1
|
( E)-Piplartine Isolated from Piper pseudoarboreum, a Lead Compound against Leishmaniasis. Foods 2020; 9:foods9091250. [PMID: 32906719 PMCID: PMC7554920 DOI: 10.3390/foods9091250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022] Open
Abstract
The current therapies of leishmaniasis, the second most widespread neglected tropical disease, have limited effectiveness and toxic side effects. In this regard, natural products play an important role in overcoming the current need for new leishmanicidal agents. The present study reports a bioassay-guided fractionation of the ethanolic extract of leaves of Piper pseudoarboreum against four species of Leishmania spp. promastigote forms, which afforded six known alkamides (1–6). Their structures were established on the basis of spectroscopic and spectrometric analysis. Compounds 2 and 3 were identified as the most promising ones, displaying higher potency against Leishmania spp. promastigotes (IC50 values ranging from 1.6 to 3.8 µM) and amastigotes of L. amazonensis (IC50 values ranging from 8.2 to 9.1 µM) than the reference drug, miltefosine. The efficacy of (E)-piplartine (3) against L. amazonensis infection in an in vivo model for cutaneous leishmaniasis was evidenced by a significant reduction of the lesion size footpad and spleen parasite burden, similar to those of glucantime used as the reference drug. This study reinforces the therapeutic potential of (E)-piplartine as a promising lead compound against neglected infectious diseases caused by Leishmania parasites.
Collapse
|
2
|
Synthetic ( E)-3-Phenyl-5-(phenylamino)-2-styryl-1,3,4-thiadiazol-3-ium Chloride Derivatives as Promising Chemotherapy Agents on Cell Lines Infected with HTLV-1. Molecules 2020; 25:molecules25112537. [PMID: 32486038 PMCID: PMC7321218 DOI: 10.3390/molecules25112537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Synthesis of four compounds belonging to mesoionic class, (E)-3-phenyl-5-(phenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride derivatives (5a–d) and their biological evaluation against MT2 and C92 cell lines infected with human T-cell lymphotropic virus type-1 (HTLV-1), which causes adult T-cell leukemia/lymphoma (ATLL), and non-infected cell lines (Jurkat) are reported. The compounds were obtained by convergent synthesis under microwave irradiation and the cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Results showed IC50 values of all compounds in the range of 1.51–7.70 μM in HTLV-1-infected and non-infected cells. Furthermore, it was observed that 5b could induce necrosis after 24 h for Jurkat and MT2 cell lines. The experimental (fluorimetric method) and theoretical (molecular docking) results suggested that the mechanism of action for 5b could be related to its capacity to intercalate into DNA. Moreover, the preliminary pharmacokinetic profile of the studied compounds (5a–d) was obtained through human serum albumin (HSA) binding affinity using multiple spectroscopic techniques (circular dichroism, steady-state and time-resolved fluorescence), zeta potential and molecular docking calculations. The interaction HSA:5a–d is spontaneous and moderate (Ka ~ 104 M−1) via a ground-state association, without significantly perturbing both the secondary and surface structures of the albumin in the subdomain IIA (site I), indicating feasible biodistribution in the human bloodstream.
Collapse
|
3
|
Cunha-Júnior EF, Andrade-Neto VV, Lima ML, da Costa-Silva TA, Galisteo Junior AJ, Abengózar MA, Barbas C, Rivas L, Almeida-Amaral EE, Tempone AG, Torres-Santos EC. Cyclobenzaprine Raises ROS Levels in Leishmania infantum and Reduces Parasite Burden in Infected Mice. PLoS Negl Trop Dis 2017; 11:e0005281. [PMID: 28045892 PMCID: PMC5234845 DOI: 10.1371/journal.pntd.0005281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/13/2017] [Accepted: 12/21/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The leishmanicidal action of tricyclic antidepressants has been studied and evidences have pointed that their action is linked to inhibition of trypanothione reductase, a key enzyme in the redox metabolism of pathogenic trypanosomes. Cyclobenzaprine (CBP) is a tricyclic structurally related to the antidepressant amitriptyline, differing only by the presence of a double bond in the central ring. This paper describes the effect of CBP in experimental visceral leishmaniasis, its inhibitory effect in trypanothione reductase and the potential immunomodulatory activity. METHODOLOGY/PRINCIPAL FINDINGS In vitro antileishmanial activity was determined in promastigotes and in L. infantum-infected macrophages. For in vivo studies, L. infantum-infected BALB/c mice were treated with CBP by oral gavage for five days and the parasite load was estimated. Trypanothione reductase activity was assessed in the soluble fraction of promastigotes of L. infantum. For evaluation of cytokines, L. infantum-infected macrophages were co-cultured with BALB/c splenocytes and treated with CBP for 48 h. The supernatant was analyzed for IL-6, IL-10, MCP-1, IFN-γ and TNF-α. CBP demonstrated an IC50 of 14.5±1.1μM and an IC90 of 74.5±1.2 μM in promastigotes and an IC50 of 12.6±1.05 μM and an IC90 of 28.7±1.3 μM in intracellular amastigotes. CBP also reduced the parasite load in L. infantum-infected mice by 40.4±10.3% and 66.7±10.5% in spleen at 24.64 and 49.28 mg/kg, respectively and by 85.6±5.0 and 89.3±4.8% in liver at 24.64 and 49.28mg/kg, after a short-term treatment. CBP inhibited the trypanothione reductase activity with a Ki of 86 ± 7.7 μM and increased the ROS production in promastigotes. CBP inhibited in 53% the production of IL-6 in infected macrophages co-culture. CONCLUSION/SIGNIFICANCE To the best of our knowledge, this study is the first report of the in vivo antileishmanial activity of the FDA-approved drug CBP. Modulation of immune response and induction of oxidative stress in parasite seem to contribute to this efficacy.
Collapse
Affiliation(s)
| | - Valter Viana Andrade-Neto
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
| | - Marta Lopes Lima
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil
| | | | | | - Maria A. Abengózar
- Centro de Investigaciones Biológicas (CSIC), Unidad Asociada Interacciones, Metabolismo y Bioanálisis CSIC-CEU, Madrid, Spain
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Madrid, Spain
| | - Luis Rivas
- Centro de Investigaciones Biológicas (CSIC), Unidad Asociada Interacciones, Metabolismo y Bioanálisis CSIC-CEU, Madrid, Spain
| | | | - Andre Gustavo Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
4
|
Preclinical Studies Evaluating Subacute Toxicity and Therapeutic Efficacy of LQB-118 in Experimental Visceral Leishmaniasis. Antimicrob Agents Chemother 2016; 60:3794-801. [PMID: 27067332 DOI: 10.1128/aac.01787-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most severe form of leishmaniasis and is the second major cause of death by parasites, after malaria. The arsenal of drugs against leishmaniasis is small, and each has a disadvantage in terms of toxicity, efficacy, price, or treatment regimen. Our group has focused on studying new drug candidates as alternatives to current treatments. The pterocarpanquinone LQB-118 was designed and synthesized based on molecular hybridization, and it exhibited antiprotozoal and anti-leukemic cell line activities. Our previous work demonstrated that LQB-118 was an effective treatment for experimental cutaneous leishmaniasis. In this study, we observed that treatment with 10 mg/kg of body weight/day LQB-118 orally inhibited the development of hepatosplenomegaly with a 99% reduction in parasite load. An in vivo toxicological analysis showed no change in the clinical, biochemical, or hematological parameters. Histologically, all of the analyzed organs were normal, with the exception of the liver, where focal points of necrosis with leukocytic infiltration were observed at treatment doses 5 times higher than the therapeutic dose; however, these changes were not accompanied by an increase in transaminases. Our findings indicate that LQB-118 is effective at treating different clinical forms of leishmaniasis and presents no relevant signs of toxicity at therapeutic doses; thus, this framework is demonstrated suitable for developing promising drug candidates for the oral treatment of leishmaniasis.
Collapse
|
5
|
15d-Prostaglandin J2 induced reactive oxygen species-mediated apoptosis during experimental visceral leishmaniasis. J Mol Med (Berl) 2016; 94:695-710. [PMID: 26830627 DOI: 10.1007/s00109-016-1384-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED 15-Deoxy-delta (12,14)-prostaglandin J2 (15d-PgJ2) is a potent bioactive lipid mediator, known to possess several roles in cell regulation and differentiation along with antimicrobial efficacy against different bacterial and viral infections. In the present study, we investigated the therapeutic efficacy and mechanism of action of 15d-PgJ2 in vitro in Leishmania donovani promastigotes and infected J774 macrophages, and in vivo in Balb/c mice/golden hamster model of experimental visceral leishmaniasis. 15d-PgJ2 effectively killed L. donovani promastigotes and amastigotes in vitro with IC50 of 104.6 and 80.09 nM, respectively. At 2 mg/kg (mice) and 4 mg/kg (hamster) doses, 15d-PgJ2 decreased >90 % spleen and liver parasite burden. It significantly reduced interleukin (IL)-10 and transforming growth factor (TGF)-β synthesis in infected macrophages and splenocytes. 15d-PgJ2 induced reactive oxygen species (ROS)-dependent apoptosis of promastigotes by triggering phosphatidyl serine externalization, mitochondrial membrane damage and inducing caspase-like activity. In vitro drug interaction studies revealed an indifference to the synergistic association of 15d-PgJ2 with Miltefosine and Amphotericin-B (Amp-B). Moreover, when combined with sub-curative doses of Miltefosine and Amphotericin-B, 15d-PgJ2 resulted in >95 % parasite removal. Our results suggested that 15d-PgJ2 induces mitochondria-dependent apoptosis of L. donovani and is a good therapeutic candidate for adjunct therapy against experimental visceral leishmaniasis. KEY MESSAGE 15d-PgJ2 effectively eliminated both promastigotes and amastigotes form of L. donovani. 15d-PgJ2 decreased parasite burden from infected mice and hamsters with reduced Th2 cytokines. 15d-PgJ2 induced ROS-mediated mitochondrial apoptosis of L. donovani promastigotes. 15d-PgJ2 is a good therapeutic candidate for adjunct therapy with Miltefosine and Amp-B.
Collapse
|
6
|
Freitas EO, Nico D, Alves-Silva MV, Morrot A, Clinch K, Evans GB, Tyler PC, Schramm VL, Palatnik-de-Sousa CB. Immucillins ImmA and ImmH Are Effective and Non-toxic in the Treatment of Experimental Visceral Leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0004297. [PMID: 26701750 PMCID: PMC4689457 DOI: 10.1371/journal.pntd.0004297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/20/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Immucillins ImmA (IA), ImmH (IH) and SerMe-ImmH (SMIH) are synthetic deazapurine nucleoside analogues that inhibit Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro without macrophage toxicity. Immucillins are compared to the Glucantime standard drug in the chemotherapy of Leishmania (L.) infantum chagasi infection in mice and hamsters. These agents are tested for toxicity and immune system response. METHODOLOGY/PRINCIPAL FINDINGS BALB/c mice were infected with 107 amastigotes, treated with IA, IH, SMIH or Glucantime (2.5mg/kg/day) and monitored for clinical variables, parasite load, antibody levels and splenocyte IFN-γ, TNF-α, and IL-10 expression. Cytokines and CD4+, CD8+ and CD19+ lymphocyte frequencies were assessed in uninfected controls and in response to immucillins. Urea, creatinine, GOT and GPT levels were monitored in sera. Anti-Leishmania-specific IgG1 antibodies (anti-NH36) increased in untreated animals. IgG2a response, high levels of IFN-γ, TNF-α and lower levels of IL-10 were detected in mice treated with the immucillins and Glucantime. Immucillins permitted normal weight gain, prevented hepato-splenomegaly and cleared the parasite infection (85-89%) without renal and hepatic toxicity. Immucillins promoted 35% lower secretion of IFN-γ in uninfected controls than in infected mice. IA and IH increased the CD4+ T and CD19+ B cell frequencies. SMIH increased only the proportion of CD-19 B cells. IA and IH also cured infected hamsters with lower toxicity than Glucantime. CONCLUSIONS/SIGNIFICANCE Immucillins IA, IH and SMIH were effective in treating leishmaniasis in mice. In hamsters, IA and IH were also effective. The highest therapeutic efficacy was obtained with IA, possibly due to its induction of a TH1 immune response. Low immucillin doses were required and showed no toxicity. Our results disclose the potential use of IA and IH in the therapy of visceral leishmaniasis.
Collapse
Affiliation(s)
- Elisangela Oliveira Freitas
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, New York, New York, United States
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus Vinícius Alves-Silva
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Keith Clinch
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gary B. Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Peter C. Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, New York, New York, United States
| | - Clarisa B. Palatnik-de-Sousa
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Corpas-López V, Morillas-Márquez F, Navarro-Moll MC, Merino-Espinosa G, Díaz-Sáez V, Martín-Sánchez J. (-)-α-Bisabolol, a Promising Oral Compound for the Treatment of Visceral Leishmaniasis. JOURNAL OF NATURAL PRODUCTS 2015; 78:1202-1207. [PMID: 26076227 DOI: 10.1021/np5008697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to assess the in vitro and in vivo activity of (-)-α-bisabolol (1) against the etiological agents of visceral leishmaniasis. Bone-marrow-derived macrophages were infected with Leishmania infantum or L. donovani promastigotes and incubated with (-)-α-bisabolol at different concentrations. Pentamidine isethionate and meglumine antimoniate were used as reference drugs. Inhibitory concentration 50% (IC50) and cytotoxic concentration 50% (CC50) were calculated. Balb/c mice were infected intraperitoneally with stationary-phase promastigotes. They were treated with (-)-α-bisabolol at different doses orally, meglumine antimoniate at 104 mg Sb(V)/kg, or a combination of both. (-)-α-Bisabolol proved to be innocuous to mammal cells and active against L. infantum and L. donovani intracellular amastigotes (IC50 55 and 39 μM, respectively). Compound 1 also proved to be active in an in vivo model of visceral leishmaniasis due to L. infantum, as it reduced parasite load in the spleen and liver by 71.60% and 89.22%, respectively, at 200 mg/kg without showing toxicity. (-)-α-Bisabolol (1) is a nontoxic compound that was proven to be active against visceral leishmaniasis in an in vivo murine model orally. It was more effective than meglumine antimoniate at reducing spleen parasite load and as effective as this antimonial drug in the liver.
Collapse
Affiliation(s)
- Victoriano Corpas-López
- †Departamento de Parasitología and ‡Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Francisco Morillas-Márquez
- †Departamento de Parasitología and ‡Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - M Concepción Navarro-Moll
- †Departamento de Parasitología and ‡Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Gemma Merino-Espinosa
- †Departamento de Parasitología and ‡Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Victoriano Díaz-Sáez
- †Departamento de Parasitología and ‡Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Joaquina Martín-Sánchez
- †Departamento de Parasitología and ‡Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| |
Collapse
|
8
|
Gonzalez-Fajardo L, Fernández OL, McMahon-Pratt D, Saravia NG. Ex vivo host and parasite response to antileishmanial drugs and immunomodulators. PLoS Negl Trop Dis 2015; 9:e0003820. [PMID: 26024228 PMCID: PMC4449175 DOI: 10.1371/journal.pntd.0003820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 05/10/2015] [Indexed: 11/17/2022] Open
Abstract
Background Therapeutic response in infectious disease involves host as well as microbial determinants. Because the immune and inflammatory response to Leishmania (Viannia) species defines the outcome of infection and efficacy of treatment, immunomodulation is considered a promising therapeutic strategy. However, since Leishmania infection and antileishmanial drugs can themselves modulate drug transport, metabolism and/or immune responses, immunotherapeutic approaches require integrated assessment of host and parasite responses. Methodology To achieve an integrated assessment of current and innovative therapeutic strategies, we determined host and parasite responses to miltefosine and meglumine antimoniate alone and in combination with pentoxifylline or CpG 2006 in peripheral blood mononuclear cells (PBMCs) of cutaneous leishmaniasis patients. Parasite survival and secretion of TNF-α, IFN-γ, IL-10 and IL-13 were evaluated concomitantly in PBMCs infected with Luc-L. (V.) panamensis exposed to meglumine antimoniate (4, 8, 16, 32 and 64 μg SbV/mL) or miltefosine (2, 4, 8, 16 and 32 μM HePC). Concentrations of 4 μM of miltefosine and 8 μg SbV/mL were selected for evaluation in combination with immunomodulators based on the high but partial reduction of parasite burden by these antileishmanial concentrations without affecting cytokine secretion of infected PBMCs. Intracellular parasite survival was determined by luminometry and cytokine secretion measured by ELISA and multiplex assays. Principal Findings Anti- and pro-inflammatory cytokines characteristic of L. (V.) panamensis infection were evaluable concomitantly with viability of Leishmania within monocyte-derived macrophages present in PBMC cultures. Both antileishmanial drugs reduced the parasite load of macrophages; miltefosine also suppressed IL-10 and IL-13 secretion in a dose dependent manner. Pentoxifylline did not affect parasite survival or alter antileishmanial effects of miltefosine or meglumine antimoniate. However, pentoxifylline diminished secretion of TNF-α, IFN-γ and IL-13, cytokines associated with the outcome of infection by species of the Viannia subgenus. Exposure to CpG diminished the leishmanicidal effect of meglumine antimoniate, but not miltefosine, and significantly reduced secretion of IL -10, alone and in combination with either antileishmanial drug. IL-13 increased in response to CpG plus miltefosine. Conclusions and Significance Human PBMCs allow integrated ex vivo assessment of antileishmanial treatments, providing information on host and parasite determinants of therapeutic response that may be used to tailor therapeutic strategies to optimize clinical resolution. Host determinants of the response to infection have increasingly been recognized as therapeutically relevant targets. Despite the pathogenesis of dermal leishmaniasis being mediated by the immune and inflammatory response, in vitro anti-leishmanial drug screening has been based on antimicrobial effect without consideration of effects on the host response. The results of this study show that peripheral blood mononuclear cells from patients allow an integrated evaluation of both antimicrobial efficacy and host response to drugs, immunomodulatory agents, and their combinations. This integrated approach to defining treatment strategies based on host and parasite responses opens the way for the optimization and tailoring of treatment to different clinical circumstances.
Collapse
Affiliation(s)
- Laura Gonzalez-Fajardo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Olga Lucía Fernández
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Diane McMahon-Pratt
- Yale University School of Public Health, New Haven, Connecticut, United States of America
| | - Nancy Gore Saravia
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| |
Collapse
|
9
|
Immucillins Impair Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis Multiplication In Vitro. PLoS One 2015; 10:e0124183. [PMID: 25909893 PMCID: PMC4409337 DOI: 10.1371/journal.pone.0124183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/26/2015] [Indexed: 11/25/2022] Open
Abstract
Chemotherapy against visceral leishmaniasis is associated with high toxicity and drug resistance. Leishmania parasites are purine auxotrophs that obtain their purines from exogenous sources. Nucleoside hydrolases release purines from nucleosides and are drug targets for anti-leishmanial drugs, absent in mammal cells. We investigated the substrate specificity of the Leishmania (L.) donovani recombinant nucleoside hydrolase NH36 and the inhibitory effect of the immucillins IA (ImmA), DIA (DADMe-ImmA), DIH (DADMe-ImmH), SMIH (SerMe-ImmH), IH (ImmH), DIG (DADMe-ImmG), SMIG (SerMe-ImmG) and SMIA (SerME-ImmA) on its enzymatic activity. The inhibitory effects of immucillins on the in vitro multiplication of L. (L.) infantum chagasi and L. (L.) amazonensis promastigotes were determined using 0.05–500 μM and, when needed, 0.01–50 nM of each drug. The inhibition on multiplication of L. (L.) infantum chagasi intracellular amastigotes in vitro was assayed using 0.5, 1, 5 and 10 μM of IA, IH and SMIH. The NH36 shows specificity for inosine, guanosine, adenosine, uridine and cytidine with preference for adenosine and inosine. IA, IH, DIH, DIG, SMIH and SMIG immucillins inhibited L. (L.) infantum chagasi and L. (L.) amazonensis promastigote growth in vitro at nanomolar to micromolar concentrations. Promastigote replication was also inhibited in a chemically defined medium without a nucleoside source. Addition of adenosine decreases the immucillin toxicity. IA and IH inhibited the NH36 enzymatic activity (Ki = 0.080 μM for IA and 0.019 μM for IH). IA, IH and SMIH at 10 μM concentration, reduced the in vitro amastigote replication inside mice macrophages by 95% with no apparent effect on macrophage viability. Transmission electron microscopy revealed global alterations and swelling of L. (L.) infantum chagasi promastigotes after treatment with IA and IH while SMIH treatment determined intense cytoplasm vacuolization, enlarged vesicles and altered kinetoplasts. Our results suggest that IA, IH and SMIH may provide new chemotherapy agents for leishmaniasis.
Collapse
|
10
|
Serna ME, Maldonado M, Torres S, Schinini A, Lima APDA, Pandolfi E, de Arias AR. Finding of leishmanicidal activity of 14-hydroxylunularin in mice experimentally infected with Leishmania infantum. Parasitol Int 2015; 64:295-8. [PMID: 25843766 DOI: 10.1016/j.parint.2015.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/16/2015] [Accepted: 03/28/2015] [Indexed: 01/15/2023]
Abstract
In this study, we report the in vivo efficacy of 14-hydroxylunularin evaluated in BALB/c mice experimentally infected with promastigotes of Leishmania infantum (syn L. chagasi), the major causative agent of visceral leishmaniasis in Latin America. Seven days post-infection, treatment with 14-hydroxylunularin started and it was administered by oral and subcutaneous routes in doses of 10 and 25 mg/kg of weight for ten days using Glucantime® as reference drug. In the liver, the evaluated compound showed parasite reduction above 90% by both administration routes being the oral route the most effective at both doses. Significant decreased numbers of parasites were also observed when the treated group was compared with the control group (p≤0.05). The subcutaneous route presented a remarkable difference with at least 80% parasite suppression in liver and spleen at 10 mg/kg dose and 90% in liver at 25 mg/kg. The leishmanicidal activity of 14-hydroxylunularin against L. infantum revealed by this study is another evidence in favor of this compound as a potential candidate for the development of a new oral treatment for leishmaniasis.
Collapse
Affiliation(s)
- Ma Elva Serna
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción, Río de la Plata y Lagerenza, CC 2511, Asunción, Paraguay.
| | - Marisel Maldonado
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción, Río de la Plata y Lagerenza, CC 2511, Asunción, Paraguay.
| | - Susana Torres
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción, Río de la Plata y Lagerenza, CC 2511, Asunción, Paraguay.
| | - Alicia Schinini
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción, Río de la Plata y Lagerenza, CC 2511, Asunción, Paraguay.
| | | | - Enrique Pandolfi
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC/FMB/Díaz Gill Medicina Laboratorial), Asunción, Paraguay.
| |
Collapse
|