. CONCLUSIONS MICs ranged for all the drugs, except telithromycin, from < or = 0.06 to > or = 256 mg/L, with 15% to 30% resistant S. pyogenes for all drugs tested except clindamycin (8%) and telithromycin (5.4%) and 10% to 40% resistant S. pneumoniae for all drugs tested except telithromycin (0.3%). In both S. pyogenes and S. pneumoniae, erythromycin resistance related to a mef gene meant that telithromycin MICs were definitely higher than in erythromycin-susceptible isolates, although telithromycin susceptibility was preserved in all cases. In S. pyogenes, the activity of both 16-membered macrolides and telithromycin against the iMLS(B) strains proved to be dependent on the erm gene involved, being greater against isolates with erm(A).
Collapse
Affiliation(s)
- Annarita Mazzariol
- Dipartimento di Patologia, Sezione di Microbiologia, Università degli Studi di Verona, Strada Le Grazie 8, Verona, Italy
| | | | | | | |
Collapse
|
11
|
Hawkyard CV, Koerner RJ. The use of erythromycin as a gastrointestinal prokinetic agent in adult critical care: benefits versus risks. J Antimicrob Chemother 2007; 59:347-58. [PMID: 17289772 DOI: 10.1093/jac/dkl537] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Erythromycin A, the first macrolide, was introduced in the 1950s and after years of clinical experience it still remains a commonly relied upon antibiotic. In the past, pharmacodynamic characteristics of macrolides beyond antimicrobial action such as anti-inflammatory and immune-modulating properties have been of scientific and clinical interest. The function of erythromycin as a prokinetic agent has also been investigated for a range of gastrointestinal motility disorders and more recently within the context of critically ill patients. Prokinetic agents are drugs that increase contractile force and accelerate intraluminal transit. Whilst the anti-inflammatory action may be a desirable side effect to its antibiotic action, using erythromycin A merely for its prokinetic effect alone raises the concern about promoting emergence of macrolide resistance. The objectives of this review article are: (i) to briefly summarize the modes and epidemiology of macrolide resistance, particularly in respect to that found in the Streptococcus species (a potential reservoir for the dissemination of macrolide resistance on the critical care unit); (ii) to discuss in this context the evidence for conditions promoting bacterial resistance against macrolides; and (iii) to assess the potential clinical benefit of using erythromycin A as a prokinetic versus the risks of promoting emergence of macrolide resistance in the clinical setting. We conclude, that in view of the growing weight of evidence demonstrating the potential epidemiological impact of the increased use of macrolides upon the spread of resistance, versus a lack of sufficient and convincing evidence that erythromycin A is a superior prokinetic agent to potential alternatives in the critically ill patient population, at this stage we do not advocate the use of erythromycin A as a prokinetic agent in critically ill patients unless they have failed all other treatment for impaired gastrointestinal dysmotility and are intolerant of metoclopramide. Further large and methodologically robust studies are needed to ascertain the effectiveness of erythromycin A and other alternative agents in the critically ill.
Collapse
Affiliation(s)
- Catherine V Hawkyard
- Department of Medical Microbiology, Sunderland Royal Hospital, Sunderland, SR4 7TP, UK
| | | |
Collapse
|
12
|
Abstract
Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
13
|
Al-Lahham A, Appelbaum PC, van der Linden M, Reinert RR. Telithromycin-nonsusceptible clinical isolates of Streptococcus pneumoniae from Europe. Antimicrob Agents Chemother 2006; 50:3897-900. [PMID: 17065627 PMCID: PMC1635229 DOI: 10.1128/aac.00057-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telithromycin-nonsusceptible pneumococcal clinical isolates (n = 17) were analyzed for their antimicrobial susceptibility, macrolide resistance mechanisms, and genetic relatedness. All strains showed the erm(B) genotype and showed a wide range of combinations of macrolide resistance mechanisms. The predominant clone (n = 7) was serotype 14, sequence type 143.
Collapse
Affiliation(s)
- Adnan Al-Lahham
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital (RWTH), Pauwelsstr. 30, Aachen, Germany
| | | | | | | |
Collapse
|
14
|
|
15
|
Ambrose KD, Nisbet R, Stephens DS. Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob Agents Chemother 2006; 49:4203-9. [PMID: 16189099 PMCID: PMC1251515 DOI: 10.1128/aac.49.10.4203-4209.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Macrolide resistance in Streptococcus pneumoniae due to efflux has emerged as an important worldwide clinical problem over the past decade. Efflux is mediated by the genes of the genetic element mega (macrolide efflux genetic assembly) and related elements, such as Tn1207.1. These elements contain two adjacent genes, mef (mefE or mefA) and the closely related mel gene (msrA homolog), encoding a proton motive force pump and a putative ATP-binding cassette transporter homolog, and are transcribed as an operon (M. Del Grosso et al., J. Clin. Microbiol. 40:774-778, 2004; K. Gay and D. S. Stephens, J. Infect. Dis. 184:56-65, 2001; and M. Santagati et al., Antimicrob. Agents Chemother. 44:2585-2587, 2000). Previous studies have shown that Mef is required for macrolide resistance in S. pneumoniae; however, the contribution of Mel has not been fully determined. Independent deletions were constructed in mefE and mel in the serotype 14 macrolide-resistant strains GA16638 (erythromycin [Em] MIC, 8 to 16 microg/ml) and GA17719 (Em MIC, 2 to 4 microg/ml), which contain allelic variations in the mega element. The MICs to erythromycin were significantly reduced for the independent deletion mutants of both mefE and mel compared to those of the parent strains and further reduced threefold to fourfold to Em MICs of <0.15 microg/ml with mefE mel double mutants. Using quantitative reverse transcription-PCR, the expression of mefE in the mel deletion mutants was increased more than 10-fold. However, in the mefE deletion mutants, the expression of mel did not differ significantly from the parent strains. The expression of both mefE and mel was inducible by erythromycin. These data indicate a requirement for both Mef and Mel in the novel efflux-mediated macrolide resistance system in S. pneumoniae and other gram-positive bacteria and that the system is inducible by macrolides.
Collapse
Affiliation(s)
- Karita D Ambrose
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
16
|
Reynolds ED, Cove JH. Resistance to telithromycin is conferred by msr(A), msrC and msr(D) in Staphylococcus aureus. J Antimicrob Chemother 2005; 56:1179-80. [PMID: 16223938 DOI: 10.1093/jac/dki378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Abstract
Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|