1
|
Fuhs DT, Cortés-Lara S, Tait JR, Rogers KE, López-Causapé C, Lee WL, Shackleford DM, Nation RL, Oliver A, Landersdorfer CB. The effects of single and multiple resistance mechanisms on bacterial response to meropenem. Clin Microbiol Infect 2024; 30:1276-1283. [PMID: 39107161 DOI: 10.1016/j.cmi.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVES Meropenem is commonly used against Pseudomonas aeruginosa. Traditionally, the time unbound antibiotic concentration exceeds the MIC (fT>MIC) is used to select carbapenem regimens. We aimed to characterize the effects of different baseline resistance mechanisms on bacterial killing and resistance emergence; evaluate whether fT>MIC can predict these effects; and, develop a novel Quantitative and Systems Pharmacology (QSP) model to describe the effects of baseline resistance mechanisms on the time-course of bacterial response. METHODS Seven isogenic P. aeruginosa strains with a range of resistance mechanisms and MICs were used in 10-day hollow-fiber infection model studies. Meropenem pharmacokinetic profiles were simulated for various regimens (t1/2,meropenem = 1.5 h). All viable counts on drug-free, 3 × MIC, and 5 × MIC meropenem-containing agar across all strains, five regimens, and control (n = 90 profiles) were simultaneously subjected to QSP modeling. Whole genome sequencing was completed for total population samples and emergent resistant colonies at 239 h. RESULTS Regimens achieving ≥98%fT>1×MIC suppressed resistance emergence of the mexR knockout strain. Even 100%fT>5 × MIC failed to achieve this against the strain with OprD loss and the ampD and mexR double-knockout strain. Baseline resistance mechanisms affected bacterial outcomes, even for strains with the same MIC. Genomic analysis revealed that pre-existing resistant subpopulations drove resistance emergence. During meropenem exposure, mutations in mexR were selected in strains with baseline oprD mutations, and vice versa, confirming these as major mechanisms of resistance emergence. Secondary mutations occurred in lysS or argS, coding for lysyl and arginyl tRNA synthetases, respectively. DISCUSSION The QSP model well-characterized all bacterial outcomes of the seven strains simultaneously, which fT>MIC could not.
Collapse
Affiliation(s)
- Dominika T Fuhs
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sara Cortés-Lara
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Jessica R Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kate E Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Wee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Elfadadny A, Ragab RF, AlHarbi M, Badshah F, Ibáñez-Arancibia E, Farag A, Hendawy AO, De los Ríos-Escalante PR, Aboubakr M, Zakai SA, Nageeb WM. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front Microbiol 2024; 15:1374466. [PMID: 38646632 PMCID: PMC11026690 DOI: 10.3389/fmicb.2024.1374466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is recognized for its adaptability and opportunistic nature. It poses a substantial challenge in clinical settings due to its complicated antibiotic resistance mechanisms, biofilm formation, and capacity for persistent infections in both animal and human hosts. Recent studies revealed a potential zoonotic transmission of P. aeruginosa between animals, the environment, and human populations which highlights awareness of this microbe. Implementation of the One Health approach, which underscores the connection between human, animal, and environmental health, we aim to offer a comprehensive perspective on the current landscape of P. aeruginosa management. This review presents innovative strategies designed to counteract P. aeruginosa infections. Traditional antibiotics, while effective in many cases, are increasingly compromised by the development of multidrug-resistant strains. Non-antibiotic avenues, such as quorum sensing inhibition, phage therapy, and nanoparticle-based treatments, are emerging as promising alternatives. However, their clinical application encounters obstacles like cost, side effects, and safety concerns. Effectively addressing P. aeruginosa infections necessitates persistent research efforts, advancements in clinical development, and a comprehension of host-pathogen interactions to deal with this resilient pathogen.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Rokaia F. Ragab
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Farhad Badshah
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Eliana Ibáñez-Arancibia
- PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile
- Laboratory of Engineering, Biotechnology and Applied Biochemistry – LIBBA, Department of Chemical Engineering, Faculty of Engineering and Science, La Frontera University, Temuco, Chile
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Ahmed Farag
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Patricio R. De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
- Nucleus of Environmental Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qaliobiya, Egypt
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Castanheira M, Doyle TB, Hubler CM, DeVries S, Shortridge D. Vaborbactam increases meropenem susceptibility in Pseudomonas aeruginosa clinical isolates displaying MexXY and AmpC upregulation. mSphere 2023; 8:e0016223. [PMID: 37768064 PMCID: PMC10597463 DOI: 10.1128/msphere.00162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
To evaluate the resistance mechanisms among Pseudomonas aeruginosa clinical isolates exhibiting meropenem (MEM) MIC values higher than meropenem-vaborbactam (MEV). P. aeruginosa clinical isolates collected in US hospitals from 2014 to 2019 were susceptibility tested. Whole-genome and transcriptome sequencing were performed. Results were analyzed for strain typing, acquired β-lactamases, and mutations in chromosomal genes; gene expression was measured for known β-lactam resistance contributors. Results were compared to a control group of 10 P. aeruginosa isolates displaying MIC values at 8 mg/L for meropenem ± vaborbactam (MEM = MEV). Out of 88 isolates displaying MEM > MEV, 33 (37.5%) isolates had reproducibly lower MIC values for meropenem-vaborbactam compared to meropenem when retested. The expression of mexX, mexY, mexZ, and ampC was significantly greater among a higher percentage of the MEM > MEV isolates. Furthermore, the association of mexXY and ampC overexpression was detected in 17/33 MEM > MEV isolates and only 1/10 MEM = MEV isolate. In addition, the Pseudomonas-derived cephalosporinase amino acid substitution R79Q was detected among 33.3% of the isolates displaying MEM > MEV, and none of the isolates displayed MEM = MEV. Other resistance mechanisms were not observed or were equally observed in both groups. In rare cases, vaborbactam plays a role in lowering the meropenem MIC values in P. aeruginosa clinical isolates likely due to the inhibition of the AmpC gene that was overexpressed in the presence of upregulation of MexXY with or without alterations in the AmpC gene. IMPORTANCE Pseudomonas aeruginosa isolates are intrinsically resistant to multiple antimicrobial agents and meropenem is an important therapeutic option to treat infections caused by this organism. Meropenem-vaborbactam activity is similar to that of meropenem alone against P. aeruginosa isolates. Isolates belonging to this species that display lower meropenem-vaborbactam compared to meropenem are rare. We initiated this study to understand the resistance mechanisms that could lead to lower meropenem-vaborbactam MIC values when compared to meropenem alone. We documented that isolates displaying lower meropenem-vaborbactam exhibited overexpression of MexXY and AmpC. In addition, isolates displaying the R79Q PDC (AmpC) mutation were more likely to display lower meropenem-vaborbactam when compared to isolates displaying the same MIC values for these agents.
Collapse
|
4
|
Price SL, Thibault D, Garrison TM, Brady A, Guo H, Kehl‐Fie TE, Garneau‐Tsodikova S, Perry RD, van Opijnen T, Lawrenz MB. Droplet Tn-Seq identifies the primary secretion mechanism for yersiniabactin in Yersinia pestis. EMBO Rep 2023; 24:e57369. [PMID: 37501563 PMCID: PMC10561177 DOI: 10.15252/embr.202357369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Nutritional immunity includes sequestration of transition metals from invading pathogens. Yersinia pestis overcomes nutritional immunity by secreting yersiniabactin to acquire iron and zinc during infection. While the mechanisms for yersiniabactin synthesis and import are well-defined, those responsible for yersiniabactin secretion are unknown. Identification of this mechanism has been difficult because conventional mutagenesis approaches are unable to inhibit trans-complementation by secreted factors between mutants. To overcome this obstacle, we utilized a technique called droplet Tn-seq (dTn-seq), which uses microfluidics to isolate individual transposon mutants in oil droplets, eliminating trans-complementation between bacteria. Using this approach, we first demonstrated the applicability of dTn-seq to identify genes with secreted functions. We then applied dTn-seq to identify an AcrAB efflux system as required for growth in metal-limited conditions. Finally, we showed this efflux system is the primary yersiniabactin secretion mechanism and required for virulence during bubonic and pneumonic plague. Together, these studies have revealed the yersiniabactin secretion mechanism that has eluded researchers for over 30 years and identified a potential therapeutic target for bacteria that use yersiniabactin for metal acquisition.
Collapse
Affiliation(s)
- Sarah L Price
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKYUSA
| | | | - Taylor M Garrison
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKYUSA
| | - Amanda Brady
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKYUSA
| | - Haixun Guo
- Center for Predictive Medicine for Biodefense and Emerging Infectious DiseasesUniversity of LouisvilleLouisvilleKYUSA
- Department of RadiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Thomas E Kehl‐Fie
- Department of MicrobiologyUniversity of Illinois Urbana‐ChampaignChampaignILUSA
- Carl R Woese Institute for Genomic BiologyUrbanaILUSA
| | | | - Robert D Perry
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of KentuckyLexingtonKYUSA
| | | | - Matthew B Lawrenz
- Department of Microbiology and ImmunologyUniversity of LouisvilleLouisvilleKYUSA
- Center for Predictive Medicine for Biodefense and Emerging Infectious DiseasesUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
5
|
Ramkisson T, Rip D. Carbapenem resistance in Enterobacterales from agricultural, environmental and clinical origins: South Africa in a global context. AIMS Microbiol 2023; 9:668-691. [PMID: 38173973 PMCID: PMC10758576 DOI: 10.3934/microbiol.2023034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024] Open
Abstract
Carbapenem agents are regarded as last-resort antibiotics, however, bacterial resistance towards carbapenems has been reported in both clinical and agricultural settings worldwide. Carbapenem resistance, defined as the resistance of a bacteria towards one or more carbapenem drugs, can be mediated in either of, or a combination of, three mechanisms-although, the mechanism mediated through the production of carbapenemases (β-lactamases that are able to enzymatically degrade carbapenems) is of most significance. Of particular concern is the occurrence of carbapenemase producing Enterobacterales (CPE), with literature describing a dramatic increase in resistance globally. In South Africa, increases of carbapenemase activity occurring in Enterobacter species, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa have recently been reported. CPE can also be found in agricultural environments, as global studies have documented numerous instances of CPE presence in various animals such as pigs, cattle, seafood, horses and dogs. However, most reports of CPE occurrence in agricultural settings come from Northern America, Europe and some parts of Asia, where more extensive research has been conducted to understand the CPE phenomenon. In comparison to clinical data, there are limited studies investigating the spread of CPE in agricultural settings in Africa, highlighting the importance of monitoring CPE in livestock environments and the food chain. Further research is necessary to uncover the true extent of CPE dissemination in South Africa. This review will discuss the phenomenon of bacterial antibiotic resistance (ABR), the applications of the carbapenem drug and the occurrence of carbapenem resistance globally.
Collapse
Affiliation(s)
- Taish Ramkisson
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
6
|
Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, Kumar S, Jain N, Pandey A, Omar BJ. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2023; 16:1230. [PMID: 37765038 PMCID: PMC10534605 DOI: 10.3390/ph16091230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance in Pseudomonas aeruginosa remains one of the most challenging phenomena of everyday medical science. The universal spread of high-risk clones of multidrug-resistant/extensively drug-resistant (MDR/XDR) clinical P. aeruginosa has become a public health threat. The P. aeruginosa bacteria exhibits remarkable genome plasticity that utilizes highly acquired and intrinsic resistance mechanisms to counter most antibiotic challenges. In addition, the adaptive antibiotic resistance of P. aeruginosa, including biofilm-mediated resistance and the formation of multidrug-tolerant persisted cells, are accountable for recalcitrance and relapse of infections. We highlighted the AMR mechanism considering the most common pathogen P. aeruginosa, its clinical impact, epidemiology, and save our souls (SOS)-mediated resistance. We further discussed the current therapeutic options against MDR/XDR P. aeruginosa infections, and described those treatment options in clinical practice. Finally, other therapeutic strategies, such as bacteriophage-based therapy and antimicrobial peptides, were described with clinical relevance.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Radhika Kherdekar
- Department of Dentistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Vishal Mago
- Department of Burn and Plastic Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Madhur Uniyal
- Department of Trauma Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Garima Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Roop Bhushan Kalia
- Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India
- Division of Cancer Biology, Central Drug Research Institute, Lucknow 226031, India
| | - Atul Pandey
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
7
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
8
|
Zhao Y, Chen D, Chen K, Xie M, Guo J, Chan EWC, Xie L, Wang J, Chen E, Chen S, Chen W, Jelsbak L. Epidemiological and Genetic Characteristics of Clinical Carbapenem-Resistant Pseudomonas aeruginosa Strains in Guangdong Province, China. Microbiol Spectr 2023; 11:e0426122. [PMID: 37078855 PMCID: PMC10269565 DOI: 10.1128/spectrum.04261-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a bacterial pathogen that may cause serious drug-resistant infections that are potentially fatal. To investigate the genetic characteristics of these organisms, we tested 416 P. aeruginosa strains recovered from 12 types of clinical samples collected in 29 different hospital wards in 10 hospitals in Guangdong Province, China, from 2017 to 2020. These strains were found to belong to 149 known sequence types (STs) and 72 novel STs, indicating that transmission of these strains involved multiple routes. A high rate of resistance to imipenem (89.4%) and meropenem (79.4%) and a high prevalence of pathogenic serotypes (76.4%) were observed among these strains. Six STs of global high-risk clones (HiRiCs) and a novel HiRiC strains, ST1971, which exhibited extensive drug resistance, were identified. Importantly, ST1971 HiRiC, which was unique in China, also exhibited high virulence, which alarmed the further surveillance on this highly virulent and highly resistant clone. Inactivation of the oprD gene and overexpression of efflux systems were found to be mainly responsible for carbapenem resistance in these strains; carriage of metallo-β-lactamase (MBL)-encoding genes was less common. Interestingly, frameshift mutations (49.0%) and introduction of a stop codon (22.4%) into the oprD genes were the major mechanisms of imipenem resistance. On the other hand, expression of the MexAB-OprM efflux pump and MBL-encoding genes were mechanisms of resistance in >70% of meropenem-resistant strains. The findings presented here provide insights into the development of effective strategies for control of worldwide dissemination of CRPA. IMPORTANCE Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a major concern in clinical settings worldwide, yet few genetic and epidemiological studies on CRPA strains have been performed in China. Here, we sequence and analyze the genomes of 416 P. aeruginosa strains from hospitals in China to elucidate the genetic, phenotypic, and transmission characteristics of CRPA strains and to identify the molecular signatures responsible for the observed increase in the prevalence of CRPA infections in China. These findings may provide new insight into the development of effective strategies for worldwide control of CRPA and minimize the occurrence of untreatable infections in clinical settings.
Collapse
Affiliation(s)
- Yonggang Zhao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Dingqiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, People’s Republic of China
| | - Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, People’s Republic of China
| | - Jiubiao Guo
- College of Pharmacy-Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Edward Wai Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, People’s Republic of China
| | - Lu Xie
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, People’s Republic of China
| | - Jingbo Wang
- College of Pharmacy-Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Enqi Chen
- College of Pharmacy-Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, People’s Republic of China
| | - Weijun Chen
- BGI-Shenzhen, Shenzhen, People’s Republic of China
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
9
|
Molecular Mechanisms of Resistance to Ceftazidime/Avibactam in Clinical Isolates of Enterobacterales and Pseudomonas aeruginosa in Latin American Hospitals. mSphere 2023; 8:e0065122. [PMID: 36877058 PMCID: PMC10117078 DOI: 10.1128/msphere.00651-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Ceftazidime-avibactam (CZA) is the combination of a third-generation cephalosporin and a new non-β-lactam β-lactamase inhibitor capable of inactivating class A, C, and some D β-lactamases. From a collection of 2,727 clinical isolates of Enterobacterales (n = 2,235) and P. aeruginosa (n = 492) that were collected between 2016 and 2017 from five Latin American countries, we investigated the molecular resistance mechanisms to CZA of 127 (18/2,235 [0.8%] Enterobacterales and 109/492 [22.1%] P. aeruginosa). First, by qPCR for the presence of genes encoding KPC, NDM, VIM, IMP, OXA-48-like, and SPM-1 carbapenemases, and second, by whole-genome sequencing (WGS). From the CZA-resistant isolates, MBL-encoding genes were detected in all 18 Enterobacterales and 42/109 P. aeruginosa isolates, explaining their resistant phenotype. Resistant isolates that yielded a negative qPCR result for any of the MBL encoding genes were subjected to WGS. The WGS analysis of the 67 remaining P. aeruginosa isolates showed mutations in genes previously associated with reduced susceptibility to CZA, such as those involved in the MexAB-OprM efflux pump and AmpC (PDC) hyperproduction, PoxB (blaOXA-50-like), FtsI (PBP3), DacB (PBP4), and OprD. The results presented here offer a snapshot of the molecular epidemiological landscape for CZA resistance before the introduction of this antibiotic into the Latin American market. Therefore, these results serve as a valuable comparison tool to trace the evolution of the resistance to CZA in this carbapenemase-endemic geographical region. IMPORTANCE In this manuscript, we determine the molecular mechanisms of ceftazidime-avibactam resistance in Enterobacterales and P. aeruginosa isolates from five Latin American countries. Our results reveal a low rate of resistance to ceftazidime-avibactam among Enterobacterales; in contrast, resistance in P. aeruginosa has proven to be more complex, as it might involve multiple known and possibly unknown resistance mechanisms.
Collapse
|
10
|
Atta S, Vo-Dinh T. Solution-Based Ultra-Sensitive Surface-Enhanced Raman Scattering Detection of the Toxin Bacterial Biomarker Pyocyanin in Biological Fluids Using Sharp-Branched Gold Nanostars. Anal Chem 2023; 95:2690-2697. [PMID: 36693215 PMCID: PMC9909734 DOI: 10.1021/acs.analchem.2c03210] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
There is a critical need for sensitive rapid point-of-care detection of bacterial infection biomarkers in complex biological fluids with minimal sample preparation, which can improve early-stage diagnosis and prevent several bacterial infections and fatal diseases. A solution-based surface-enhanced Raman scattering (SERS) detection platform has long been sought after for low cost, rapid, and on-site detection of analyte molecules, but current methods still exhibit poor sensitivity. In this study, we have tuned the morphology of the surfactant-free gold nanostars (GNSs) to achieve sharp protruding spikes for maximum SERS enhancement. We have controlled the GNS spike morphologies and optimized SERS performance in the solution phase using para-mercaptobenzoic acid as an SERS probe. To illustrate the potential for point-of-care applications, we have utilized a portable Raman instrument for measurements. For pathogenic agent sensing applications, we demonstrated rapid and sensitive detection of the toxin biomarker pyocyanin (PYO) used as the bacterial biomarker model system. Pyocyanin is a toxic compound produced and secreted by the common water-borne Gram-negative bacterium Pseudomonas aeruginosa, a pathogen known for advanced antibiotic resistance and association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The limit of detection (LOD) achieved for PYO was 0.05 nM using sharp branched GNSs. Furthermore, as a proof of strategy, this SERS detection of PYO was performed directly in drinking water, human saliva, and human urine without any sample treatment pre-purification, achieving an LOD of 0.05 nM for drinking water and 0.4 nM for human saliva and urine. This work provides a proof-of-principle demonstration for the high sensitivity detection of the bacterial toxin biomarker with minimal sample preparation: the "mix and detect" detection of the GNS platform is simple, robust, and rapid, taking only 1-2 min for each measurement. Overall, our SERS detection platform shows great potential for point-of-need sensing and point-of-care diagnostics in biological fluids.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Zhang B, Xu X, Song X, Wen Y, Zhu Z, Lv J, Xie X, Chen L, Tang YW, Du H. Emerging and re-emerging KPC-producing hypervirulent Pseudomonas aeruginosa ST697 and ST463 between 2010 and 2021. Emerg Microbes Infect 2022; 11:2735-2745. [DOI: 10.1080/22221751.2022.2140609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Biying Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstr.55, 14513 Teltow, Germany
| | - Xiaomei Song
- Department of Nursing, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Jingnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Yi-Wei Tang
- Department of Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), New York, NY, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004 PR China
| |
Collapse
|
12
|
Haines RR, Putsathit P, Hammer KA, Tai AS. Activity of newest generation β-lactam/β-lactamase inhibitor combination therapies against multidrug resistant Pseudomonas aeruginosa. Sci Rep 2022; 12:16814. [PMID: 36207358 PMCID: PMC9547053 DOI: 10.1038/s41598-022-21101-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Multidrug resistant (MDR) P. aeruginosa accounts for 35% of all P. aeruginosa isolated from respiratory samples of patients with cystic fibrosis (CF). The usefulness of β-lactam antibiotics for treating CF, such as carbapenems and later generation cephalosporins, is limited by the development of antibacterial resistance. A proven treatment approach is the combination of a β-lactam antibiotic with a β-lactamase inhibitor. New β-lactam/β-lactamase inhibitor combinations are available, but data are lacking regarding the susceptibility of MDR CF-associated P. aeruginosa (CFPA) to these new combination therapies. In this study we determined MIC values for three new combinations; imipenem-relebactam (I-R), ceftazidime-avibactam (CZA), and ceftolozane-tazobactam (C/T) against MDR CFPA (n = 20). The MIC90 of I-R, CZA, and C/T was 64/4, 32/4, and 16/8 (all µg/mL), respectively. The susceptibility of isolates to imipenem was not significantly improved with the addition of relebactam (p = 0.68). However, susceptibility to ceftazidime was significantly improved with the addition of avibactam (p < 0.01), and the susceptibility to C/T was improved compared to piperacillin/tazobactam (p < 0.05) These data provide in vitro evidence that I-R may not be any more effective than imipenem monotherapy against MDR CFPA. The pattern of susceptibility observed for CZA and C/T in the current study was similar to data previously reported for non-CF-associated MDR P. aeruginosa.
Collapse
Affiliation(s)
- Robbie R Haines
- School of Biomedical Sciences, The University of Western Australia, 30 Stirling Hwy, Crawley, Perth, WA, 6009, Australia.
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Katherine A Hammer
- School of Biomedical Sciences, The University of Western Australia, 30 Stirling Hwy, Crawley, Perth, WA, 6009, Australia
| | - Anna S Tai
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Institute of Respiratory Health, Nedlands, WA, Australia.,Medical School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Yuan Y, Wang D, Cai H, Li D, Xu X, Guo Q, He T, Wang M. High-level ertapenem resistance in Klebsiella pneumoniae is due to RamA downregulation of ompK35 through micF. Int J Antimicrob Agents 2022; 60:106653. [PMID: 35952849 DOI: 10.1016/j.ijantimicag.2022.106653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
An ertapenem-resistant Klebsiella pneumoniae clinical isolate (KP20) without carbapenemase and negative for the efflux pump inhibition test was resistant to ertapenem at a high level [minimum inhibitory concentration (MIC) = 64 mg/L] but susceptible to meropenem and imipenem. Second-generation sequencing was performed and a termination mutation was found in ramR. Complementation of ramR in KP20 reduced the ertapenem MIC by 128 times (from 64 mg/L to 0.5 mg/L). Overexpression of ramA and loss of OmpK35 were discovered in strain KP20 by quantitative reverse transcription PCR (RT-qPCR) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Furthermore, ramA deletion in strain KP20 resulted in a 128-fold decrease in the MIC of ertapenem (from 64 mg/L to 0.5 mg/L), and expression of OmpK35 was observed in KP20ΔramA by SDS-PAGE. Complementation of ramA in KP20ΔramA led to a 45.45-fold downregulation of ompK35. Complementation of ompK35 in KP20 could restore susceptibility to ertapenem (MIC reduced from 64 mg/L to 0.25 mg/L). Furthermore, results of the electrophoretic mobility shift assay showed that RamA could bind to the promoter of micF. These results showed that the termination mutation in ramR resulted in overexpression of ramA causing loss of OmpK35 expression through upregulation of micF, revealing the mechanism of ertapenem resistance only in K. pneumoniae.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Critical Care Medicine, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Dongliang Wang
- Department of Critical Care Medicine, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Dan Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People's Republic of China, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People's Republic of China, Shanghai, China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People's Republic of China, Shanghai, China
| | - Tianpeng He
- Department of Critical Care Medicine, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People's Republic of China, Shanghai, China.
| |
Collapse
|
14
|
Bonardi S, Cabassi CS, Manfreda G, Parisi A, Fiaccadori E, Sabatino A, Cavirani S, Bacci C, Rega M, Spadini C, Iannarelli M, Crippa C, Ruocco F, Pasquali F. Survey on Carbapenem-Resistant Bacteria in Pigs at Slaughter and Comparison with Human Clinical Isolates in Italy. Antibiotics (Basel) 2022; 11:777. [PMID: 35740183 PMCID: PMC9219774 DOI: 10.3390/antibiotics11060777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
This study is focused on resistance to carbapenems and third-generation cephalosporins in Gram-negative microorganisms isolated from swine, whose transmission to humans via pork consumption cannot be excluded. In addition, the common carriage of carbapenem-resistant (CR) bacteria between humans and pigs was evaluated. Sampling involved 300 faecal samples collected from slaughtered pigs and 300 urine samples collected from 187 hospitalised patients in Parma Province (Italy). In swine, MIC testing confirmed resistance to meropenem for isolates of Pseudomonas aeruginosa and Pseudomonas oryzihabitans and resistance to cefotaxime and ceftazidime for Escherichia coli, Ewingella americana, Enterobacter agglomerans, and Citrobacter freundii. For Acinetobacter lwoffii, Aeromonas hydrofila, Burkolderia cepacia, Corynebacterium indologenes, Flavobacterium odoratum, and Stenotrophomonas maltophilia, no EUCAST MIC breakpoints were available. However, ESBL genes (blaCTXM-1, blaCTX-M-2, blaTEM-1, and blaSHV) and AmpC genes (blaCIT, blaACC, and blaEBC) were found in 38 and 16 isolates, respectively. P. aeruginosa was the only CR species shared by pigs (4/300 pigs; 1.3%) and patients (2/187; 1.1%). P. aeruginosa ST938 carrying blaPAO and blaOXA396 was detected in one pig as well as an 83-year-old patient. Although no direct epidemiological link was demonstrable, SNP calling and cgMLST showed a genetic relationship of the isolates (86 SNPs and 661 allele difference), thus suggesting possible circulation of CR bacteria between swine and humans.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Clotilde Silvia Cabassi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Gerardo Manfreda
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 70017 Putignano, Italy;
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, 43126 Parma, Italy; (E.F.); (A.S.)
| | - Alice Sabatino
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, 43126 Parma, Italy; (E.F.); (A.S.)
| | - Sandro Cavirani
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Martina Rega
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Costanza Spadini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Mattia Iannarelli
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Cecilia Crippa
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| | | | - Frédérique Pasquali
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| |
Collapse
|
15
|
Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa isolated from four medical centres in Iran. Mol Biol Rep 2022; 49:8281-8289. [PMID: 35657451 DOI: 10.1007/s11033-022-07640-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Understanding the mechanisms of antibiotic resistance is important for designing new therapeutic options and controlling resistant strains. The goal of this study was to look at the molecular epidemiology and mechanisms of resistance in carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates from Tabriz, Iran. METHODS One hundred and forty P. aeruginosa were isolated and antibiotic susceptibility patterns were determined. Overproduction of AmpC and efflux pumps were discovered using phenotypic techniques. Polymerase chain reaction (PCR) was used to determine the presence of carbapenemase-encoding genes. In addition, the expressions of OprD and efflux pumps were evaluated by the Real-Time PCR. Random amplified polymorphic DNA typing (RAPD) was performed for genotyping. RESULTS Among 140 P. aeruginosa isolates, 74 (52.8%) were screened as CRPA. Overexpression of efflux systems was observed in 81% of isolates, followed by decreased expression of OprD (62.2%), presence of carbapenemase genes (14.8%), and overproduction of AmpC (13.5%). In most isolates, carbapenem resistance was multifactorial (60.8%). According to our results, the prevalence of CRPA is at alarming levels. Overexpression of efflux systems was the most common mechanism of carbapenem resistance. CONCLUSION Most isolates may originate in patients themselves, but cross-infection is possible. Therefore, we suggest a pattern shift in the strategy of CRPA in our setting.
Collapse
|
16
|
Non-susceptibilities to antibiotics against important Gram-negative bacteria, and imipenem-relebactam, meropenem-vaborbactam against carbapenem non-susceptible Enterobacterales and Pseudomonas aeruginosa isolates implicated in complicated intra-abdominal and urinary tract infections in Taiwan, 2019. Int J Antimicrob Agents 2022; 59:106521. [DOI: 10.1016/j.ijantimicag.2022.106521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
|
17
|
Cabrera R, Fernández-Barat L, Vázquez N, Alcaraz-Serrano V, Bueno-Freire L, Amaro R, López-Aladid R, Oscanoa P, Muñoz L, Vila J, Torres A. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1600-1610. [PMID: 35323912 PMCID: PMC9155640 DOI: 10.1093/jac/dkac084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Non-cystic fibrosis bronchiectasis (BE) is a chronic structural lung condition that facilitates chronic colonization by different microorganisms and courses with recurrent respiratory infections and frequent exacerbations. One of the main pathogens involved in BE is Pseudomonas aeruginosa. Objectives To determine the molecular mechanisms of resistance and the molecular epidemiology of P. aeruginosa strains isolated from patients with BE. Methods A total of 43 strains of P. aeruginosa were isolated from the sputum of BE patients. Susceptibility to the following antimicrobials was analysed: ciprofloxacin, meropenem, imipenem, amikacin, tobramycin, aztreonam, piperacillin/tazobactam, ceftazidime, ceftazidime/avibactam, ceftolozane/tazobactam, cefepime and colistin. The resistance mechanisms present in each strain were assessed by PCR, sequencing and quantitative RT–PCR. Molecular epidemiology was determined by MLST. Phylogenetic analysis was carried out using the eBURST algorithm. Results High levels of resistance to ciprofloxacin (44.19%) were found. Mutations in the gyrA, gyrB, parC and parE genes were detected in ciprofloxacin-resistant P. aeruginosa strains. The number of mutated QRDR genes was related to increased MIC. Different β-lactamases were detected: blaOXA50, blaGES-2, blaIMI-2 and blaGIM-1. The aac(3)-Ia, aac(3)-Ic, aac(6″)-Ib and ant(2″)-Ia genes were associated with aminoglycoside-resistant strains. The gene expression analysis showed overproduction of the MexAB-OprM efflux system (46.5%) over the other efflux system. The most frequently detected clones were ST619, ST676, ST532 and ST109. Conclusions Resistance to first-line antimicrobials recommended in BE guidelines could threaten the treatment of BE and the eradication of P. aeruginosa, contributing to chronic infection.
Collapse
Affiliation(s)
- Roberto Cabrera
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Laia Fernández-Barat
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
- Corresponding author. E-mail:
| | - Nil Vázquez
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Victoria Alcaraz-Serrano
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Leticia Bueno-Freire
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Rosanel Amaro
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Rubén López-Aladid
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Patricia Oscanoa
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Laura Muñoz
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Barcelona Global Health Institute, Department of Clinical Microbiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Antoni Torres
- Hospital Clínic, Cellex Laboratory, CIBERES (Center for net Biomedical Research Respiratory diseases, 06/06/0028) - Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Spain
- Respiratory Intensive Care Unit, Pneumology Department, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
18
|
Antimicrobial Resistance and Type III Secretion System Virulotypes of Pseudomonas aeruginosa Isolates from Dogs and Cats in Primary Veterinary Hospitals in Japan: Identification of the International High-Risk Clone Sequence Type 235. Microbiol Spectr 2021; 9:e0040821. [PMID: 34585944 PMCID: PMC8557929 DOI: 10.1128/spectrum.00408-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate the current trends in antimicrobial resistance among Pseudomonas aeruginosa clinical isolates of canine and feline origin and the prevalence of their sequence types (STs) and type III secretion system (T3SS) virulotypes, which remains unknown in Japan. A total of 240 nonduplicate clinical isolates of P. aeruginosa from dogs (n = 206) and cats (n = 34) collected from 152 primary care animal hospitals between August 2017 and October 2019 were examined. PCR detection of T3SS genes (exoU and exoS) and carbapenemase genes, multilocus sequence typing, and whole-genome sequencing of the representative carbapenem-resistant isolates were performed. Resistance rates to imipenem and meropenem were 6.67% and 2.08%, respectively. A high resistance rate (17.92%) was encountered with ciprofloxacin. The exoU−/exoS+ was the predominant T3SS virulotype (195 isolates, 81.3%), followed by exoU+/exoS− (35 isolates, 14.6%), exoU−/exoS− (7 isolates, 2.9%), and exoU+/exoS+ (3 isolates, 1.3%). A high frequency of the high-risk clones ST235 and clonal complex 235 (CC 235) (28.9%), followed by ST357 (21.1%), were noted among these 38 exoU+ isolates. Seventeen carbapenem-resistant isolates comprising 2 exoU+ isolates, including an ST235 isolate, and 15 exoU−/exoS+ isolates belonging to non-ST235/CC235 were detected, of which all were carbapenemase negative. Different combinations of mutations among oprD, efflux pump regulatory genes, and AmpC β-lactamase regulatory genes were identified among representative isolates with high-level resistance to imipenem. This study emphasizes the occurrence of ST235 isolates among companion animals, which may represent a threat to public health because of the ability of this clone to acquire and spread resistance elements, including carbapenemase genes. IMPORTANCEPseudomonas aeruginosa is an environmentally ubiquitous and important opportunistic human pathogen responsible for life-threatening health care-associated infections. Because of its extensive repertoire of virulence determinants and intrinsic and acquired resistance mechanisms, the organism could be one of the most clinically and epidemiologically important causes of morbidity and mortality. In recent years, worldwide spreading of multidrug-resistant high-risk clones, particularly sequence type 235 (ST235), has become a serious public health threat. Companion animals which share much of their living environment with humans could be important reservoirs and spreaders of antimicrobial-resistant bacteria and resistance genes of clinical importance in humans, such as extended-spectrum β-lactamase-producing Enterobacterales and methicillin-resistant Staphylococcus aureus. However, antimicrobial resistance, virulence, and genotyping of P. aeruginosa in companion animals remain largely unknown. This work sheds light on the potential spread of high-risk clones in companion animals.
Collapse
|
19
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
20
|
Upstream region of OprD mutations in imipenem-resistant and imipenem-sensitive Pseudomonas isolates. AMB Express 2021; 11:82. [PMID: 34089411 PMCID: PMC8179858 DOI: 10.1186/s13568-021-01243-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
The current study was aimed at investigating the prevalence of the mutations upstream of the oprD coding region and its promoters among imipenem-resistant and sensitive Pseudomonas aeruginosa isolated from educational hospitals in Yazd City, Iran. All isolates were identified by the conventional biochemical tests. Then, the antibiotic resistance of these isolates was determined using the disk diffusion method according to the CLSI guidelines. Also, the E.test was performed to determine the minimum inhibitory concentrations (MIC) of imipenem. The mutations of this gene were recognized by the amplification of this region and subsequently sequenced. Sequencing of the genomic region upstream of oprD these regions were done in the 29 clinical strains. Statistical analysis was done by the statistical software SPSS-18. Seventy (77.7%) of isolates had MIC ≥ 16 and were resistant to imipenem. Mutations of the upstream of the oprD gene and its promoters were seen in 25 (86.2%) isolates and 4 isolates had no mutation. One isolate had a base substitution A→Cat nt 25 in the coding region and this isolate had a point mutation leading to an amino acid change at positions 9 (I→L). Our study results indicated that none of the strains had mutation in Shine-Dalgarno and the point mutations were the most common mutations upstream of the oprD coding region among P. aeruginosa isolates. Mutations were observed in imipenem-resistant isolates and it seems this mechanism is effective in resistance of isolates to imipenem and this confirmed that the indiscriminate use of antibiotic should be controlled.
Collapse
|
21
|
Slimene K, El Salabi AA, Dziri O, Mabrouk A, Miniaoui D, Gharsa H, Shokri SA, Alhubge AM, Achour W, Rolain JM, Chouchani C. High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Microb Drug Resist 2021; 27:1546-1554. [PMID: 34029121 DOI: 10.1089/mdr.2020.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are among the most prevalent pathogens causing a wide range of serious infections in hospitalized patients and contaminating intensive care units and inanimate surfaces. The purpose of this study was to investigate the mechanism of carbapenem resistance in clinical and hospital environmental isolates of A. baumannii and P. aeruginosa recovered from a Libyan hospital. From a total of 82 Gram-negative bacteria, 8 isolates of A. baumannii and 3 isolates of P. aeruginosa exhibited resistance to imipenem with minimum inhibitory concentrations ranging from 16 to >32 μg/mL. Five isolates of A. baumannii harbored blaOXA-23 gene, from which three isolates were collected from patients and two from hospital environment. Only one isolate harbored blaNDM-1 gene, which was responsible for carbapenem resistance in A. baumannii. The OprD gene seems to be disturbed by an insertion sequence (IS) in two isolates and affected by polymorphism in one isolate. Pulsed-field gel electrophoresis results showed high genetic diversity among carbapenemase producing A. baumannii. This study highlights the dissemination of blaOXA-23 and blaNDM-1 genes in a Libyan setting. Therefore, infection prevention and control practices, antimicrobial stewardship initiatives, and antimicrobial resistance surveillance systems should be implemented to prevent the wide spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Khouloud Slimene
- Microbes Evolution Phylogenie et Infections (MEPHI), Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,IHU Méditerranée Infection, Valorisation and Transfer, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Allaaeddin Ali El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Olfa Dziri
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Aymen Mabrouk
- Faculté de Médecine de Tunis, LR18ES39, Centre National de Greffe de Moelle Osseuse, Université Tunis El Manar, Tunis, Tunisie
| | - Dhouha Miniaoui
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques et Appliqués de Tunis, Université Tunis El Manar, Tunis, Tunisie
| | - Salah A Shokri
- Department of Microbiology, Faculty of Science, Misurata University, Misurata, Libya
| | - Altaher M Alhubge
- Department of Microbiology, Faculty of Science, Misurata University, Misurata, Libya
| | - Wafa Achour
- Faculté de Médecine de Tunis, LR18ES39, Centre National de Greffe de Moelle Osseuse, Université Tunis El Manar, Tunis, Tunisie
| | - Jean-Marc Rolain
- Microbes Evolution Phylogenie et Infections (MEPHI), Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.,IHU Méditerranée Infection, Valorisation and Transfer, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie.,Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Borj-Cedria, Tunisie
| |
Collapse
|
22
|
Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, Skariah S. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere 2021; 6:e00202-21. [PMID: 34011686 PMCID: PMC8265635 DOI: 10.1128/msphere.00202-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last decades, there has been a dramatic global increase in multidrug-resistant (MDR) pathogens particularly among Gram-negative bacteria (GNB). Pseudomonas aeruginosa is responsible for various health care-associated infections, while MDR P. aeruginosa causes significant morbidity and mortality. Middle East and North Africa (MENA) represent an unexplored geographical region for the study of drug resistance since many of these countries are at crossroads of high volume of travel, diverse expatriate populations, as well as high antibiotic consumption despite attempts to implement antimicrobial stewardship programs. This minireview analyzes epidemiology, microbiological, and genomic characteristics of MDR P. aeruginosa in the MENA region. Published data on MDR P. aeruginosa prevalence, antimicrobial resistance patterns, and genetic profiles from studies published during the past 10 years from 19 MENA countries have been included in this minireview. There is wide variation in the epidemiology of MDR P. aeruginosa in the MENA region in terms of prevalence, antimicrobial characteristics, as well as genetic profiles. Overall, there is high prevalence of MDR P. aeruginosa seen in the majority of the countries in the MENA region with similarities between neighboring countries, which might reflect comparable population and antibiotic-prescribing cultures. Isolates from critical care units are significantly resistant particularly from certain countries such as Saudi Arabia, Egypt, Libya, Syria, and Lebanon with high-level resistance to cephalosporins, carbapenems, and aminoglycosides. Colistin susceptibility patterns remains high apart from countries with high-level antibiotic resistance such as Saudi Arabia, Syria, and Egypt.
Collapse
Affiliation(s)
- Mahmood Al-Orphaly
- Department of Medical Education, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Hamad Abdel Hadi
- Department of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | | | - Hissa Al-Hail
- Department of Medical Education, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Bincy Gladson Samuel
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
23
|
In Vitro Activity of the Ultrabroad-Spectrum Beta-Lactamase Inhibitor QPX7728 in Combination with Multiple Beta-Lactam Antibiotics against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:AAC.00210-21. [PMID: 33782010 PMCID: PMC8315991 DOI: 10.1128/aac.00210-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
QPX7728 is an ultrabroad-spectrum beta-lactamase inhibitor with potent inhibition of key serine and metallo beta-lactamases. QPX7728 enhances the potency of multiple beta-lactams in beta-lactamase-producing Enterobacterales and Acinetobacter spp. In this study, we evaluated the in vitro activity of QPX7728 (QPX; 8 μg/ml) combined with multiple beta-lactams against clinical isolates of Pseudomonas aeruginosa with various beta-lactam resistance mechanisms. Seven hundred ninety clinical isolates were included in this study; 500 isolates, termed a “representative panel,” were selected to be representative of the MIC distribution of meropenem (MEM), ceftazidime-avibactam (CAZ-AVI), and ceftolozane-tazobactam (TOL-TAZ) resistance for clinical isolates according to 2017 SENTRY surveillance data. An additional 290 selected isolates (“challenge panel”) that were either nonsusceptible to MEM or were resistant to TOL-TAZ or CAZ-AVI were also tested; 61 strains carried metallo-beta-lactamases (MBLs), 211 strains were defective in the carbapenem porin OprD, and 185 strains had the MexAB-OprM efflux pump overproduced based on a phenotypic test. Against the representative panel, susceptibility for all QPX7728/beta-lactam combinations was >90%. For the challenge panel, QPX-ceftolozane (TOL) was the most active combination (78.6% susceptible) followed by equipotent QPX-piperacillin (PIP) and QPX-cefepime (FEP), restoring susceptibility in 70.3% of strains (CLSI breakpoints for the beta-lactam compound alone). For MBL-negative strains, QPX-TOL and QPX-FEP restored the MIC values to susceptibility rates in ∼90% and ∼80% of strains, respectively, versus 68% to 70% for QPX-MEM and QPX-PIP and 63% to 65% for TOL-TAZ and CAZ-AVI, respectively. For MBL-positive strains, QPX-PIP restored the MIC to susceptibility values for ∼70% of strains versus 2% to 40% for other combinations. Increased efflux and impaired OprD had various effect on QPX7728 combination depending on the partner beta-lactam tested. QPX7728 enhanced the potency of multiple beta-lactams against P. aeruginosa, with varied results according to beta-lactamase production and other intrinsic resistance mechanisms.
Collapse
|
24
|
Predicting Pseudomonas aeruginosa susceptibility phenotypes from whole genome sequence resistome analysis. Clin Microbiol Infect 2021; 27:1631-1637. [PMID: 34015532 DOI: 10.1016/j.cmi.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim was to develop and validate a Pseudomonas aeruginosa genotypic resistance score, based on analysis of the whole genome sequence resistome, to predict antimicrobial susceptibility phenotypes. METHODS A scoring system based on the analysis of mutation-driven resistance in 40 chromosomal genes and horizontally acquired resistance (Resfinder) was developed for ceftazidime, ceftolozane/tazobactam, meropenem, ciprofloxacin and tobramycin. Resistance genes/mutations were scored from 0 (no effect) to 1 (EUCAST clinical resistance). One hundred wild-type strains obtained from 51 different hospitals during a 2017 multicentre study were fully sequenced and analysed in order to define a catalogue of natural polymorphisms in the 40 chromosomal resistance genes. The capacity of genotypic score to predict the susceptibility phenotype was tested in 204 isolates randomly selected from the 51 hospitals (four from each hospital). RESULTS The analysis of the 100 wild-type isolates yielded a catalogue of 455 natural polymorphisms in the 40 genes involved in mutational resistance. However, resistance mutations and high-risk clones (such as ST235) were also documented among a few wild-type isolates. Overall, the capacity of the genotypic score (<0.5) for predicting phenotypic susceptibility (S + I in the case of meropenem) was very high (95-100%). In contrast, the capacity of the genotypic score to predict resistance (≥1) was far more variable depending on the agent. Prediction of meropenem clinical resistance was particularly low (18/39, 46.1%), whereas it classified clinical ceftolozane/tazobactam resistance in 100% (7/7) of cases. DISCUSSION Although a margin for improvement was evidenced in this proof of concept study, an overall good correlation between the genotypic resistance score and the susceptibility profile was documented. Further refining of the scoring system, automatization and testing of large international cohorts should follow.
Collapse
|
25
|
Hao M, Ma W, Dong X, Li X, Cheng F, Wang Y. Comparative genome analysis of multidrug-resistant Pseudomonas aeruginosa JNQH-PA57, a clinically isolated mucoid strain with comprehensive carbapenem resistance mechanisms. BMC Microbiol 2021; 21:133. [PMID: 33932986 PMCID: PMC8088628 DOI: 10.1186/s12866-021-02203-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The prevalence of clinical multidrug-resistant (MDR) Pseudomonas aeruginosa has been increasing rapidly worldwide over the years and responsible for a wide range of acute and chronic infections with high mortalities. Although hundreds of complete genomes of clinical P. aeruginosa isolates have been sequenced, only a few complete genomes of mucoid strains are available, limiting a comprehensive understanding of this important group of opportunistic pathogens. Herein, the complete genome of a clinically isolated mucoid strain P. aeruginosa JNQH-PA57 was sequenced and assembled using Illumina and Oxford nanopore sequencing technologies. Genomic features, phylogenetic relationships, and comparative genomics of this pathogen were comprehensively analyzed using various bioinformatics tools. A series of phenotypic and molecular-genetic tests were conducted to investigate the mechanisms of carbapenem resistance in this strain. RESULTS Several genomic features of MDR P. aeruginosa JNQH-PA57 were identified based on the whole-genome sequencing. We found that the accessory genome of JNQH-PA57 including several prophages, genomic islands, as well as a PAPI-1 family integrative and conjugative element (ICE), mainly contributed to the larger genome of this strain (6,747,067 bp) compared to other popular P. aeruginosa strains (with an average genome size of 6,445,223 bp) listed in Pseudomonas Genome Database. Colony morphology analysis and biofilm crystal staining assay respectively demonstrated an enhanced alginate production and a thicker biofilm formation capability of JNQH-PA57. A deleted mutation at nt 424 presented in mucA gene, resulted in the upregulated expression of a sigma-factor AlgU and a GDP mannose dehydrogenase AlgD, which might explain the mucoid phenotype of this strain. As for the carbapenem resistance mechanisms, our results revealed that the interplay between impaired OprD porin, chromosomal β-lactamase OXA-488 expression, MexAB-OprM and MexXY-OprM efflux pumps overexpression, synergistically with the alginates-overproducing protective biofilm, conferred the high carbapenem resistance to P. aeruginosa JNQH-PA57. CONCLUSION Based on the genome analysis, we could demonstrate that the upregulated expression of algU and algD, which due to the truncation variant of MucA, might account for the mucoid phenotype of JNQH-PA57. Moreover, the resistance to carbapenem in P. aeruginosa JNQH-PA57 is multifactorial. The dataset presented in this study provided an essential genetic basis for the comprehensive cognition of the physiology, pathogenicity, and carbapenem resistance mechanisms of this clinical mucoid strain.
Collapse
Affiliation(s)
- Mingju Hao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xiutao Dong
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xiaofeng Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Fang Cheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Yujiao Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
- Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China.
| |
Collapse
|
26
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
27
|
Del Barrio-Tofiño E, Zamorano L, Cortes-Lara S, López-Causapé C, Sánchez-Diener I, Cabot G, Bou G, Martínez-Martínez L, Oliver A. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J Antimicrob Chemother 2020; 74:1825-1835. [PMID: 30989186 DOI: 10.1093/jac/dkz147] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To undertake a Spanish nationwide survey on Pseudomonas aeruginosa molecular epidemiology and antimicrobial resistance. METHODS Up to 30 consecutive healthcare-associated P. aeruginosa isolates collected in 2017 from each of 51 hospitals were studied. MICs of 13 antipseudomonal agents were determined by broth microdilution. Horizontally acquired β-lactamases were detected by phenotypic methods and PCR. Clonal epidemiology was evaluated through PFGE and MLST; at least one XDR isolate from each clone and hospital (n = 185) was sequenced. RESULTS The most active antipseudomonals against the 1445 isolates studied were colistin and ceftolozane/tazobactam (both 94.6% susceptible, MIC50/90 = 1/2 mg/L) followed by ceftazidime/avibactam (94.2% susceptible, MIC50/90 = 2/8 mg/L). Up to 252 (17.3%) of the isolates were XDR. Carbapenemases/ESBLs were detected in 3.1% of the isolates, including VIM, IMP, GES, PER and OXA enzymes. The most frequent clone among the XDR isolates was ST175 (40.9%), followed by CC235 (10.7%), ST308 (5.2%) and CC111 (4.0%). Carbapenemase production varied geographically and involved diverse clones, including 16.5% of ST175 XDR isolates. Additionally, 56% of the sequenced XDR isolates showed horizontally acquired aminoglycoside-modifying enzymes, which correlated with tobramycin resistance. Two XDR isolates produced QnrVC1, but fluoroquinolone resistance was mostly caused by QRDR mutations. Beyond frequent mutations (>60%) in OprD and AmpC regulators, four isolates showed AmpC mutations associated with resistance to ceftolozane/tazobactam and ceftazidime/avibactam. CONCLUSIONS ST175 is the most frequent XDR high-risk clone in Spanish hospitals, but this nationwide survey also indicates a complex scenario in which major differences in local epidemiology, including carbapenemase production, need to be acknowledged in order to guide antimicrobial therapy.
Collapse
Affiliation(s)
- Ester Del Barrio-Tofiño
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Laura Zamorano
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Sara Cortes-Lara
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Irina Sánchez-Diener
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Gabriel Cabot
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | - Germán Bou
- Servicio de Microbiología, Hospital Universitario La Coruña, Instituto Investigación Biomédica A Coruña (INIBIC), La Coruña, España
| | - Luis Martínez-Martínez
- Unidad de Gestión Clínica de Microbiología, Hospital Reina Sofía, Departamento de Microbiología, Universidad de Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, España
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, España
| | | |
Collapse
|
28
|
Mitri C, Xu Z, Bardin P, Corvol H, Touqui L, Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front Pharmacol 2020; 11:1096. [PMID: 32848733 PMCID: PMC7396676 DOI: 10.3389/fphar.2020.01096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated to affect more than 70,000 people in the world. Severe and persistent bronchial inflammation and chronic bacterial infection, along with airway mucus obstruction, are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better understanding of the molecular mechanisms involved in airway infection and inflammation in CF has led to the development of new therapeutic approaches that are currently under evaluation by clinical trials. These new strategies dedicated to CF inflammation are designed to treat different dysregulated aspects such as oxidative stress, cytokine secretion, and the targeting of dysregulated pathways. In this review, we summarize the current understanding of the cellular and molecular mechanisms that contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory strategies proposed to CF patients by exploring novel molecular targets and novel drug approaches.
Collapse
Affiliation(s)
- Christie Mitri
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Zhengzhong Xu
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Yangzhou University, Yangzhou, China
| | - Pauline Bardin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Equipe Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Institut Pasteur, Paris, France
| | - Olivier Tabary
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|
29
|
PÉrez-VÁzquez M, Sola-Campoy PJ, Zurita ÁM, Ávila A, GÓmez-Bertomeu F, SolÍs S, LÓpez-Urrutia L, GÓnzalez-BarberÁ EM, Cercenado E, Bautista V, Lara N, Aracil B, Oliver A, Campos J, Oteo-Iglesias J. Carbapenemase-producing Pseudomonas aeruginosa in Spain: interregional dissemination of the high-risk clones ST175 and ST244 carrying bla VIM-2, bla VIM-1, bla IMP-8, bla VIM-20 and bla KPC-2. Int J Antimicrob Agents 2020; 56:106026. [PMID: 32450200 DOI: 10.1016/j.ijantimicag.2020.106026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Carbapenemase-producing (CP) Pseudomonas aeruginosa is rare compared with mutation-driven carbapenem-resistance, but this situation may be changing. A collection of CP P. aeruginosa isolates was characterized in this study. In 2016, 232 unduplicated carbapenem-resistant P. aeruginosa isolates, of which 71 (30.6%) carried carbapenemase genes, were submitted to the Spanish antibiotic reference laboratory and were further analysed by whole-genome sequencing (WGS). Of the 71 CP P. aeruginosa, 39 (54.9%) carried blaVIM-2, 14 (19.7%) blaVIM-1, 8 (11.3%) blaIMP-8, 6 (8.5%) blaVIM-20, 2 (2.8%) blaVIM-2 plus blaKPC-2, one (1.4%) blaIMP-13 and one (1.4%) blaVIM-1 plus blaIMP-18. Four sequence types (ST175, ST244, ST815 and ST155) encompassed 83.1% of the 71 CP P. aeruginosa; ST175 was detected in hospitals from seven provinces. Using core genome multilocus sequence typing (cgMLST), four clusters were detected: Cluster 1 included nine ST815/VIM-2 isolates; Cluster 2 included five ST175/VIM-2 isolates; Cluster 3 included seven ST244 isolates (five VIM-2 and two VIM-2 plus KPC-2); and Cluster 4 included 11 ST175 isolates (seven VIM-2 and four IMP-8). The average number of acquired resistance genes was significantly higher in the blaVIM-1-carying isolates (7.1 ± 0.94) than in the blaVIM-2-carrying isolates (4.5 ± 0.20). CP P. aeruginosa isolates are spreading in Spain, mainly due to the dissemination of high-risk clones such as ST175 and ST244 producing VIM and IMP carbapenemases. Emergence of CP P. aeruginosa is a cause of clinical and epidemiological concern.
Collapse
Affiliation(s)
- María PÉrez-VÁzquez
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro J Sola-Campoy
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Ángela María Zurita
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Alicia Ávila
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | | | - Sonia SolÍs
- Microbiology Department, Hospital Universitario de Guadalajara, Spain
| | - Luis LÓpez-Urrutia
- Microbiology Department, Hospital Universitario Río Hortega, Valladolid, Spain
| | | | - Emilia Cercenado
- Microbiology Department, Hospital Gregorio Marañón, Madrid, Spain
| | - Verónica Bautista
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Lara
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Microbiology Department-Research Institute Biomedical Islas Baleares (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - José Campos
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
30
|
Mataraci Kara E, Yilmaz M, İstanbullu Tosun A, Özbek Çelik B. Synergistic activities of ceftazidime-avibactam in combination with different antibiotics against colistin-nonsusceptible clinical strains of Pseudomonas aeruginosa. Infect Dis (Lond) 2020; 52:616-624. [PMID: 32427010 DOI: 10.1080/23744235.2020.1767803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: This study aims to analyse the effect of ceftazidime-avibactam plus various antibiotics against multidrug-resistant (MDR) Pseudomonas aeruginosa isolated from Intensive Care Units.Methods: 40 non-duplicate P. aeruginosa isolates were screened for their MICs of ceftazidime, ceftazidime-avibactam, colistin, levofloxacin, doripenem and tobramycin. MICs were determined by the broth microdilution method. The in vitro bactericidal activities of ceftazidime-avibactam compared to studied antibiotics were also determined by time-kill curve assays both at 1xMIC and at 4xMIC against carbapenemase-producing or -not producing six colistin-nonsusceptible MDR clinical strains of P. aeruginosa. Additionally, synergistic interactions were investigated by the time-kill curve assay.Results: The MIC90 values for ceftazidime, ceftazidime-avibactam, colistin, levofloxacin, doripenem and tobramycin against MDR P. aeruginosa isolates were found to be >256, 64, 8, 64, 128, and >256 mg/L, respectively. The minimum bactericidal concentration90 values for those antibiotics were also >256, 64, 16, 128, 256, and >256 mg/L, respectively. While doripenem, tobramycin and levofloxacin were bactericidal (>3 log10 killing) against the 2/6, 3/6 and 1/6 P. aeruginosa isolates at 4xMIC concentrations, respectively, levofloxacin and tobramycin were bactericidal against only one isolate (1/6) at 1xMIC concentrations at 24 h. The synergistic interactions of these antimicrobial agents were also achieved with ceftazidime/avibactam + colistin (4/6), ceftazidime/avibactam + tobramycin (3/6), and ceftazidime/avibactam + levofloxacin (3/6) combinations. No antagonism was observed against studied P. aeruginosa strains.Conclusions: The findings of this study suggest that ceftazidime/avibactam with colistin, or tobramycin, were effective against colistin-nonsusceptible strains. This combination therapy could be an alternative antibiotic therapy for resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Emel Mataraci Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Mesut Yilmaz
- Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ayşe İstanbullu Tosun
- Department of Medical Microbiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Berna Özbek Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
31
|
Hassuna NA, Darwish MK, Sayed M, Ibrahem RA. Molecular Epidemiology and Mechanisms of High-Level Resistance to Meropenem and Imipenem in Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:285-293. [PMID: 32099420 PMCID: PMC6996622 DOI: 10.2147/idr.s233808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/16/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose Pseudomonas aeruginosa possesses a large number of resistance mechanisms to different antimicrobials with carbapenems being the most powerful in treating resistant P. aeruginosa. Hence, it is imperative to explore different mechanisms of carbapenems-resistance in P. aeruginosa to achieve successful treatment through the design of new drugs acting on this interaction to combat against antimicrobial resistance. Strains and Methods A total of 634 P. aeruginosa clinical isolates were collected from various patient sources and their MIC levels were measured. Molecular evaluation of carbapenem resistance was assessed by investigating the presence of blaIMP1, blaIMP2, blaVIM1, blaVIM2, blaSPM and blaNDM genes and the gene expression of the following multi-drug efflux pump systems: MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY-OprM and its correlation with MIC. Isolates were typed by Random Amplified Polymorphic DNA (RAPD)-typing. Results Carbapenem resistance was detected in 32 (5%) isolates, which were all imipenem resistant (of which 29 were meropenem resistant). High-level resistance (≥64mg/mL) to imipenem was found in 27 (84.3%) isolates, and to meropenem in 28 (96.5%) isolates. The carbapenemase blaVIM-1 was found in 31 isolates, while blaNDM was detected in 4 isolates. None of the isolates possessed either bla-VIM-2, blaIMP-1, blaIMP-2 or blaSPM. The majority of the isolates displayed over-expression of MexCD-OprJ (75%) followed by MexXY-OprM efflux pump (62%), while MexAB-OprM and MexEF-OprN efflux pumps were overexpressed in 21.8% and 18.7% of the isolates, respectively, with no down-regulation of oprD in any of the isolates. A strong correlation was found between CDJ efflux pump expression and meropenem, imipenem resistance (r=0.532, 0.654, p<0.001, <0.001) respectively. Four major clusters were detected by RAPD-typing: group 1(10 isolates), group 3 (9 isolates), group 2 (8 isolates) while the fourth group (4) included 4 isolates (12.5% polymorphism). Conclusion High-level carbapenem resistance reported in this study was allied to multiple mechanisms including carbapenemase production and efflux-pump over-expression. Threatening cross-infection is possible inside the hospital and stringent infection control measures are crucial.
Collapse
Affiliation(s)
- Noha Anwar Hassuna
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Marwa K Darwish
- Chemistry Department (Biochemistry Branch), Faculty of Science, Suez University, Suez, Egypt
| | - Mohamed Sayed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Reham Ali Ibrahem
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
32
|
Xu Z, Li M, Li Y, Cao H, Miao L, Xu Z, Higuchi Y, Yamasaki S, Nishino K, Woo PC, Xiang H, Yan A. Native CRISPR-Cas-Mediated Genome Editing Enables Dissecting and Sensitizing Clinical Multidrug-Resistant P. aeruginosa. Cell Rep 2019; 29:1707-1717.e3. [DOI: 10.1016/j.celrep.2019.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
|
33
|
Kazmierczak KM, de Jonge BLM, Stone GG, Sahm DF. In vitro activity of ceftazidime/avibactam against isolates of Pseudomonas aeruginosa collected in European countries: INFORM global surveillance 2012-15. J Antimicrob Chemother 2019; 73:2777-2781. [PMID: 30010951 DOI: 10.1093/jac/dky267] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 06/13/2018] [Indexed: 01/12/2023] Open
Abstract
Objectives The activity of ceftazidime/avibactam was assessed against 5716 Pseudomonas aeruginosa isolates collected from 96 medical centres in 18 European countries as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme from 2012 to 2015. Activity was analysed against subsets of isolates based on resistance phenotypes and β-lactamase content. Methods Antimicrobial susceptibility testing was performed by broth microdilution and β-lactamase genes were detected by PCR screening and sequencing. Results Ceftazidime/avibactam was highly active in vitro against the overall collection of P. aeruginosa isolates and colistin-resistant isolates (92.4% and 92.9% susceptible, respectively). Although activity was slightly reduced against MBL-negative subsets of ceftazidime-non-susceptible (79.6% susceptible), meropenem-non-susceptible (85.1% susceptible) and MDR (81.6% susceptible) P. aeruginosa, ceftazidime/avibactam remained the second most active entity, after colistin, compared with all other comparator agents tested. At the country level, susceptibility to ceftazidime/avibactam ranged from 74.6% to 99.6%, with decreased susceptibilities only observed in countries where MBLs are more frequently encountered, such as the Czech Republic, Greece, Romania and Russia. Ceftazidime/avibactam was also active in vitro against 87.6% of meropenem-non-susceptible isolates in which no acquired β-lactamases were detected by molecular methods; these isolates were assumed to hyperproduce the chromosomally encoded AmpC in combination with alterations in OprD or drug efflux. As expected, ceftazidime/avibactam was not active against isolates carrying MBLs. Conclusions The data show that ceftazidime/avibactam is highly potent in vitro against clinical isolates of P. aeruginosa collected in European countries, including isolates that exhibit resistance to ceftazidime, meropenem and colistin and combined resistance to agents from multiple drug classes.
Collapse
Affiliation(s)
| | | | | | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| |
Collapse
|
34
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:32/4/e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 483] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Fernández-Cuenca F, Martínez-Martínez L, Pascual Á. Evolution of the antimicrobial resistance rates in clinical isolates of Pseudomonas aeruginosa causing invasive infections in the south of Spain. Enferm Infecc Microbiol Clin 2019; 38:150-154. [PMID: 31399254 DOI: 10.1016/j.eimc.2019.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The aim of this study was to determine the antimicrobial resistance rates and their evolution in clinical isolates of Pseudomonas aeruginosa causing invasive infections in the south of Spain between 2012 and 2017. METHODS Retrospective study consisting of the collection of microbiological data from 20 hospitals (14 from Andalucía, 5 from Extremadura and 1 from Ceuta) between 2012 and 2017. The main variables studied were the antimicrobial susceptibility testing system used, interpretation criteria (CLSI or EUCAST) and the rate or percentage of resistant isolates. RESULTS The most widely used antimicrobial susceptibility testing system was MicroScan (58%). The global resistance rates varied between 25% (ciprofloxacin) and 4% (colistin) using EUCAST, and between 19% (ciprofloxacin and imipenem) and 3% (amikacin) using CLSI. The antimicrobial resistance rates were relatively stable throughout the period 2012-2017. 14% of isolates were MDR and 7% were XDR. Respiratory isolates were more resistant, particularly to ciprofloxacin and colistin, than isolates from urine or blood. CONCLUSIONS The antimicrobial resistance rates in P. aeruginosa are not particularly high in the south of Spain. The highest resistance rates were observed with ciprofloxacin, piperacillin/tazobactam and meropenem, whereas the more active antimicrobials were colistin, tobramycin and amikacin. The highest resistance rates were seen in respiratory isolates. In general, the resistance rates remained stable during the study period for most of the antimicrobials studied.
Collapse
Affiliation(s)
- Felipe Fernández-Cuenca
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, España; Departamento de Microbiología, Universidad de Sevilla, España; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, España; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, España.
| | - Luis Martínez-Martínez
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, España; Unidad de Gestión Clínica de Microbiología, Hospital Universitario Reina Sofía, Córdoba, España; Departamento de Microbiología, Universidad de Córdoba, España; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, España
| | - Álvaro Pascual
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, España; Departamento de Microbiología, Universidad de Sevilla, España; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, España; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, España
| | | | | |
Collapse
|
36
|
Pahlavanzadeh F, Kalantar-Neyestanaki D, Motamedifar M, Savari M, Mansouri S. First detection of insertion sequences ISpa1635 and IS1411 among non-carbapenemase producing strains of Pseudomonas aeruginosa in Kerman, Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Giani T, Arena F, Pollini S, Di Pilato V, D'Andrea MM, Henrici De Angelis L, Bassetti M, Rossolini GM. Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers. J Antimicrob Chemother 2019; 73:664-671. [PMID: 29216350 DOI: 10.1093/jac/dkx453] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 01/14/2023] Open
Abstract
Objectives Pseudomonas aeruginosa is a major cause of severe healthcare-associated infections and often shows MDR phenotypes. Ceftolozane/tazobactam is a new cephalosporin/β-lactamase inhibitor combination with potent activity against P. aeruginosa. This survey was carried out to evaluate the susceptibility of P. aeruginosa, circulating in Italy, to ceftolozane/tazobactam and comparators and to investigate the molecular epidemiology of carbapenemase-producing strains. Methods Consecutive non-replicate P. aeruginosa clinical isolates (935) from bloodstream infections and lower respiratory tract infections were collected from 20 centres distributed across Italy from September 2013 to November 2014. Antimicrobial susceptibility testing was performed by broth microdilution and results were interpreted according to the EUCAST breakpoints. Isolates resistant to ceftolozane/tazobactam were investigated for carbapenemase genes by PCR, and for carbapenemase activity by spectrophotometric assay. WGS using an Illumina platform was performed on carbapenemase-producing isolates. Results Ceftolozane/tazobactam was the most active molecule, retaining activity against 90.9% of P. aeruginosa isolates, followed by amikacin (88.0% susceptibility) and colistin (84.7% susceptibility). Overall, 48 isolates (5.1%) were positive for carbapenemase genes, including blaVIM (n = 32), blaIMP (n = 12) and blaGES-5 (n = 4), while the remaining ceftolozane/tazobactam-resistant isolates tested negative for carbapenemase production. Carbapenemase producers belonged to 10 different STs, with ST175 (n = 12) and ST621 (n = 11) being the most common lineages. Genome analysis revealed different trajectories of spread for the different carbapenemase genes. Conclusions Ceftolozane/tazobactam exhibited potent in vitro activity against P. aeruginosa causing invasive infections in Italy. Carbapenemase production was the most common mechanism of resistance to ceftolozane/tazobactam.
Collapse
Affiliation(s)
- Tommaso Giani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Arena
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Simona Pollini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Marco Maria D'Andrea
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Matteo Bassetti
- Infectious Diseases Division, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | | |
Collapse
|
38
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1047] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
39
|
Liu T, Zhang Y, Wan Q. Pseudomonas aeruginosa bacteremia among liver transplant recipients. Infect Drug Resist 2018; 11:2345-2356. [PMID: 30532566 PMCID: PMC6247952 DOI: 10.2147/idr.s180283] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa bacteremia remains as a life-threatening complication after liver transplantation (LT) and is intractable because of the high rate of drug resistance to commonly used antibiotics. To better understand the characteristics of this postoperative complication, PubMed and Embase searches as well as reference mining was done for relevant literature from the start of the databases through August 2018. Among LT recipients, the incidence of P. aeruginosa bacteremia ranged from 0.5% to 14.4% and mortality rates were up to 40%. Approximately 35% of all episodes of bloodstream infections (BSIs) were P. aeruginosa bacteremia, of which 47% were multidrug resistant and 63% were extensively drug resistant. Several factors are known to affect the mortality of LT recipients with P. aeruginosa bacteremia, including hypotension, mechanical ventilation, and increasing severity of illness. In LT recipients with P. aeruginosa bacteremia, alteration in DNA gyrase A genes and overexpression of proteins involved in efflux systems, namely the expression of KPC-2-type carbapenemase, NDM-1, and VIM-2-type MBL, contribute to the high resistance of P. aeruginosa to a wide variety of antibiotics. Because of complicated mechanisms of drug resistance, P. aeruginosa causes high morbidity and mortality in bacteremic LT patients. Consequently, early detection and treatment with adequate early targeted coverage for P. aeruginosa BSI are of paramount importance in the early posttransplantation period to obtain a better prognosis for LT patients.
Collapse
Affiliation(s)
- Taohua Liu
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Yuezhong Zhang
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, China,
| |
Collapse
|
40
|
Courtois N, Caspar Y, Maurin M. Phenotypic and genetic resistance traits of Pseudomonas aeruginosa strains infecting cystic fibrosis patients: A French cohort study. Int J Antimicrob Agents 2018; 52:358-364. [DOI: 10.1016/j.ijantimicag.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
|
41
|
Karampatakis T, Antachopoulos C, Tsakris A, Roilides E. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa in an endemic area: comparison with global data. Eur J Clin Microbiol Infect Dis 2018; 37:1211-1220. [PMID: 29644540 DOI: 10.1007/s10096-018-3244-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/26/2018] [Indexed: 12/15/2022]
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is an endemic problem in certain countries including Greece. CRPA and multidrug-resistant P. aeruginosa (MDRPA) firstly emerged in our region during the 80s, right after the launch of imipenem and meropenem as therapeutic agents against P. aeruginosa infections. The role of outer membrane protein (Opr) inactivation has been known to contribute to imipenem resistance since many years, while efflux overexpression systems have been mainly associated with meropenem resistance. Among carbapenemases, metallo-β-lactamases (MBL) and mostly Verona integron-mediated (VIM) MBL's have played the most crucial role in CRPA emergence. VIM-2 and VIM-4 producing CRPA, usually belonging to clonal complexes (CC) 111 and 235 respectively, have most frequently been isolated. BlaVIM-2 and blaVIM-4 are usually associated with a class 1 integron. VIM-17 also has appeared in Greece. On the other hand, other VIM subtypes detected in a global level, such as VIM-3, VIM-5, VIM-6, VIM-7, VIM-11, VIM-14, VIM-15, VIM-16 and VIM-18 have not yet emerged in Greece. However, new VIM subtypes will probably emerge in the future. In addition, MBL carbapenemases other than VIM, detected worldwide have not yet appeared. A single CRPA isolate producing KPC has emerged in our region several years ago. The study of the molecular basis of Opr deficiency and efflux overexpression remains a challenge for the future. In this article, we review the molecular epidemiology of CRPA in an endemic area, compared to global data.
Collapse
Affiliation(s)
- Theodoros Karampatakis
- Infectious Diseases Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, Konstantinoupoleos 49, GR-546 42, Thessaloniki, Greece
| | - Charalampos Antachopoulos
- Infectious Diseases Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, Konstantinoupoleos 49, GR-546 42, Thessaloniki, Greece
| | - Athanassios Tsakris
- Microbiology Department, National and Kapodistrian University School of Medicine, Athens, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, Konstantinoupoleos 49, GR-546 42, Thessaloniki, Greece.
| |
Collapse
|
42
|
Acharya M, Joshi PR, Thapa K, Aryal R, Kakshapati T, Sharma S. Detection of metallo-β-lactamases-encoding genes among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital, Kathmandu, Nepal. BMC Res Notes 2017; 10:718. [PMID: 29216906 PMCID: PMC5721655 DOI: 10.1186/s13104-017-3068-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Objectives This study was carried out to determine the prevalence of metallo-β-lactamases (MBLs) producing Pseudomonas aeruginosa in imipenem-nonsusceptible isolates and to detect MBL-encoding genes among MBLs-positive isolates. Results Metallo-β-lactamases production was detected in 68.6% isolates of P. aeruginosa with reduced susceptibility to imipenem. The blaVIM-2 gene was detected in 75% isolates and blaIMP-1 was detected in 25% isolates. All MBLs-positive isolates were multidrug resistant with a high level of resistance to imipenem (MIC 16 to ≥ 32 µg/ml), meropenem (MIC 16 to ≥ 32 µg/ml), and ceftazidime (MIC 64 to ≥ 512 µg/ml). All MBL-positive isolates were susceptible (MIC ≤ 2 µg/ml) to colistin. We found high prevalence of MBL-producing P. aeruginosa. To our knowledge this is the first report of detection of blaVIM-2 and blaIMP-1 in P. aeruginosa from Nepal. This indicates the need for awareness to prevent the spreading of these resistant isolates in hospital setting.
Collapse
Affiliation(s)
- Mahesh Acharya
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Prabhu R Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kamal Thapa
- Kathmandu College of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Rajan Aryal
- Kantipur College of Medical Sciences, Tribhuvan University, Kathmandu, Nepal
| | | | - Supriya Sharma
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
43
|
Schiavano GF, Carloni E, Andreoni F, Magi S, Chironna M, Brandi G, Amagliani G. Prevalence and antibiotic resistance of Pseudomonas aeruginosa in water samples in central Italy and molecular characterization of oprD in imipenem resistant isolates. PLoS One 2017; 12:e0189172. [PMID: 29211780 PMCID: PMC5718518 DOI: 10.1371/journal.pone.0189172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022] Open
Abstract
Scope This study aimed to analyse the prevalence, antibiotic resistance and genetic relatedness of P. aeruginosa isolates obtained from potable and recreational water samples (n. 8,351) collected from different settings (swimming pools, n. 207; healthcare facilities, n 1,684; accommodation facilities, n. 1,518; municipal waterworks, n. 4,500; residential buildings, n. 235). Possible mechanisms underlying resistance to imipenem, with particular focus on those involving oprD-based uptake, were also explored. Methods and results Isolation and identification of Pseudomonas aeruginosa was performed according to the standardized procedure UNI EN ISO 16266:2008 followed by PCR confirmation. Antibiotic Susceptibility testing was conducted according to EUCAST standardized disk diffusion method. Genetic relatedness of strains was carried out by RAPD. The sequence of the oprD gene was analyzed by standard method. Fifty-three samples (0.63%) were positive for P. aeruginosa, of which 10/207 (4.83%) were from swimming pools. Five isolates (9.43%) were resistant to imipenem, one to Ticarcillin + Clavulanate, one to both Piperacillin and Ticarcillin + Clavulanate. The highest isolation rate of imipenem resistant P. aeruginosa was observed in swimming pool water. Identical RAPD profiles were found in isolates from the same location in the same year or even in different years. Conclusions Imipenem resistant strains were identified as carbapenemase-negative and resistance has been associated with inactivating mutations within the oprD gene, with a concomitant loss of porin. RAPD results proved that a water system can remain colonized by one strain for long periods and the contamination may be difficult to eradicate. This study has revealed the presence of P. aeruginosa in different water samples, including resistant strains, especially in swimming pools, and confirmed the role of porins as a contributing factor in carbapenem resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Giuditta Fiorella Schiavano
- Department of Biomolecular Sciences, Toxicological, Hygienistic and Environmental Sciences Unit, University of Urbino Carlo Bo, Urbino, PU, Italy
- * E-mail:
| | - Elisa Carloni
- Department of Biomolecular Sciences, Section of Biotechnology, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Francesca Andreoni
- Department of Biomolecular Sciences, Section of Biotechnology, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Silvia Magi
- Dipartimento provinciale ARPAM di Pesaro, Servizio Acque, Pesaro, Italy
| | - Maria Chironna
- Department of Biomedical Science and Human Oncology-Hygiene Section, Aldo Moro University of Bari, Bari, Italy
| | - Giorgio Brandi
- Department of Biomolecular Sciences, Toxicological, Hygienistic and Environmental Sciences Unit, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Giulia Amagliani
- Department of Biomolecular Sciences, Toxicological, Hygienistic and Environmental Sciences Unit, University of Urbino Carlo Bo, Urbino, PU, Italy
| |
Collapse
|
44
|
Direct determination of carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa from positive blood cultures using laser scattering technology. Int J Antimicrob Agents 2017; 51:221-226. [PMID: 29111432 DOI: 10.1016/j.ijantimicag.2017.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 02/07/2023]
Abstract
Delays in appropriate antimicrobial treatment contribute to increased mortality of septic patients. We aimed to develop a methodology for detection of carbapenem resistance in Gram-negative bacteria directly from positive blood cultures (BCs). Initially, meropenem-resistant Enterobacteriaceae (n = 13) and Pseudomonas aeruginosa (n = 32) isolates as well as the same numbers of meropenem-susceptible isolates were used to establish the detection of carbapenem resistance from agar cultures. Growth-based phenotypic detection of meropenem resistance was performed by a laser scattering (LS) method using a BacterioScan™216R instrument. A subset of the strain collection consisting of meropenem-susceptible and -resistant isolates (each comprising seven P. aeruginosa and three Klebsiella pneumoniae) was used for determination of carbapenem resistance directly from positive BCs. Lysis/centrifugation and filtration/dilution methods were investigated for processing of positive BCs. Four different statistical approaches to discriminate between susceptible and resistant bacteria in real-time were applied and were compared regarding their sensitivity and specificity. After 3 h and 4 h of incubation, respectively, detection of carbapenem resistance in Enterobacteriaceae (sensitivity, 100%; specificity, 100%) and P. aeruginosa (sensitivity, 100%; specificity, ≥90%) agar cultures was attainable. Detection of carbapenem resistance directly from positive BCs was achievable with 100% sensitivity and 100% specificity after 4 h and 5 h, respectively, applying lysis/centrifugation and filtration/dilution methods. In conclusion, LS technology combined with lysis/centrifugation and appropriate statistical real-time analyses represents a promising option for rapid detection of carbapenem resistance in Gram-negative rods directly from positive BCs.
Collapse
|
45
|
Hirabayashi A, Kato D, Tomita Y, Iguchi M, Yamada K, Kouyama Y, Morioka H, Tetsuka N, Yagi T. Risk factors for and role of OprD protein in increasing minimal inhibitory concentrations of carbapenems in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2017; 66:1562-1572. [PMID: 28984565 DOI: 10.1099/jmm.0.000601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study examined the risk factors for, and molecular mechanisms underlying, the increase in carbapenem minimum inhibitory concentrations (MICs) in clinical isolates of Pseudomonas aeruginosa. METHODOLOGY Consecutive clinical isolates of P. aeruginosa were collected. The MicroScan WalkAway system detected more than fourfold increases in the MICs of carbapenems in P. aeruginosa isolates serially recovered from some patients during their clinical course. The clinical risk factors associated with this increase were examined by multiple logistic regression analysis. Western blot analysis and nucleotide sequencing of the oprD gene of 19 clonally related and paired P. aeruginosa isolates from the same patients were undertaken to examine the mechanisms underlying the increase in MICs. RESULTS The results showed that prior use of carbapenems (OR, 2.799; 95 % CI, 1.088-7.200; P=0.033) and the use of ventilators or tracheostomies (OR, 2.648; 95 % CI, 1.051-6.671; P=0.039) were risk factors for increased carbapenem MICs. Analysis of the underlying mechanisms revealed that loss of functional OprD protein due to mutation of the oprD gene tended to occur in P. aeruginosa isolates with imipenem MICs of more than 8 µg ml-1; a reduction in OprD expression was observed in P. aeruginosa isolates with imipenem MICs of 4 or 8 µg ml-1. This difference in the resistance mechanism was not correlated with the MICs of meropenem. CONCLUSION This difference in the resistance mechanism of P. aeruginosa indicates a critical breakpoint at an imipenem MIC of 8 µg ml-1, in accordance with EUCAST criteria. Reducing carbapenem use will prevent P. aeruginosa clinical isolates from developing resistance to carbapenems.
Collapse
Affiliation(s)
- Aki Hirabayashi
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan.,Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daizo Kato
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yuka Tomita
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Mitsutaka Iguchi
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Keiko Yamada
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuichi Kouyama
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Hiroshi Morioka
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan.,Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nobuyuki Tetsuka
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan.,Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
46
|
Haenni M, Bour M, Châtre P, Madec JY, Plésiat P, Jeannot K. Resistance of Animal Strains of Pseudomonas aeruginosa to Carbapenems. Front Microbiol 2017; 8:1847. [PMID: 29033910 PMCID: PMC5626926 DOI: 10.3389/fmicb.2017.01847] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are major antibiotics reserved to human medicine. This study aimed to investigate the mechanisms of carbapenem resistance of a selection of Pseudomonas aeruginosa veterinary strains from the French network Resapath. Thirty (5.7%) imipenem and/or meropenem non-susceptible P. aeruginosa of canine (n = 24), feline (n = 5), or bovine (n = 1) origin were identified in a large collection of 527 veterinary strains gathered by the Resapath. These resistant isolates belonged to 25 MultiLocus Sequence Types (MLST), of which 17 (68%) are shared with clinical (human) strains, such as high risk clones ST233 and ST395. Interestingly, none of the veterinary strains produced a carbapenemase, and only six of them (20%) harbored deletions or insertion sequence (IS) disrupting the porin OprD gene. The remaining 24 strains contained mutations or IS in various loci resulting in down-regulation of gene oprD coupled with upregulation of efflux system CzcCBA (n = 3; activation of sensor kinase CzcS ± CopS), MexEF-OprN (n = 4; alteration of oxido reductase MexS), MexXY (n = 8; activation of two-component system ParRS), or MexAB-OprM (n = 12; alteration of regulator MexR, NalC ± NalD). Two efflux pumps were co-produced simultaneously in three mutants. Finally, in 11 out of 12 strains displaying an intact porin OprD, derepression of MexAB-OprM accounted for a decreased susceptibility to meropenem relative to imipenem. Though not treated by carbapenems, animals thus represent a reservoir of multidrug resistant P. aeruginosa strains potentially able to contaminate fragile outpatients.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Maxime Bour
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| | - Pierre Châtre
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Patrick Plésiat
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| | - Katy Jeannot
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| |
Collapse
|
47
|
Akhi MT, Khalili Y, Ghotaslou R, Yousefi S, Kafil HS, Naghili B, Sheikhalizadeh V. Evaluation of Carbapenem Resistance Mechanisms and Its Association with Pseudomonas aeruginosa Infections in the Northwest of Iran. Microb Drug Resist 2017; 24:126-135. [PMID: 28654368 DOI: 10.1089/mdr.2016.0310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aims of this study were to determine carbapenem resistance mechanisms, molecular epidemiological relationship, clinical impact, and patient outcome of carbapenem-resistant Pseudomonas aeruginosa (CRPA) infections. A total of 42 nonduplicated CRPA were recovered from Urmia, Iran. Antimicrobial susceptibility tests were carried out using phenotypic methods. The carbapenem resistance mechanisms such as carbapenemase genes, efflux pump hyperexpression, AmpC overproduction, and OprD gene downregulation were determined by phenotypic and molecular methods. Eighteen metallo-β-lactamase (MBL) producer isolates were found to be sensitive to amikacin. Among the CRPA, 52.3%, 26.1%, 26.1%, and 59.5% were identified as carbapenemase, efflux pump hyperexpression, AmpC overproduction, and reduced expression OprD gene, respectively. Random Amplified Polymorphic DNA analysis yielded 25 distinct profiles. Most MBL-positive isolates were recovered from patients hospitalized in urology and internal wards with urinary tract infections. Most of the strains showed downregulation of porin. The clonal distribution of the strains was related to carbapenem resistance mechanisms (most of MBL producers belong to the same clones) and the same hospital wards where the isolates were collected. The study demonstrates that the main risk factor of MBL-related infections was hospitalization in non-intensive wards. Amikacin was considered a very efficient antibiotic to treatment of MBL-producing CRPA isolates. Our results showed that OprD downregulation and IMP-type MBL are the main carbapenem resistance mechanisms in CRPA isolates from northwest of Iran.
Collapse
Affiliation(s)
- Mohammad Taghi Akhi
- 1 Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran .,2 Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Younes Khalili
- 1 Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran .,2 Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran .,3 Iranian Social Security Organization, Emam Reza Hospital , Urmia, Iran
| | - Reza Ghotaslou
- 2 Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Saber Yousefi
- 4 Department of Microbiology and Virology, Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran
| | - Hossein Samadi Kafil
- 5 Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Behrooz Naghili
- 6 Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Vajihe Sheikhalizadeh
- 2 Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
48
|
Annear D, Black J, Govender S. MULTILOCUS SEQUENCE TYPING OF CARBAPENEM RESISTANT PSEUDOMONAS AERUGINOSA ISOLATES FROM PATIENTS PRESENTING AT PORT ELIZABETH HOSPITALS, SOUTH AFRICA. Afr J Infect Dis 2017; 11:68-74. [PMID: 28670642 PMCID: PMC5476815 DOI: 10.21010/ajid.v11i2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Pseudomonas aeruginosa is an important nosocomial pathogen that exhibits multiple drug resistance with increasing frequency, especially to carbapenems making patient treatment difficult. Carbapenem-resistance may be caused by porin gene mutations, active drug efflux, and carbapenemase production. This study evaluated the incidence of genes responsible for carbapenemase production in carbapenem-resistant Pseudomonas aeruginosa and assessed the genetic relatedness of the isolates by multi locus sequence typing (MLST). Materials and Methods: Identification and antimicrobial susceptibility testing of P. aeruginosa isolates (n=234) by the VITEK 2 system detected 81 carbapenem resistant P. aeruginosa isolates. PCR and DNA sequencing were used to screen isolates for three metallo-β-lactamase encoding genes. MLST included amplification of seven housekeeping genes and sequence type alignment using the online P. aeruginosa MLST database. Results: Only the blaVIM-2 gene was detected in 15 of the 81 carbapenem resistant isolates. MLST indicated six different novel sequence types among the blaVIM-2 positive P. aeruginosa isolates with the majority of the isolates (9/15) containing identical allelic profiles of the sequence type allocated ST1 (provisionally assigned sequence type, awaiting addition of new sequence types to PubMLST database). Five of these ST1 isolates were from patients and an environmental sample in the same hospital ward suggesting an environmental reservoir. Carbapenem resistance in the blaVIM-2 negative isolates may be due to other mechanisms. Conclusion: The incidence of genes responsible for carbapenemase production in carbapenem-resistant Pseudomonas aeruginosa and genetic relatedness of these isolates in public healthcare facilities within the Port Elizabeth area is of concern and requires further investigation.
Collapse
Affiliation(s)
- D Annear
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
| | - J Black
- Department of Infectious Diseases, Livingstone Hospital, Port Elizabeth, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - S Govender
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
| |
Collapse
|
49
|
In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program). Antimicrob Agents Chemother 2017; 61:AAC.02209-16. [PMID: 28320716 DOI: 10.1128/aac.02209-16] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/10/2017] [Indexed: 01/23/2023] Open
Abstract
Relebactam (formerly MK-7655) is an inhibitor of class A and C β-lactamases, including Klebsiella pneumoniae carbapenemase (KPC), and is currently in clinical development in combination with imipenem-cilastatin. Using Clinical and Laboratory Standards Institute (CLSI)-defined broth microdilution methodology, we evaluated the in vitro activities of imipenem-relebactam, imipenem, and seven routinely tested parenteral antimicrobial agents against Gram-negative ESKAPE pathogens (including Klebsiella pneumoniae, n = 689; Acinetobacter baumannii, n = 72; Pseudomonas aeruginosa, n = 845; and Enterobacter spp., n = 399) submitted by 21 clinical laboratories in the United States in 2015 as part of the SMART (Study for Monitoring Antimicrobial Resistance Trends) global surveillance program. Relebactam was tested at a fixed concentration of 4 μg/ml in combination with doubling dilutions of imipenem. Imipenem-relebactam MICs were interpreted using CLSI imipenem breakpoints. The respective rates of susceptibility to imipenem-relebactam and imipenem were 94.2% (796/845) and 70.3% (594/845) for P. aeruginosa, 99.0% (682/689) and 96.1% (662/689) for K. pneumoniae, and 100% (399/399) and 98.0% (391/399) for Enterobacter spp. Relebactam restored imipenem susceptibility to 80.5% (202/251), 74.1% (20/27), and 100% (8/8) of isolates of imipenem-nonsusceptible P. aeruginosa, K. pneumoniae, and Enterobacter spp. Relebactam did not increase the number of isolates of Acinetobacter spp. susceptible to imipenem, and the rates of resistance to all of the agents tested against this pathogen were >30%. Further development of imipenem-relebactam is warranted given the demonstrated ability of relebactam to restore the activity of imipenem against current clinical isolates of Enterobacteriaceae and P. aeruginosa that are nonsusceptible to carbapenems and its potential as a therapy for treating patients with antimicrobial-resistant Gram-negative infections.
Collapse
|
50
|
Geisinger E, Isberg RR. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria. J Infect Dis 2017; 215:S9-S17. [PMID: 28375515 DOI: 10.1093/infdis/jiw402] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance.
Collapse
Affiliation(s)
- Edward Geisinger
- Howard Hughes Medical Institute, and.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Ralph R Isberg
- Howard Hughes Medical Institute, and.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|