1
|
Durocher AF, Paquet VE, St-Laurent RE, Duchaine C, Charette SJ. Impact of Predation by Ciliate Tetrahymena borealis on Conjugation in Aeromonas salmonicida subsp. salmonicida. Antibiotics (Basel) 2024; 13:960. [PMID: 39452226 PMCID: PMC11504919 DOI: 10.3390/antibiotics13100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antibiotic resistance gene (ARG) spread is driven by horizontal gene transfer (HGT). Ciliated protozoa may contribute to this process, as their predation has been shown to facilitate HGT in certain bacteria. Here, this phenomenon was further investigated using A. salmonicida subsp. salmonicida. This fish pathogen bears an extensive and dynamic plasmidome, suggesting a high potential for HGT. METHODS A. salmonicida strains carrying one of three conjugative plasmids bearing ARGs (pSN254b, pRAS1b or pAsa4b) were cocultured with a recipient, either A. salmonicida, E. coli or A. hydrophila. Conjugation rates were assessed in the presence and absence of the ciliate Tetrahymena borealis. PCR genotyping confirmed the acquisition of the conjugative plasmids and was used to verify the mobilization of other plasmids. RESULTS The basal rate of conjugation observed was high. Under the conditions studied, ciliate predation did not appear to influence the conjugation rate, except at higher proportions of ciliates, which typically hampered conjugation. Microscopy revealed that most bacteria were digested in these conditions. PCR screening demonstrated that small mobilizable plasmids from A. salmonicida (pAsa1, pAsa2, pAsa3, and pAsal1) were acquired by the recipients along with the conjugative plasmids, with a slight effect of the ciliates in some donor/recipient cell combination. CONCLUSIONS These results highlight how A. salmonicida can conjugate efficiently with different species and how complex its relationship with ciliates is.
Collapse
Affiliation(s)
- Alicia F. Durocher
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval, Québec, QC G1V 4G5, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Valérie E. Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rébecca E. St-Laurent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Duchaine
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval, Québec, QC G1V 4G5, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada (S.J.C.)
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Amaro F, Martín-González A. Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. Int Microbiol 2021; 24:559-571. [PMID: 34365574 DOI: 10.1007/s10123-021-00192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting pots where intracellular organisms exchange genetic information, or even "training grounds" where some pathogens become hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding of bacterial virulence and, likely, how pathogens emerge.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
3
|
Matsushita M, Okubo T, Hasegawa T, Matsuo J, Watanabe T, Iwasaki S, Fukumoto T, Hayasaka K, Akizawa K, Shimizu C, Yamaguchi H. Tetrahymena promotes interactive transfer of carbapenemase gene encoded in plasmid between fecal Escherichia coli and environmental Aeromonas caviae. Microbiol Immunol 2019; 62:720-728. [PMID: 30357893 DOI: 10.1111/1348-0421.12656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023]
Abstract
Tetrahymena can facilitate plasmid transfer among Escherichia coli or from E. coli to Salmonella Enteritidis via vesicle accumulation. In this study, whether ciliates promote the interactive transfer of plasmids encoding blaIMP-1 between fecal E. coli and environmental Aeromonas caviae was investigated. Both bacteria were mixed with or without ciliates and incubated overnight at 30°C. The frequency of plasmid-acquired bacteria was estimated by colony counts using an agar plate containing ceftazidim (CAZ) followed by determination of the minimum inhibitory concentration (MIC). Cultures containing ciliates interactively transferred the plasmid between E. coli and Aeromonas with a frequency of 10-4 to 10-5 . All plasmid-acquired bacteria showed a MIC against CAZ of >128 μg/mL and the plasmid transfer was confirmed by PCR amplification of the blaIMP-1 gene. Fluorescent observation showed that both bacteria accumulated in the same vesicle and that transwell sequestering significantly decreased the transfer frequency. Although ciliates preferentially ingested E. coli rather than A. caviae, both bacteria were co-localized into the same vesicles of ciliates, indicating that their meeting is associated with the gene transfer. Thus, ciliates interactively promote plasmid transfer between E. coli and A. caviae. The results of this study will facilitate control of the spread of multiple-antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Mizue Matsushita
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Torahiko Okubo
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Takaki Hasegawa
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Junji Matsuo
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Takanori Watanabe
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Sumio Iwasaki
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Tatsuya Fukumoto
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Kasumi Hayasaka
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Kozi Akizawa
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Chikara Shimizu
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Hiroyuki Yamaguchi
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
4
|
Lerner A, Matthias T, Aminov R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front Immunol 2017; 8:1630. [PMID: 29230215 PMCID: PMC5711824 DOI: 10.3389/fimmu.2017.01630] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 01/02/2023] Open
Abstract
Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,AESKU.KIPP Institute, Wendelsheim, Germany
| | | | - Rustam Aminov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,School of Medicine & Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
5
|
Okubo T, Matushita M, Ohara Y, Matsuo J, Oguri S, Fukumoto T, Hayasaka K, Akizawa K, Shibuya H, Shimizu C, Yamaguchi H. Ciliates promote the transfer of a plasmid encoding blaNDM-5 from Escherichia coli, isolated from a hospital in Japan, to other human pathogens. Int J Antimicrob Agents 2017; 49:387-388. [DOI: 10.1016/j.ijantimicag.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 11/26/2022]
|
6
|
Oguri S, Hanawa T, Matsuo J, Ishida K, Yamazaki T, Nakamura S, Okubo T, Fukumoto T, Akizawa K, Shimizu C, Kamiya S, Yamaguchi H. Protozoal ciliate promotes bacterial autoinducer-2 accumulation in mixed culture with Escherichia coli. J GEN APPL MICROBIOL 2016; 61:203-10. [PMID: 26582290 DOI: 10.2323/jgam.61.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously demonstrated conjugation of Escherichia coli into vacuoles of the protozoal ciliate (Tetrahymena thermophila). This indicated a possible role of ciliates in evoking bacterial quorum sensing, directly connecting bacterial survival via accumulation in the ciliate vacuoles. We therefore assessed if ciliates promoted bacterial autoinducer (AI)-2 accumulation with vacuole formation, which controls quorum sensing. E. coli AI-2 accumulation was significantly enhanced in the supernatants of a mixed culture of ciliates and bacteria, likely depending on ciliate density rather than bacterial concentration. As expected, AI-2 production was significantly correlated with vacuole formation. The experiment with E. coli luxS mutants showed that ciliates failed to enhance bacterial AI-2 accumulation, denying a nonspecific phenomenon. Fluorescence microscopy revealed accumulation of fragmented bacteria in ciliate vacuoles, and, more importantly, expulsion of the vacuoles containing disrupted bacteria into the culture supernatant. There was no increase in the expression of luxS (encoding AI-2) or ydgG (a transporter for controlling bacterial export of AI-2). We conclude that ciliates promote bacterial AI-2 accumulation in a mixed culture, via accumulation of disrupted bacteria in ciliate vacuoles followed by expulsion of the vacuoles, independently of luxS or ydgG gene induction. This is believed to be the first demonstration of a relationship between E. coli AI-2 dynamics and ciliates. In the natural environment, ciliate biotopes may provide a survival advantage to bacteria inhabiting such biotopes, via evoking quorum sensing.
Collapse
|
7
|
Balcázar JL. Effect of ciliates in transfer of plasmid-mediated quinolone-resistance genes in bacteria. Emerg Infect Dis 2015; 21:547-9. [PMID: 25695687 PMCID: PMC4344287 DOI: 10.3201/eid2103.141549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Vaerewijck MJ, Baré J, Lambrecht E, Sabbe K, Houf K. Interactions of Foodborne Pathogens with Free-living Protozoa: Potential Consequences for Food Safety. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Julie Baré
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Ellen Lambrecht
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology; Dept. of Biology, Ghent Univ; Belgium
| | - Kurt Houf
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| |
Collapse
|
9
|
The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 2014; 22:36-41. [DOI: 10.1016/j.tim.2013.11.001] [Citation(s) in RCA: 409] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 11/20/2022]
|
10
|
Gibold L, Robin F, Tan RN, Delmas J, Bonnet R. Four-year epidemiological study of extended-spectrum β-lactamase-producing Enterobacteriaceae in a French teaching hospital. Clin Microbiol Infect 2013; 20:O20-6. [PMID: 23927626 DOI: 10.1111/1469-0691.12321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/21/2013] [Accepted: 06/30/2013] [Indexed: 11/30/2022]
Abstract
Since the end of the last century resistance to oxyimino β-lactams has steadily increased in Enterobacteriaceae. In the present work we studied extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae strains isolated in the teaching hospital of Clermont-Ferrand, France, between 2006 and 2009. A total of 1368 ESBL-producing isolates were collected. Most of these isolates (69%) were CTX-M-producing Escherichia coli. During the study, the clinical incidence increased by more than 400%, even in the emergency department, and especially in community-acquired infections, as is the case elsewhere in the world. Most of the ESBL-producing isolates remained susceptible to furans and fosfomycin, but only 50% to fluoroquinolons. In conclusion, ESBL-producing bacteria constantly increased during the study period. Unlike many studies, this increase was associated with the wide dissemination of three different CTX-M enzymes: CTX-M-14, CTX-M-15 and CTX-M-1.
Collapse
Affiliation(s)
- L Gibold
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Centre de Biologie, Clermont-Ferrand, France; Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, INSERM U1071, INRA, USC2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
11
|
Smith CD, Berk SG, Brandl MT, Riley LW. Survival characteristics of diarrheagenic Escherichia coli pathotypes and Helicobacter pylori during passage through the free-living ciliate, Tetrahymena sp. FEMS Microbiol Ecol 2012; 82:574-83. [PMID: 22680607 DOI: 10.1111/j.1574-6941.2012.01428.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 04/09/2012] [Accepted: 05/27/2012] [Indexed: 11/27/2022] Open
Abstract
Free-living protozoa have been implicated in the survival and transport of pathogens in the environment, but the relationship between non-Shiga toxin-producing Escherichia coli or Helicobacter pylori and ciliates has not been characterized. Six diarrheagenic pathotypes of E. coli and an isolate of H. pylori were evaluated for their susceptibility to digestion by Tetrahymena, an aquatic ciliate. Tetrahymena strain MB125 was fed E. coli or H. pylori, and the ciliate's egested products examined for viable bacterial pathogens by the BacLight(™) LIVE/DEAD (™) assay, a cell elongation method, and by colony counts. All six diarrheagenic E. coli pathotypes survived digestion, whereas H. pylori was digested. Growth of E. coli on agar plates indicated that the bacteria were able to replicate after passage through the ciliate. Transmission electron micrographs of E. coli cells as intact rods vs. degraded H. pylori cells corroborated these results. Scanning electron microscopy revealed a net-like matrix around intact E. coli cells in fecal pellets. These results suggest a possible role for Tetrahymena and its egested fecal pellets in the dissemination of diarrheagenic E. coli in the environment. This bacterial-protozoan interaction may increase opportunities for transmission of diarrheagenic E. coli to mammalian hosts including humans.
Collapse
Affiliation(s)
- Charlotte D Smith
- School of Public Health, University of California-Berkeley, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
12
|
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158. [PMID: 21845185 PMCID: PMC3145257 DOI: 10.3389/fmicb.2011.00158] [Citation(s) in RCA: 361] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.
Collapse
Affiliation(s)
- Rustam I Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, UK
| |
Collapse
|