1
|
Multiplex Lateral Flow Immunoassay for the Detection of Expanded-Spectrum Hydrolysis and CTX-M Enzymes. Diagnostics (Basel) 2022; 12:diagnostics12010190. [PMID: 35054357 PMCID: PMC8775197 DOI: 10.3390/diagnostics12010190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Background: Early detection of expanded-spectrum cephalosporinase (ESC) hydrolyzing ß-lactamases is essential for antibiotic stewardship. Here we have developed a multiplex lateral flow immunoassay (LFIA) that detects cefotaxime-hydrolyzing activity as well as the most prevalent ESC-hydrolyzing ß-lactamases: the CTX-M-like. Methods: The Rapid LFIA ESC test was evaluated retrospectively on 188 (139 Enterobacterales, 30 Pseudomonas spp. and 14 Acinetobacter spp.) agar-grown bacterial isolates with well-characterized ß-lactamase content. One single colony was resuspended in 150 µL extraction buffer containing cefotaxime, incubated at room temperature for 30 min prior to loading on the LFIA for reading within 10 min. Results: Out of the 188 isolates, all 17 that did not express a β-lactamase hydrolyzing cefotaxime gave negative results, and all 171 isolates expressing a β-lactamase known to hydrolyze cefotaxime, gave a positive test result. In addition, all 86 isolates expressing a CTX-M-variant belonging to one of the five CTX-M-subgroups were correctly identified. The sensitivity and specificity was 100% for both tests. Conclusions: The results showed that the multiplex LFIA was efficient, fast, low cost and easy to implement in routine laboratory work for the confirmation of ESC hydrolyzing activity and the presence of CTX-M enzymes.
Collapse
|
2
|
Nishida S, Nakagawa M, Ouchi Y, Sakuma C, Nakajima Y, Shimizu H, Shibata T, Kurosawa Y, Maruyama T, Okumura CJ, Hatayama N, Sato Y, Asahara M, Ishigaki S, Furukawa T, Akuta T, Ono Y. A rabbit monoclonal antibody-mediated lateral flow immunoassay for rapid detection of CTX-M extended-spectrum β-lactamase-producing Enterobacterales. Int J Biol Macromol 2021; 185:317-323. [PMID: 34129888 DOI: 10.1016/j.ijbiomac.2021.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Infections of CTX-M extended-spectrum β-lactamase-producing Enterobacterales are a severe threat in clinical settings. CTX-M genes on plasmids have been transferred to many Enterobacterales species, and these species have spread, leading to the global problem of antimicrobial resistance. Here, we developed a lateral flow immunoassay (LFIA) based on an anti-CTX-M rabbit monoclonal antibody. This antibody detected CTX-M variants from the CTX-M-9, CTX-M-2, and CTX-M-1 groups expressed in clinical isolates. The LFIA showed 100% sensitivity and specificity with clinical isolates on agar plates, and its limit of detection was 0.8 ng/mL recombinant CTX-M-14. The rabbit monoclonal antibody did not cross-react with bacteria producing other class A β-lactamases, including SHV. In conclusion, we developed a highly sensitive and specific LFIA capable of detecting CTX-M enzyme production in Enterobacterales. We anticipate that our LFIA will become a point-of-care test enabling rapid detection of CTX-M in hospital and community settings as well as a rapid environmental test.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Masataka Nakagawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yuki Ouchi
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Chiaki Sakuma
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yu Nakajima
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Hisayo Shimizu
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Takashi Shibata
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yasunori Kurosawa
- Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Toshiaki Maruyama
- Abwiz Bio, Inc., 9823 Pacific Heights BLVD, Suite J, San Diego, CA, 92121, USA
| | - C J Okumura
- Abwiz Bio, Inc., 9823 Pacific Heights BLVD, Suite J, San Diego, CA, 92121, USA
| | - Nami Hatayama
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Miwa Asahara
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Shinobu Ishigaki
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Taiji Furukawa
- Department of Laboratory Medicine, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Teruo Akuta
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; Kyokuto Pharmaceutical Industrial Co., Ltd., 7-8 Nihonbashi Kobunacho, Chuo-ku, Tokyo, 103-0024, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
3
|
Bernabeu S, Ratnam KC, Boutal H, Gonzalez C, Vogel A, Devilliers K, Plaisance M, Oueslati S, Malhotra-Kumar S, Dortet L, Fortineau N, Simon S, Volland H, Naas T. A Lateral Flow Immunoassay for the Rapid Identification of CTX-M-Producing Enterobacterales from Culture Plates and Positive Blood Cultures. Diagnostics (Basel) 2020; 10:diagnostics10100764. [PMID: 32998433 PMCID: PMC7600033 DOI: 10.3390/diagnostics10100764] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
We have developed a lateral flow immunoassay (LFIA), named NG-Test CTX-M MULTI (NG-Test), to detect group 1, 2, 8, 9, 25 CTX-M producers from agar plates and from positive blood cultures in less than 15 min. The NG-Test was validated retrospectively on 113 well-characterized enterobacterial isolates, prospectively on 102 consecutively isolated ESBL-producers from the Bicêtre hospital and on 100 consecutive blood cultures positive with a gram-negative bacilli (GNB). The NG-Test was able to detect all CTX-M producers grown on the different agar plates used in clinical microbiology laboratories. No false positive nor negative results were observed. Among the 102 consecutive ESBL isolates, three hyper mucous isolates showed an incorrect migration leading to invalid results (no control band). Using an adapted protocol, the results could be validated. The NG-Test detected 99/102 ESBLs as being CTX-Ms. Three SHV producers were not detected. Among the 100 positive blood cultures with GNB tested 10/11 ESBL-producers were detected (8 CTX-M-15, 2 CTX-M-27). One SHV-2-producing-E. cloacae was missed. The NG-Test CTX-M MULTI showed 100% sensitivity and specificity with isolates cultured on agar plates and was able to detect 98% of the ESBL-producers identified in our clinical setting either from colonies or from positive blood cultures.
Collapse
Affiliation(s)
- Sandrine Bernabeu
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | | | - Hervé Boutal
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Camille Gonzalez
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | - Anaïs Vogel
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Karine Devilliers
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Marc Plaisance
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Saoussen Oueslati
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium;
- Members of ESCMID Study Group for Antimicrobial Resistance Surveillance—ESGARS, Headquarter, 4010 Basel, Switzerland
| | - Laurent Dortet
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Nicolas Fortineau
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Hervé Volland
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Thierry Naas
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Members of ESCMID Study Group for Antimicrobial Resistance Surveillance—ESGARS, Headquarter, 4010 Basel, Switzerland
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
- Service de Bactériologie, AP-HP, CHU de Bicêtre, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Correspondence: ; Tel.: +33-1-45-21-29-86
| |
Collapse
|
4
|
The Changing Role of the Clinical Microbiology Laboratory in Defining Resistance in Gram-negatives. Infect Dis Clin North Am 2017; 30:323-345. [PMID: 27208762 DOI: 10.1016/j.idc.2016.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evolution of resistance in Gram-negatives has challenged the clinical microbiology laboratory to implement new methods for their detection. Multidrug-resistant strains present major challenges to conventional and new detection methods. More rapid pathogen identification and antimicrobial susceptibility testing have been developed for use directly on specimens, including fluorescence in situ hybridization tests, automated polymerase chain reaction systems, microarrays, mass spectroscopy, next-generation sequencing, and microfluidics. Review of these methods shows the advances that have been made in rapid detection of resistance in cultures, but limited progress in direct detection from specimens.
Collapse
|
5
|
Deccache Y, Irenge LM, Ambroise J, Savov E, Marinescu D, Chirimwami RB, Gala JL. A qPCR and multiplex pyrosequencing assay combined with automated data processing for rapid and unambiguous detection of ESBL-producers Enterobacteriaceae. AMB Express 2015; 5:136. [PMID: 26260895 PMCID: PMC4531121 DOI: 10.1186/s13568-015-0136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
Rapid and specific detection of extended-spectrum β-lactamase-producing (ESBL) bacteria is crucial both for timely antibiotic therapy when treating infected patients as well as for appropriate infection control measures aimed at curbing the spread of ESBL-producing isolates. Whereas a variety of phenotypic methods are currently available for ESBL detection, they remain time consuming and sometimes difficult to interpret while being also affected by a lack of sensitivity and specificity. Considering the longer turnaround time (TAT) of susceptibility testing and culture results, DNA-based ESBL identification would be a valuable surrogate for phenotypic-based methods. Putative ESBL-positive Enterobacteriaceae isolates (n = 330) from clinical specimen were prospectively collected in Bulgaria, Romania and Democratic Republic of Congo and tested in this study. All isolates were assessed for ESBL-production by the E-test method and those giving undetermined ESBL status were re-tested using the combination disk test. A genotypic assay successively combining qPCR detection of blaCTX-M, blaTEM and blaSHV genes with a multiplex pyrosequencing of blaTEM and blaSHV genes was developed in order to detect the most common ESBL-associated TEM and SHV single nucleotides polymorphisms, irrespective of their plasmid and/or chromosomal location. This assay was applied on all Enterobacteriaceae isolates (n = 330). Phenotypic and genotypic results matched in 324/330 (98.2%). Accordingly, real-time PCR combined with multiplex pyrosequencing appears to be a reliable and easy-to-perform assay with high-throughput identification and fast TAT (~5 h).
Collapse
|
6
|
Rodríguez-Baño J, Cisneros JM, Cobos-Trigueros N, Fresco G, Navarro-San Francisco C, Gudiol C, Horcajada JP, López-Cerero L, Martínez JA, Molina J, Montero M, Paño-Pardo JR, Pascual A, Peña C, Pintado V, Retamar P, Tomás M, Borges-Sa M, Garnacho-Montero J, Bou G. Diagnosis and antimicrobial treatment of invasive infections due to multidrug-resistant Enterobacteriaceae. Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology. Enferm Infecc Microbiol Clin 2015; 33:337.e1-337.e21. [DOI: 10.1016/j.eimc.2014.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
7
|
Zhu L, Shen D, Zhou Q, Li Z, Fang X, Li QZ. A locked nucleic acid (LNA)-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture. PLoS One 2015; 10:e0120464. [PMID: 25775001 PMCID: PMC4361058 DOI: 10.1371/journal.pone.0120464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA)-based quantitative real-time PCR (LNA-qPCR) method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1–10 colony forming units (CFU) per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4%) were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.
Collapse
Affiliation(s)
- Lingxiang Zhu
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Dingxia Shen
- Department of Clinical Microbiology, General Hospital of People’s Liberation Army, Beijing, China
| | - Qiming Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zexia Li
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lupo A, Papp-Wallace KM, Sendi P, Bonomo RA, Endimiani A. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagn Microbiol Infect Dis 2013; 77:179-94. [PMID: 24091103 DOI: 10.1016/j.diagmicrobio.2013.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/12/2013] [Indexed: 02/07/2023]
Abstract
In the past 2 decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDI-TOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed.
Collapse
Affiliation(s)
- Agnese Lupo
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Abstract
In recent years, quantitative real-time PCR tests have been extensively developed in clinical microbiology laboratories for routine diagnosis of infectious diseases, particularly bacterial diseases. This molecular tool is well-suited for the rapid detection of bacteria directly in clinical specimens, allowing early, sensitive and specific laboratory confirmation of related diseases. It is particularly suitable for the diagnosis of infections caused by fastidious growth species, and the number of these pathogens has increased recently. This method also allows a rapid assessment of the presence of antibiotic resistance genes or gene mutations. Although this genetic approach is not always predictive of phenotypic resistances, in specific situations it may help to optimize the therapeutic management of patients. Finally, an approach combining the detection of pathogens, their mechanisms of antibiotic resistance, their virulence factors and bacterial load in clinical samples could lead to profound changes in the care of these infected patients.
Collapse
Affiliation(s)
- Max Maurin
- Laboratoire de Bactériologie, Département des Agents Infectieux, Institut de Biologie et Pathologie, CHU de Grenoble, Université Joseph Fourier Grenoble 1, France.
| |
Collapse
|
10
|
Micek ST, Welch EC, Khan J, Pervez M, Doherty JA, Reichley RM, Hoppe-Bauer J, Dunne WM, Kollef MH. Resistance to empiric antimicrobial treatment predicts outcome in severe sepsis associated with Gram-negative bacteremia. J Hosp Med 2011; 6:405-10. [PMID: 21916003 DOI: 10.1002/jhm.899] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gram-negative bacteria are an important cause of severe sepsis. Recent studies have demonstrated reduced susceptibility of Gram-negative bacteria to currently available antimicrobial agents. METHODS We performed a retrospective cohort study of patients with severe sepsis who were bacteremic with Pseudomonas aeruginosa, Acinetobacter species, or Enterobacteriaceae from 2002 to 2007. Patients were identified by the hospital informatics database and pertinent clinical data (demographics, baseline severity of illness, source of bacteremia, and therapy) were retrieved from electronic medical records. All patients were treated with antimicrobial agents within 12 hours of having blood cultures drawn that were subsequently positive for bacterial pathogens. The primary outcome was hospital mortality. RESULTS A total of 535 patients with severe sepsis and Gram-negative bacteremia were identified. Hospital mortality was 43.6%, and 82 (15.3%) patients were treated with an antimicrobial regimen to which the causative pathogen was resistant. Patients infected with a resistant pathogen had significantly greater risk of hospital mortality (63.4% vs 40.0%; P < 0.001). In a multivariate analysis, infection with a pathogen that was resistant to the empiric antibiotic regimen, increasing APACHE II scores, infection with Pseudomonas aeruginosa, healthcare-associated hospital-onset infection, mechanical ventilation, and use of vasopressors were independently associated with hospital mortality. CONCLUSIONS In severe sepsis attributed to Gram-negative bacteremia, initial treatment with an antibiotic regimen to which the causative pathogen is resistant was associated with increased hospital mortality. This finding suggests that rapid determination of bacterial susceptibility could influence treatment choices in patients with severe sepsis potentially improving their clinical outcomes.
Collapse
Affiliation(s)
- Scott T Micek
- Pharmacy Department, Barnes-Jewish Hospital, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples. Antimicrob Agents Chemother 2011; 55:4038-43. [PMID: 21690281 DOI: 10.1128/aac.01734-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in-house quantitative real-time PCR (qPCR) assay using TaqMan chemistry has been developed to detect NDM-1 carbapenemase genes from bacterial isolates and directly from stool samples. The qPCR amplification of bla(NDM-1) DNA was linear over 10 log dilutions (r(2) = 0.99), and the amplification efficiency was 1.03. The qPCR detection limit was reproducibly 1 CFU, or 10 plasmid molecules, and there was no cross-reaction with DNA extracted from several multidrug-resistant bacteria harboring other β-lactam resistance genes. Feces spiked with decreasing amounts of enterobacterial isolates producing NDM-1 were spread on ChromID ESBL and on CHROMagar KPC media and were subjected to the qPCR. The limits of carbapenem-resistant bacterial detection from stools was reproducibly 1 × 10(1) to 3 × 10(1) CFU/100 mg feces with ChromID ESBL medium. The CHROMagar KPC culture medium had higher limits of detection (1 × 10(1) to 4 × 10(3) CFU/ml), especially with bacterial isolates having low carbapenem MICs. The limits of detection with the qPCR assay were reproducibly below 1 × 10(1) CFU/100 mg of feces by qPCR assay. Samples spiked with NDM-1-negative bacteria were negative by qPCR. The sensitivity and specificity of the bla(NDM-1) qPCR assay on spiked samples were 100% in both cases. Using an automated DNA extraction system (QIAcube system), the qPCR assay was reproducible. The use of qPCR is likely to shorten the time for bla(NDM-1) detection from 48 h to 4 h and will be a valuable tool for outbreak follow-up in order to rapidly isolate colonized patients and assign them to cohorts.
Collapse
|
12
|
Evaluation of a DNA microarray (Check-MDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum β-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J Clin Microbiol 2011; 49:1608-13. [PMID: 21325547 DOI: 10.1128/jcm.02607-10] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Check-MDR CT102 microarray, aimed at identifying bacteria producing extended-spectrum β-lactamase (ESBL) (SHV, TEM, and CTX-M) and carbapenemase (KPC, OXA-48, VIM, IMP, and NDM-1), was evaluated on a total of 144 Gram-negative strains expressing various β-lactamases. The sensitivity and specificity were 100% for most tested genes, suggesting that this assay allows accurate identification of common ESBL and carbapenemase producers from bacterial cultures.
Collapse
|
13
|
Evaluation of a DNA microarray, the check-points ESBL/KPC array, for rapid detection of TEM, SHV, and CTX-M extended-spectrum beta-lactamases and KPC carbapenemases. Antimicrob Agents Chemother 2010; 54:3086-92. [PMID: 20547813 DOI: 10.1128/aac.01298-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extended-spectrum beta-lactamases (ESBLs) and Klebsiella pneumoniae carbapenemases (KPC carbepenemases) have rapidly emerged worldwide and require rapid identification. The Check-Points ESBL/KPC array, a new commercial system based on genetic profiling for the direct identification of ESBL producers (SHV, TEM, and CTX-M) and of KPC producers, was evaluated. Well-characterized Gram-negative rods (Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii) expressing various ss-lactamases (KPC-2, SHV, TEM, and CTX-M types) were used as well as wild-type reference strains and isolates harboring ss-lactamase genes not detected by the assay. In addition, phenotypically confirmed ESBL producers isolated in clinical samples over a 3-month period at the Bicetre hospital were analyzed using the Check-Points ESBL/KPC array and by standard PCR. The Check-Points ESBL/KPC array allowed fast detection of all TEM, SHV, and CTX-M ESBL genes and of the KPC-2 gene. The assay allowed easy differentiation between non-ESBL TEM and SHV and their ESBL derivatives. None of the other tested ss-lactamase genes were detected, underlining its high specificity. The technique is suited for Enterobacteriaceae but also for P. aeruginosa and A. baumannii. However, for nonfermenters, especially P. aeruginosa, a 1:10 dilution of the total DNA was necessary to detect KPC-2 and SHV-2a genes reliably. The Check-Points ESBL/KPC array is a powerful high-throughput tool for rapid identification of ESBLs and KPC producers in cultures. It provided definitive results within the same working day, allowing rapid implementation of isolation measures and appropriate antibiotic treatment. It showed an interesting potential for routine laboratory testing.
Collapse
|