Abstract
Background
Mycetoma is a neglected, chronic, and deforming infectious disease caused by fungi and actinomycetes. In Mexico, N. brasiliensis is the predominant etiologic agent. Therapeutic alternatives are necessary because the current drug regimens have several disadvantages. Benzothiazinones (BTZ) are a new class of candidate drugs that inhibit decaprenyl-phosphoribose-epimerase (DprE1), an essential enzyme involved in the cell wall biosynthesis of Corynebacterineae.
Methodology/Principal findings
In this study, the in vitro activity of the next generation BTZ, PBTZ169, was tested against thirty Nocardia brasiliensis isolates. The MIC50 and MIC90 values for PBTZ169 were 0.0075 and 0.03 μg/mL, respectively. Because Nocardia is a potential intracellular bacterium, a THP-1 macrophage monolayer was infected with N. brasiliensis HUJEG-1 and then treated with PBTZ169, resulting in a decrease in the number of colony-forming units (CFUs) at a concentration of 0.25X the in vitro value. The in vivo activity was evaluated after infecting female BALB/c mice in the right hind food-pad. After 6 weeks, treatment was initiated with PBTZ169 and its activity was compared with the first generation compound, BTZ043. Both BTZ compounds were administered at 100 mg/kg twice daily by gavage, and sulfamethoxazole/trimethoprim (SXT), at 100 mg/kg sulfamethoxazole, was used as a positive control. After 22 weeks of therapy, only PBTZ169 and SXT displayed statistically significant activity.
Conclusion
These results indicate that DprE1 inhibitors may be useful for treating infections of Nocardia and may therefore be active against other actinomycetoma agents. We must test combinations of these compounds with other antimicrobial agents, such as linezolid, tedizolid or SXT, that have good to excellent in vivo activity, as well as new DprE1 inhibitors that can achieve higher plasma levels.
Mycetoma is a neglected tropical disease caused by many etiological agents, including actinobacteria and true fungi. In Mexico, Nocardia brasiliensis and Actinomadura madurae account for more than 90% of the total cases. This subcutaneous infectious disease can affect skin and subcutaneous tissue; actinomycetomas are particularly osteolytic. The presence of abundant scar tissue, pus, and the intracellular growth of Nocardia make treatment very difficult. Current N. brasiliensis actinomycetoma therapy includes the use of trimethoprim-sulamethozaxole, diamino-diphenyl-sulphone (DDS), amikacin, and amoxicillin-clavulanate. N. brasiliensis is resistant to many other antimicrobials due in part to its richness in copies of genes related to pharmacoresistance, for instance rpoB, gyrase, beta-lactams, P450 cytochromes, etc. DprE1 inhibitors are new types of compounds that target a completely different gene, dprE1, encoding the decaprenylphosphoryl-d-ribose oxidase. Assays evaluating these experimental or other new drugs are necessary to develop a better therapeutic scheme for actinomycetoma, with more potent, less toxic antimicrobials.
Collapse