1
|
Oliulla H, Mizan MFR, Kang I, Ha SD. On-going issues regarding biofilm formation in meat and meat products: challenges and future perspectives. Poult Sci 2024; 103:104373. [PMID: 39426218 PMCID: PMC11536009 DOI: 10.1016/j.psj.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
The meat industry has been significantly threatened by the risks of foodborne microorganisms and biofilm formation on fresh meat and processed products. A microbial biofilm is a sophisticated defensive mechanism that enables bacterial cells to survive in unfavorable environmental circumstances. Generally, foodborne pathogens form biofilms in various areas of meat-processing plants, and adequate sanitization of these areas is challenging owing to the high tolerance of biofilm cells to sanitization compared with their planktonic states. Consequently, preventing biofilm initiation and maturation using effective and powerful technologies is imperative. In this review, novel and advanced technologies that prevent bacterial and biofilm development via individual and combined intervention technologies, such as ultrasound, cold plasma, enzymes, bacteriocins, essential oils, and phages, were evaluated. The evidence regarding current technologies revealed in this paper is potentially beneficial to the meat industry in preventing bacterial contamination and biofilm formation in food products and processing equipment.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea.
| |
Collapse
|
2
|
Cassa MA, Gentile P, Girón-Hernández J, Ciardelli G, Carmagnola I. Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices. Biomater Sci 2024; 12:5433-5449. [PMID: 39320148 DOI: 10.1039/d4bm00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gianluca Ciardelli
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Pisa 56124, Italy
| | - Irene Carmagnola
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| |
Collapse
|
3
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
4
|
Rush JS, Zamakhaeva S, Murner NR, Deng P, Morris AJ, Kenner CW, Black I, Heiss C, Azadi P, Korotkov KV, Widmalm G, Korotkova N. Structure and mechanism of biosynthesis of Streptococcus mutans cell wall polysaccharide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593426. [PMID: 38766245 PMCID: PMC11100793 DOI: 10.1101/2024.05.09.593426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Streptococcus mutans, the causative agent of human dental caries, expresses a cell wall attached Serotype c- specific Carbohydrate (SCC) that is critical for cell viability. SCC consists of a repeating →3)α-Rha(1→2)α-Rha(1→ polyrhamnose backbone, with glucose (Glc) side-chains and glycerol phosphate (GroP) decorations. This study reveals that SCC has one major and two minor Glc modifications. The major Glc modification, α-Glc, attached to position 2 of 3-rhamnose, is installed by SccN and SccM glycosyltransferases and is the site of the GroP addition. The minor Glc modifications are β-Glc linked to position 4 of 3-rhamnose installed by SccP and SccQ glycosyltransferases, and α-Glc attached to position 4 of 2-rhamnose installed by SccN working in tandem with an unknown enzyme. Both the major and the minor β-Glc modifications control bacterial morphology, but only the GroP and major Glc modifications are critical for biofilm formation.
Collapse
|
5
|
Lim J, Myung H, Lim D, Song M. Antimicrobial peptide thanatin fused endolysin PA90 (Tha-PA90) for the control of Acinetobacter baumannii infection in mouse model. J Biomed Sci 2024; 31:36. [PMID: 38622637 PMCID: PMC11020296 DOI: 10.1186/s12929-024-01027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 μM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 μM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.
Collapse
Affiliation(s)
- Jeonghyun Lim
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
| | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
- LyseNTech Co., Ltd., Seongnam-Si, 13486, Republic of Korea
| | - Daejin Lim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Miryoung Song
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea.
| |
Collapse
|
6
|
Elkhalifa ME, Ashraf M, Ahmed A, Usman A, Hamdoon AA, Elawad MA, Almalki MG, Mosa OF, Niyazov LN, Ayaz M. Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. Future Microbiol 2024; 19:255-279. [PMID: 38305223 DOI: 10.2217/fmb-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents.
Collapse
Affiliation(s)
- Modawy Em Elkhalifa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Muhammad Ashraf
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alshebli Ahmed
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Assad Usman
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alashary Ae Hamdoon
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Mohammed A Elawad
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Meshari G Almalki
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Osama F Mosa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Laziz N Niyazov
- Medical Chemistry Department, Bukhara State Medical Institute Named After Abu Ali Ibn Sino, Bukhara, Uzbekistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| |
Collapse
|
7
|
Pylypiv DB, Sharga BM, Rishko OA, Leshak V, Karbovanets E. Relation of Streptococcus Pyogenes tonsillitis isolate to antimicrobial agents and its infection treatment. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:171-177. [PMID: 38431823 DOI: 10.36740/wlek202401122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We reported the case of tonsillitis treatment in a 17-years-old boy with use of chemical non-antibiotic preparations, plant derived products and antibiotic benzathine phenoxymethylpenicillin. The antimicrobial agents for treatment were selected on the basis of their activity against a disease agent, the group A β-hemolytic strain Streptococcus pyogenes BS1 isolated from a patient. The bacterium was susceptible in vitro to β-lactams, with largest zones conditioned by penicillin G and benzathine phenoxymethylpenicillin discs, to fluoroquinolones and to cephems, with exception of cefazolin. Lincosamide clindamycin, macrolide spiramycin, aminoglycoside gentamicin, erythromycin, tetracycline and combination of sulfamethoxazole and trimethoprim were inactive against this bacterium. The Streptococcus pyogenes BS1 demonstrated intermediate susceptibility to the cephalosporin cephalexin, fluoroquinolone lomefloxacin and glycopeptide vancomycin. Non-antibiotic preparations were evaluated against Streptococcus pyogenes BS1 also. Among them "Stomatidin", "Chlorophyllipt", and phages of "Pyofag" were more effective than "Decatylen", "Decasan" and "Furadonin" in vitro. The antimicrobial applications of "Stomatidin", "Chlorophyllipt" and phages of "Pyofag" in the patient were less effective compared to the result of antibiotic benzathine phenoxymethylpenicillin treatment. Complete recovery of the patient was achieved with use of this antibiotic and Calendula flower extract as an local anti-inflammatory agent.
Collapse
|
8
|
Son SM, Kim J, Ryu S. Development of sensitizer peptide-fused endolysin Lys1S-L9P acting against multidrug-resistant gram-negative bacteria. Front Microbiol 2023; 14:1296796. [PMID: 38075915 PMCID: PMC10701683 DOI: 10.3389/fmicb.2023.1296796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/01/2023] [Indexed: 06/21/2024] Open
Abstract
The advent of multidrug-resistant (MDR) bacteria poses a major threat to public health, garnering attention to novel antibiotic replacements. Endolysin, a bacteriophage-derived cell wall-degrading enzyme, is a promising alternative to conventional antibiotics. However, it is challenging to control Gram-negative bacteria due to the presence of the outer membrane that shields the peptidoglycan layer from enzymatic degradation. To overcome this threshold, we constructed the fusion endolysin Lys1S-L9P by combining endolysin LysSPN1S with KL-L9P, a sensitizer peptide known to extend efficacy of antibiotics by perturbing the outer membrane of Gram-negative bacteria. In addition, we established a new endolysin purification procedure that increases solubility allowing a 4-fold increase in production yield of Lys1S-L9P. The sensitizer peptide-fused endolysin Lys1S-L9P exhibited high bactericidal effects against many MDR Gram-negative pathogens and was more effective in eradicating biofilms compared to LysSPN1S. Moreover, Lys1S-L9P showed potential for clinical use, maintaining stability at various storage temperatures without cytotoxicity against human cells. In the in vivo Galleria mellonella model, Lys1S-L9P demonstrated potent antibacterial activity against MDR Gram-negative bacteria without inducing any toxic activity. This study suggest that Lys1S-L9P could be a potential biocontrol agent to combat MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Su Min Son
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Joonbeom Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
McCallin S, Drulis-Kawa Z, Ferry T, Pirnay JP, Nir-Paz R. Phages and phage-borne enzymes as new antibacterial agents. Clin Microbiol Infect 2023:S1198-743X(23)00528-1. [PMID: 37866680 DOI: 10.1016/j.cmi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Persistent and resistant infections caused by bacteria are increasing in numbers and pose a treatment challenge to the medical community and public health. However, solutions with new agents that will enable effective treatment are lacking or delayed by complex development and authorizations. Bacteriophages are known as a possible solution for invasive infections for decades but were seldom used in the Western world. OBJECTIVES To provide an overview of the current status and emerging use of bacteriophage therapy and phage-based products, as well as touch on the socioeconomic and regulatory issues surrounding their development. SOURCES Peer-reviewed articles and authors' first-hand experience. CONTENT Although phage therapy is making a comeback since its early discovery, there are many hurdles to its current use. The lack of appropriate standardized bacterial susceptibility testing; lack of a simple business model and authorization for the need of many phages to treat a single species infection; and the lack of knowledge on predictable outcome measures are just a few examples. In this review, we explore the possible routes for phage use, either based on local specialty centres or by industry; the current status of phage therapy, which is mainly based on single-centre or single-bacterial cohorts, and emerging clinical trials; local country-level frameworks for phage utilization even without full authorization; and the use of phage-derived products as alternatives to antibiotics. We also explore what may be the current indications based on the possible availability of phages. IMPLICATIONS Although phages are emerging as a potential treatment for non-resolving and life-threatening infections, the models for their use and production still need to be defined by the medical community, regulatory bodies, and industry. Bacteriophages may have a great potential for infection treatment but many aspects still need to be defined before their routine use in the clinic.
Collapse
Affiliation(s)
- Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland
| | - Zuzanna Drulis-Kawa
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Tristan Ferry
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Centre interrégional de référence pour la prise en charge des infections ostéoarticulaires complexes, CRIOAc Lyon, Hospices Civils de Lyon, Lyon, France; Infectious Diseases, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France; CIRI-Centre International de Recherche en Infectiologie, Inserm, Universite Claude Bernard Lyon, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Jean-Paul Pirnay
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Ran Nir-Paz
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Israeli Phage Therapy Center of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
10
|
Liu B, Guo Q, Li Z, Guo X, Liu X. Bacteriophage Endolysin: A Powerful Weapon to Control Bacterial Biofilms. Protein J 2023; 42:463-476. [PMID: 37490161 DOI: 10.1007/s10930-023-10139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Bacterial biofilms are widespread in the environment, and bacteria in the biofilm are highly resistant to antibiotics and possess host immune defense mechanisms, which can lead to serious clinical and environmental health problems. The increasing problem of bacterial resistance caused by the irrational use of traditional antimicrobial drugs has prompted the search for better and novel antimicrobial substances. In this paper, we review the effects of phage endolysins, modified phage endolysins, and their combination with other substances on bacterial biofilms and provide an outlook on their practical applications. Phage endolysins can specifically and efficiently hydrolyze the cell walls of bacteria, causing bacterial lysis and death. Phage endolysins have shown superior bactericidal effects in vitro and in vivo, and no direct toxicity in humans has been reported to date. The properties of phage endolysins make them promising for the prevention and treatment of bacterial infections. Meanwhile, endolysins have been genetically engineered to exert a stronger scavenging effect on biological membranes when used in combination with antibiotics and drugs. Phage endolysins are powerful weapons for controlling bacterial biofilms.
Collapse
Affiliation(s)
- Bingxin Liu
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiucui Guo
- University of Chinese Academy of Sciences, Beijing, China
| | - Zong Li
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Guo
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinchun Liu
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Nazir A, Xu X, Liu Y, Chen Y. Phage Endolysins: Advances in the World of Food Safety. Cells 2023; 12:2169. [PMID: 37681901 PMCID: PMC10486871 DOI: 10.3390/cells12172169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
As antimicrobial resistance continues to escalate, the exploration of alternative approaches to safeguard food safety becomes more crucial than ever. Phage endolysins are enzymes derived from phages that possess the ability to break down bacterial cell walls. They have emerged as promising antibacterial agents suitable for integration into food processing systems. Their application as food preservatives can effectively regulate pathogens, thus contributing to an overall improvement in food safety. This review summarizes the latest techniques considering endolysins' potential for food safety. These techniques include native and engineered endolysins for controlling bacterial contamination at different points within the food production chain. However, we find that characterizing endolysins through in vitro methods proves to be time consuming and resource intensive. Alternatively, the emergence of advanced high-throughput sequencing technology necessitates the creation of a robust computational framework to efficiently characterize recently identified endolysins, paving the way for future research. Machine learning encompasses potent tools capable of analyzing intricate datasets and pattern recognition. This study briefly reviewed the use of these industry 4.0 technologies for advancing the research in food industry. We aimed to provide current status of endolysins in food industry and new insights by implementing these industry 4.0 strategies revolutionizes endolysin development. It will enhance food safety, customization, efficiency, transparency, and collaboration while reducing regulatory hurdles and ensuring timely product availability.
Collapse
Affiliation(s)
- Amina Nazir
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
12
|
Miernikiewicz P, Barylski J, Wilczak A, Dragoš A, Rybicka I, Bałdysz S, Szymczak A, Dogsa I, Rokush K, Harhala MA, Ciekot J, Ferenc S, Gnus J, Witkiewicz W, Dąbrowska K. New Phage-Derived Antibacterial Enzyme PolaR Targeting Rothia spp. Cells 2023; 12:1997. [PMID: 37566076 PMCID: PMC10417112 DOI: 10.3390/cells12151997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Rothia is an opportunistic pathogen, particularly life-threatening for the immunocompromised. It is associated with pneumonia, endocarditis, peritonitis and many other serious infections, including septicemia. Of note, Rothia mucilaginousa produces metabolites that support and increase overgrowth of Pseudomonas aeruginosa, one of the ESKAPE bacteria. Endolysins are considered as antibacterial enzymes derived from bacteriophages that selectively and efficiently kill susceptible bacteria without harming human cells or the normal microbiome. Here, we applied a computational analysis of metagenomic sequencing data of the gastric mucosa phageome extracted from human patients' stomach biopsies. A selected candidate anti-Rothia sequence was produced in an expression system, purified and confirmed as a Rothia mucilaginosa- and Rothia dentocariosa-specific endolysin PolaR, able to destroy bacterial cells even when aggregated, as in a biofilm. PolaR had no cytotoxic or antiproliferative effects on mammalian cells. PolaR is the first described endolysin selectively targeting Rothia species, with a high potential to combat infections caused by Rothia mucilaginosa and Rothia dentocariosa, and possibly other bacterial groups. PolaR is the first antibacterial enzyme selected from the gastric mucosa phageome, which underlines the biological complexity and probably underestimated biological role of the phageome in the human gastric mucosa.
Collapse
Affiliation(s)
- Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland; (J.B.); (S.B.)
| | - Aleksandra Wilczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.D.); (I.D.)
| | - Izabela Rybicka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Sophia Bałdysz
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland; (J.B.); (S.B.)
| | - Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Iztok Dogsa
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.D.); (I.D.)
| | - Kostiantyn Rokush
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Marek Adam Harhala
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Stanisław Ferenc
- Research and Development Center, Regional Specialist Hospital in Wrocław, 51-124 Wrocław, Poland; (S.F.); (J.G.); (W.W.)
| | - Jan Gnus
- Research and Development Center, Regional Specialist Hospital in Wrocław, 51-124 Wrocław, Poland; (S.F.); (J.G.); (W.W.)
- Faculty of Health Sciences, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialist Hospital in Wrocław, 51-124 Wrocław, Poland; (S.F.); (J.G.); (W.W.)
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
- Research and Development Center, Regional Specialist Hospital in Wrocław, 51-124 Wrocław, Poland; (S.F.); (J.G.); (W.W.)
| |
Collapse
|
13
|
Zhang H, Zhang X, Liang S, Wang J, Zhu Y, Zhang W, Liu S, Schwarz S, Xie F. Bactericidal synergism between phage endolysin Ply2660 and cathelicidin LL-37 against vancomycin-resistant Enterococcus faecalis biofilms. NPJ Biofilms Microbiomes 2023; 9:16. [PMID: 37024490 PMCID: PMC10078070 DOI: 10.1038/s41522-023-00385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Antibiotic resistance and the ability to form biofilms of Enterococcus faecalis have compromised the choice of therapeutic options, which triggered the search for new therapeutic strategies, such as the use of phage endolysins and antimicrobial peptides. However, few studies have addressed the synergistic relationship between these two promising options. Here, we investigated the combination of the phage endolysin Ply2660 and the antimicrobial peptide LL-37 to target drug-resistant biofilm-producing E. faecalis. In vitro bactericidal assays were used to demonstrate the efficacy of the Ply2660-LL-37 combination against E. faecalis. Larger reductions in viable cell counts were observed when Ply2660 and LL-37 were applied together than after individual treatment with either substance. Transmission electron microscopy revealed that the Ply2660-LL-37 combination could lead to severe cell lysis of E. faecalis. The mode of action of the Ply2660-LL-37 combination against E. faecalis was that Ply2660 degrades cell wall peptidoglycan, and subsequently, LL-37 destroys the cytoplasmic membrane. Furthermore, Ply2660 and LL-37 act synergistically to inhibit the biofilm formation of E. faecalis. The Ply2660-LL-37 combination also showed a synergistic effect for the treatment of established biofilm, as biofilm killing with this combination was superior to each substance alone. In a murine peritoneal septicemia model, the Ply2660-LL-37 combination distinctly suppressed the dissemination of E. faecalis isolates and attenuated organ injury, being more effective than each treatment alone. Altogether, our findings indicate that the combination of a phage endolysin and an antimicrobial peptide may be a potential antimicrobial strategy for combating E. faecalis.
Collapse
Affiliation(s)
- Huihui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siyu Liang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany.
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
14
|
Shivaram KB, Bhatt P, Applegate B, Simsek H. Bacteriophage-based biocontrol technology to enhance the efficiency of wastewater treatment and reduce targeted bacterial biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160723. [PMID: 36496019 DOI: 10.1016/j.scitotenv.2022.160723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment is an essential process for public health and a sustainable ecosystem. Inadequate wastewater treatment can lead to the release of organic and inorganic pollutants and pathogenic bacteria into the receiving waters which could be further utilized for recreation purposes. The interaction between bacteriophage and bacteria in a wastewater treatment plant plays a major role in maintaining the treatment process. Phage therapy has been proposed as an alternative to conventional treatment methods as bacteriophages can be used on specific targets and leave useful bacteria unharmed. The bacterial species, which are responsible for bulking, foaming, and biofilm formation in a wastewater treatment plant (WWTP) have been identified and their respective phages are isolated to control their growth. Phages with lytic life cycles are preferred to lysogenic. Lytic phages can kill the specific target as they lyse the cell, infect most of the hosts, and have an immediate effect on controlling problems caused by bacteria in a WWTP. The bacteriophages such as T7, SPI1, GTE7, PhaxI, MAG1, MAG2, ϕPh_Se01, ϕPh_Se02, and Bxb1 have been investigated for the removal of bacterial biofilms from wastewater. Novel experimental setups have improved the efficiency of phage therapy in small-scale and pilot-scale experiments. Much more in-depth knowledge of the microbial community and their interaction would help promote the usage of phage therapy in large-scale wastewater treatments. This paper has covered the recent advancements in phage therapy as an effective biocontrol of pathogenic bacteria in the wastewater treatment process and has looked at certain shortcomings that have to be improved.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
15
|
Varma A, Warghane A, Dhiman NK, Paserkar N, Upadhye V, Modi A, Saini R. The role of nanocomposites against biofilm infections in humans. Front Cell Infect Microbiol 2023; 13:1104615. [PMID: 36926513 PMCID: PMC10011468 DOI: 10.3389/fcimb.2023.1104615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
The use of nanomaterials in several fields of science has undergone a revolution in the last few decades. It has been reported by the National Institutes of Health (NIH) that 65% and 80% of infections are accountable for at least 65% of human bacterial infections. One of their important applications in healthcare is the use of nanoparticles (NPs) to eradicate free-floating bacteria and those that form biofilms. A nanocomposite (NC) is a multiphase stable fabric with one or three dimensions that are much smaller than 100 nm, or systems with nanoscale repeat distances between the unique phases that make up the material. Using NC materials to get rid of germs is a more sophisticated and effective technique to destroy bacterial biofilms. These biofilms are refractory to standard antibiotics, mainly to chronic infections and non-healing wounds. Materials like graphene and chitosan can be utilized to make several forms of NCs, in addition to different metal oxides. The ability of NCs to address the issue of bacterial resistance is its main advantage over antibiotics. This review highlights the synthesis, characterization, and mechanism through which NCs disrupt Gram-positive and Gram-negative bacterial biofilms, and their relative benefits and drawbacks. There is an urgent need to develop materials like NCs with a larger spectrum of action due to the rising prevalence of human bacterial diseases that are multidrug-resistant and form biofilms.
Collapse
Affiliation(s)
- Anand Varma
- Arundeep Akshay Urja Pvt. Ltd. Gorakhpur, Uttar Pradesh, India
| | - Ashish Warghane
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Neena K. Dhiman
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Neha Paserkar
- Faculty of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
| | - Vijay Upadhye
- Centre of Research for Development (CR4D), Parul University, Vadodara, Gujarat, India
| | - Anupama Modi
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| |
Collapse
|
16
|
Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life (Basel) 2023; 13:life13020503. [PMID: 36836860 PMCID: PMC9959329 DOI: 10.3390/life13020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.
Collapse
|
17
|
Liu P, Dong X, Cao X, Xie Q, Huang X, Jiang J, Dai H, Tang Z, Lin Y, Feng S, Luo K. Identification of Three Campylobacter Lysins and Enhancement of Their Anti-Escherichia coli Efficacy Using Colicin-Based Translocation and Receptor-Binding Domain Fusion. Microbiol Spectr 2023; 11:e0451522. [PMID: 36749047 PMCID: PMC10100823 DOI: 10.1128/spectrum.04515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The emergence of multidrug-resistant Escherichia coli, which poses a major threat to public health, has motivated the development of numerous alternative antimicrobials. Lysins are bacteriophage- and bacterium-derived peptidoglycan hydrolases that represent a new antibiotic treatment targeting bacterial cell walls. However, the bactericidal effect of native lysins on Gram-negative bacteria is restricted by the presence of an outer membrane. Here, we first evaluated the antibacterial activity of three Campylobacter-derived lysins (Clysins) against E. coli. To improve their transmembrane ability and antibacterial activities, six engineered Clysins were constructed by fusing with the translocation and receptor-binding (TRB) domains from two types of colicins (colicin A [TRBA] and colicin K [TRBK]), and their biological activities were determined. Notably, engineered lysin TRBK-Cly02 exhibited the highest bactericidal activity against the E. coli BL21 strain, with a reduction of 6.22 ± 0.34 log units of cells at a concentration of 60.1 μg/mL, and formed an observable inhibition zone even at a dose of 6.01 μg. Moreover, TRBK-Cly02 killed E. coli dose dependently and exhibited the strongest bactericidal activity at pH 6. It also exhibited potential bioactivity against multidrug-resistant E. coli clinical isolates. In summary, this study identified three lysins from Campylobacter strains against E. coli, and the enhancement of their antibacterial activities by TRB domains fusion may allow them to be developed as potential alternatives to antibiotics. IMPORTANCE Three lysins from Campylobacter, namely, Clysins, were investigated, and their antibacterial activities against E. coli were determined for the first time. To overcome the restriction of the outer membrane of Gram-negative bacteria, we combined the TRB domains of colicins with these Clysins. Moreover, we discovered that the Clysins fused with TRB domains from colicin K (TRBK) killed E. coli more effectively, and this provides a new foundation for the development of novel bioengineered lysins by employing TRBK constructs that target outer membrane receptor/transport systems. One of the designed lysins, TRBK-Cly02, exhibited potent bactericidal efficacy against E. coli strains and may be used for control of multidrug-resistant clinical isolates. The results suggest that TRBK-Cly02 can be considered a potential antibacterial agent against pathogenic E. coli.
Collapse
Affiliation(s)
- Peiqi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinying Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianmei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiuqin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinfei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zheng Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yizhen Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
19
|
Harhala MA, Gembara K, Nelson DC, Miernikiewicz P, Dąbrowska K. Immunogenicity of Endolysin PlyC. Antibiotics (Basel) 2022; 11:966. [PMID: 35884219 PMCID: PMC9312349 DOI: 10.3390/antibiotics11070966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Endolysins are bacteriolytic enzymes derived from bacteriophages. They represent an alternative to antibiotics, since they are not susceptible to conventional antimicrobial resistance mechanisms. Since non-human proteins are efficient inducers of specific immune responses, including the IgG response or the development of an allergic response mediated by IgE, we evaluated the general immunogenicity of the highly active antibacterial enzyme, PlyC, in a human population and in a mouse model. The study includes the identification of molecular epitopes of PlyC. The overall assessment of potential hypersensitivity to this protein and PlyC-specific IgE testing was also conducted in mice. PlyC induced efficient IgG production in mice, and the molecular analysis revealed that PlyC-specific IgG interacted with four immunogenic regions identified within the PlyCA subunit. In humans, approximately 10% of the population demonstrated IgG reactivity to the PlyCB subunit only, which is attributed to cross-reactions since this was a naïve serum. Of note, in spite of being immunogenic, PlyC induced a normal immune response, without hypersensitivity, since both the animals challenged with PlyC and in the human population PlyC-specific IgE was not detected.
Collapse
Affiliation(s)
- Marek Adam Harhala
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.A.H.); (K.G.); (P.M.)
- Research & Development Center, Regional Specialist Hospital, 53-114 Wroclaw, Poland
| | - Katarzyna Gembara
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.A.H.); (K.G.); (P.M.)
- Research & Development Center, Regional Specialist Hospital, 53-114 Wroclaw, Poland
| | - Daniel C. Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20853, USA;
| | - Paulina Miernikiewicz
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.A.H.); (K.G.); (P.M.)
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.A.H.); (K.G.); (P.M.)
- Research & Development Center, Regional Specialist Hospital, 53-114 Wroclaw, Poland
| |
Collapse
|
20
|
Weller J, Vasudevan P, Kreikemeyer B, Ekat K, Jackszis M, Springer A, Chatzivasileiou K, Lang H. The role of bacterial corrosion on recolonization of titanium implant surfaces: An in vitro study. Clin Implant Dent Relat Res 2022; 24:664-675. [PMID: 35709098 DOI: 10.1111/cid.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inflammation triggered by bacterial biofilms in the surrounding tissue is a major etiological factor for peri-implantitis and subsequent implant failure. However, little is known about the direct effects of bacterial corrosion and recolonization on implant failure PURPOSE: To investigate the influence of oral commensals on bacterial corrosion and recolonization of titanium surfaces. MATERIALS AND METHODS Streptococcus sanguinis (S. sanguinis) and Porphyromonas gingivalis (P. gingivalis), which are key bacteria in oral biofilm formation, were cultured on commercially pure titanium and titanium-aluminum-vanadium (Ti6Al4V) plates in artificial saliva/brain heart infusion medium under aerobic or anaerobic conditions. Biofilm formation was examined after 7 and 21 days by crystal violet and live/dead staining. Titanium ions released into culture supernatants were analyzed over a period of 21 days by atomic absorption spectrometry. Visual changes in surface morphology were investigated using scanning electron microscopy. Biofilm formation on sterilized, biocorroded, and recolonized implant surfaces was determined by crystal violet staining. RESULTS S. sanguinis and P. gingivalis formed stable biofilms on the titanium samples. Bacterial corrosion led to a significant increase in titanium ion release from these titanium plates (p < 0.01), which was significantly higher under aerobic conditions on pure titanium (p ≤ 0.001). No obvious morphological surface changes, such as pitting and discoloration, were detected in the titanium samples. During early biofilm formation, the addition of titanium ions significantly decreased the number of live cells. In contrast, a significant effect on biofilm mass was only detected with P. gingivalis. Bacterial corrosion had no influence on bacterial recolonization following sterilization of titanium and Ti6Al4V surfaces. CONCLUSION Bacterial corrosion differs between oral commensal bacteria and leads to increased titanium ion release from titanium plates. The titanium ion release did not influence biofilm formation or bacterial recolonization under in vitro conditions.
Collapse
Affiliation(s)
- Julia Weller
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Katharina Ekat
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Mario Jackszis
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, Medical Faculty, University of Rostock, Rostock, Germany
| | - Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
21
|
Visnapuu A, Van der Gucht M, Wagemans J, Lavigne R. Deconstructing the Phage-Bacterial Biofilm Interaction as a Basis to Establish New Antibiofilm Strategies. Viruses 2022; 14:v14051057. [PMID: 35632801 PMCID: PMC9145820 DOI: 10.3390/v14051057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
The bacterial biofilm constitutes a complex environment that endows the bacterial community within with an ability to cope with biotic and abiotic stresses. Considering the interaction with bacterial viruses, these biofilms contain intrinsic defense mechanisms that protect against phage predation; these mechanisms are driven by physical, structural, and metabolic properties or governed by environment-induced mutations and bacterial diversity. In this regard, horizontal gene transfer can also be a driver of biofilm diversity and some (pro)phages can function as temporary allies in biofilm development. Conversely, as bacterial predators, phages have developed counter mechanisms to overcome the biofilm barrier. We highlight how these natural systems have previously inspired new antibiofilm design strategies, e.g., by utilizing exopolysaccharide degrading enzymes and peptidoglycan hydrolases. Next, we propose new potential approaches including phage-encoded DNases to target extracellular DNA, as well as phage-mediated inhibitors of cellular communication; these examples illustrate the relevance and importance of research aiming to elucidate novel antibiofilm mechanisms contained within the vast set of unknown ORFs from phages.
Collapse
|
22
|
Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit Rev Food Sci Nutr 2022; 63:8919-8938. [PMID: 35400249 DOI: 10.1080/10408398.2022.2059442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in modern technologies, various foodborne outbreaks have continuously threatened the food safety. The overuse of and abuse/misuse of antibiotics have escalated this threat due to the prevalence of multidrug-resistant (MDR) pathogens. Therefore, the development of new methodologies for controlling microbial contamination is extremely important to ensure the food safety. As an alternative to antibiotics, bacteriophages(phages) and derived endolysins have been proposed as novel, effective, and safe antimicrobial agents and applied for the prevention and/or eradication of bacterial contaminants even in foods and food processing facilities. In this review, we describe recent genetic and protein engineering tools for phages and endolysins. The major aim of engineering is to overcome limitations such as a narrow host range, low antimicrobial activity, and low stability of phages and endolysins. Phage engineering also aims to deter the emergence of phage resistance. In the case of endolysin engineering, enhanced antibacterial ability against Gram-negative and Gram-positive bacteria is another important goal. Here, we summarize the successful studies of phages and endolysins treatment in different types of food. Moreover, this review highlights the recent advances in engineering techniques for phages and endolysins, discusses existing challenges, and suggests technical opportunities for further development, especially in terms of antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hyeongsoon Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Kaushik S, Yadav J, Das S, Karthikeyan D, Chug R, Jyoti A, Srivastava VK, Jain A, Kumar S, Sharma V. Identification of Protein Drug Targets of Biofilm Formation and Quorum
Sensing in Multidrug Resistant Enterococcus faecalis. Curr Protein Pept Sci 2022; 23:248-263. [DOI: 10.2174/1389203723666220526155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/16/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Enterococcus faecalis (E. faecalis) is an opportunistic multidrug-resistant (MDR) pathogen
found in the guts of humans and farmed animals. Due to the occurrence of (MDR) strain there is an
urgent need to look for an alternative treatment approach. E. faecalis is a Gram-positive bacterium,
which is among the most prevalent multidrug resistant hospital pathogens. Its ability to develop quorum
sensing (QS) mediated biofilm formation further exacerbates the pathogenicity and triggers lifethreatening
infections. Therefore, developing a suitable remedy for curing E. faecalis mediated enterococcal
infections is an arduous task. Several putative virulence factors and proteins are involved in the
development of biofilms in E. faecalis. Such proteins often play important roles in virulence, disease,
and colonization by pathogens. The elucidation of the structure-function relationship of such protein
drug targets and the interacting compounds could provide an attractive paradigm towards developing
structure-based drugs against E. faecalis. This review provides a comprehensive overview of the current
status, enigmas that warrant further studies, and the prospects toward alleviating the antibiotic resistance
in E. faecalis. Specifically, the role of biofilm and quorum sensing (QS) in the emergence of
MDR strains had been elaborated along with the importance of the protein drug targets involved in both
the processes.
Collapse
Affiliation(s)
- Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- Structural Biology Lab, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Ravneet Chug
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology,
Chandigarh University, Chandigarh, India
| | | | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, VIT
University, Vellore-632014, Tamil Nadu, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
24
|
Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022; 11:pathogens11030292. [PMID: 35335616 PMCID: PMC8955104 DOI: 10.3390/pathogens11030292] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are intricate bacterial assemblages that attach to diverse surfaces using an extracellular polymeric substance that protects them from the host immune system and conventional antibiotics. Biofilms cause chronic infections that result in millions of deaths around the world every year. Since the antibiotic tolerance mechanism in biofilm is different than that of the planktonic cells due to its multicellular structure, the currently available antibiotics are inadequate to treat biofilm-associated infections which have led to an immense need to find newer treatment options. Over the years, various novel antibiofilm compounds able to fight biofilms have been discovered. In this review, we have focused on the recent and intensively researched therapeutic techniques and antibiofilm agents used for biofilm treatment and grouped them according to their type and mode of action. We also discuss some therapeutic approaches that have the potential for future advancement.
Collapse
|
25
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
26
|
Amankwah S, Abdella K, Kassa T. Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents. Nanotechnol Sci Appl 2021; 14:161-177. [PMID: 34548785 PMCID: PMC8449863 DOI: 10.2147/nsa.s325594] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms are bacterial communities that live in association with biotic or abiotic surfaces and enclosed in an extracellular polymeric substance. Their formation on both biotic and abiotic surfaces, including human tissue and medical device surfaces, pose a major threat causing chronic infections. In addition, current antibiotics and antiseptic agents have shown limited ability to completely remove biofilms. In this review, the authors provide an overview on the formation of bacterial biofilms and its characteristics, burden and evolution with phages. Moreover, the most recent possible use of phages and phage-derived enzymes to combat bacteria in biofilm structures is elucidated. From the emerging results, it can be concluded that despite successful use of phages and phage-derived products in destroying biofilms, they are mostly not adequate to eradicate all bacterial cells. Nevertheless, a combined therapy with the use of phages and/or phage-derived products with other antimicrobial agents including antibiotics, nanoparticles, and antimicrobial peptides may be effective approaches to remove biofilms from medical device surfaces and to treat their associated infections in humans.
Collapse
Affiliation(s)
- Stephen Amankwah
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Accra Medical Centre, Accra, Ghana
| | - Kedir Abdella
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tesfaye Kassa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
27
|
Potential for Phages in the Treatment of Bacterial Sexually Transmitted Infections. Antibiotics (Basel) 2021; 10:antibiotics10091030. [PMID: 34572612 PMCID: PMC8466579 DOI: 10.3390/antibiotics10091030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial sexually transmitted infections (BSTIs) are becoming increasingly significant with the approach of a post-antibiotic era. While treatment options dwindle, the transmission of many notable BSTIs, including Neisseria gonorrhoeae, Chlamydia trachomatis, and Treponema pallidum, continues to increase. Bacteriophage therapy has been utilized in Poland, Russia and Georgia in the treatment of bacterial illnesses, but not in the treatment of bacterial sexually transmitted infections. With the ever-increasing likelihood of antibiotic resistance prevailing and the continuous transmission of BSTIs, alternative treatments must be explored. This paper discusses the potentiality and practicality of phage therapy to treat BSTIs, including Neisseria gonorrhoeae, Chlamydia trachomatis, Treponema pallidum, Streptococcus agalactiae, Haemophilus ducreyi, Calymmatobacterium granulomatis, Mycoplasma genitalium, Ureaplasma parvum, Ureaplasma urealyticum, Shigella flexneri and Shigella sonnei. The challenges associated with the potential for phage in treatments vary for each bacterial sexually transmitted infection. Phage availability, bacterial structure and bacterial growth may impact the potential success of future phage treatments. Additional research is needed before BSTIs can be successfully clinically treated with phage therapy or phage-derived enzymes.
Collapse
|
28
|
Figueiredo CM, Malvezzi Karwowski MS, da Silva Ramos RCP, de Oliveira NS, Peña LC, Carneiro E, Freitas de Macedo RE, Rosa EAR. Bacteriophages as tools for biofilm biocontrol in different fields. BIOFOULING 2021; 37:689-709. [PMID: 34304662 DOI: 10.1080/08927014.2021.1955866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial biofilms are difficult to control due to the limited accessibility that antimicrobial drugs and chemicals have to the entrapped inner cells. The extracellular matrix, binds water, contributes to altered cell physiology within biofilms and act as a barrier for most antiproliferative molecules. Thus, new strategies need to be developed to overcome biofilm vitality. In this review, based on 223 documents, the advantages, recommendations, and limitations of using bacteriophages as 'biofilm predators' are presented. The plausibility of using phages (bacteriophages and mycoviruses) to control biofilms grown in different environments is also discussed. The topics covered here include recent historical experiences in biofilm control/eradication using phages in medicine, dentistry, veterinary, and food industries, the pros and cons of their use, and the development of microbial resistance/immunity to such viruses.
Collapse
Affiliation(s)
| | | | | | | | - Lorena Caroline Peña
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Everdan Carneiro
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Edvaldo Antonio Ribeiro Rosa
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Graduate Program in Animal Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
29
|
Lu Y, Wang Y, Wang J, Zhao Y, Zhong Q, Li G, Fu Z, Lu S. Phage Endolysin LysP108 Showed Promising Antibacterial Potential Against Methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:668430. [PMID: 33937105 PMCID: PMC8082462 DOI: 10.3389/fcimb.2021.668430] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
As a potential antibacterial agent, endolysin can directly lyse Gram-positive bacteria from the outside and does not lead to drug resistance. Considering that XN108 is the first reported methicillin-resistant Staphylococcus aureus (MRSA) strain in mainland China with a vancomycin MIC that exceeds 8 µg mL-1, we conducted a systematic study on its phage-encoded endolysin LysP108. Standard plate counting method revealed that LysP108 could lyse S. aureus and Pseudomonas aeruginosa with damaged outer membrane, resulting in a significant reduction in the number of live bacteria. Scanning electron microscopy results showed that S. aureus cells could be lysed directly from the outside by LysP108. Live/dead bacteria staining results indicated that LysP108 possessed strong bactericidal ability, with an anti-bacterial rate of approximately 90%. Crystal violet staining results implied that LysP108 could also inhibit and destroy bacterial biofilms. In vivo animal experiments suggested that the area of subcutaneous abscess of mice infected with MRSA was significantly reduced after the combined injection of LysP108 and vancomycin in comparison with monotherapy. The synergistic antibacterial effects of LysP108 and vancomycin were confirmed. Therefore, the present data strongly support the idea that endolysin LysP108 exhibits promising antibacterial potential to be used as a candidate for the treatment of infections caused by MRSA.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Yingran Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Clinical Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Gang Li
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Zhifeng Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| |
Collapse
|
30
|
Broendum SS, Williams DE, Hayes BK, Kraus F, Fodor J, Clifton BE, Geert Volbeda A, Codee JDC, Riley BT, Drinkwater N, Farrow KA, Tsyganov K, Heselpoth RD, Nelson DC, Jackson CJ, Buckle AM, McGowan S. High avidity drives the interaction between the streptococcal C1 phage endolysin, PlyC, with the cell surface carbohydrates of Group A Streptococcus. Mol Microbiol 2021; 116:397-415. [PMID: 33756056 DOI: 10.1111/mmi.14719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
Endolysin enzymes from bacteriophage cause bacterial lysis by degrading the peptidoglycan cell wall. The streptococcal C1 phage endolysin PlyC, is the most potent endolysin described to date and can rapidly lyse group A, C, and E streptococci. PlyC is known to bind the Group A streptococcal cell wall, but the specific molecular target or the binding site within PlyC remain uncharacterized. Here we report for the first time, that the polyrhamnose backbone of the Group A streptococcal cell wall is the binding target of PlyC. We have also characterized the putative rhamnose binding groove of PlyC and found four key residues that were critical to either the folding or the cell wall binding action of PlyC. Based on our results, we suggest that the interaction between PlyC and the cell wall may not be a high-affinity interaction as previously proposed, but rather a high avidity one, allowing for PlyC's remarkable lytic activity. Resistance to our current antibiotics is reaching crisis levels and there is an urgent need to develop the antibacterial agents with new modes of action. A detailed understanding of this potent endolysin may facilitate future developments of PlyC as a tool against the rise of antibiotic resistance.
Collapse
Affiliation(s)
- Sebastian S Broendum
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia.,Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Daniel E Williams
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Brooke K Hayes
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Felix Kraus
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - James Fodor
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.,Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ben E Clifton
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Anne Geert Volbeda
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codee
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Blake T Riley
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.,Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA
| | - Nyssa Drinkwater
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Kylie A Farrow
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Kirill Tsyganov
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Ryan D Heselpoth
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, MD, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, MD, USA
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Azeredo J, García P, Drulis-Kawa Z. Targeting biofilms using phages and their enzymes. Curr Opin Biotechnol 2021; 68:251-261. [PMID: 33714050 DOI: 10.1016/j.copbio.2021.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
The complex biofilm architecture composed of extracellular polymeric structures (EPS) provides a protective shield to physiologically diverse bacterial cells immersed in its structure. The evolutionary interplay between bacteria and their viruses (phages) forced the latter ones to develop specific strategies to overcome the biofilm defensive barriers and kill sessile cells. Phages are equipped with a wide panel of enzyme-degrading EPS macromolecules which together are powerful weapons to combat biofilms. Antibiofilm performance can be achieved by combining phages or phage-borne enzymes with other antimicrobials such as antibiotics. Nevertheless, a variety of enzymes encoded in phage genomes still need to be explored. To advance in biofilm control strategies we must deepen the understanding of the biofilm biology itself, as well as discover and better exploit the unlimited antibacterial potential of phages.
Collapse
Affiliation(s)
- Joana Azeredo
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares sn. 33300, Villaviciosa, Asturias, Spain.
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
32
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
33
|
Deciphering Streptococcal Biofilms. Microorganisms 2020; 8:microorganisms8111835. [PMID: 33233415 PMCID: PMC7700319 DOI: 10.3390/microorganisms8111835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.
Collapse
|
34
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
35
|
Grishin AV, Karyagina AS, Vasina DV, Vasina IV, Gushchin VA, Lunin VG. Resistance to peptidoglycan-degrading enzymes. Crit Rev Microbiol 2020; 46:703-726. [PMID: 32985279 DOI: 10.1080/1040841x.2020.1825333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.
Collapse
Affiliation(s)
- Alexander V Grishin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Karyagina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Daria V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir G Lunin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Yuan Y, Li X, Wang L, Li G, Cong C, Li R, Cui H, Murtaza B, Xu Y. The endolysin of the Acinetobacter baumannii phage vB_AbaP_D2 shows broad antibacterial activity. Microb Biotechnol 2020; 14:403-418. [PMID: 32519416 PMCID: PMC7936296 DOI: 10.1111/1751-7915.13594] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
The emergence and rapid spread of multidrug‐resistant bacteria has induced intense research for novel therapeutic approaches. In this study, the Acinetobacter baumannii bacteriophage D2 (vB_AbaP_D2) was isolated, characterized and sequenced. The endolysin of bacteriophage D2, namely Abtn‐4, contains an amphipathic helix and was found to have activity against multidrug‐resistant Gram‐negative strains. By more than 3 log units, A. baumannii were killed by Abtn‐4 (5 µM) in 2 h. In absence of outer membrane permeabilizers, Abtn‐4 exhibited broad antimicrobial activity against several Gram‐positive and Gram‐negative bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterococcus and Salmonella. Furthermore, Abtn‐4 had the ability to reduce biofilm formation. Interestingly, Abtn‐4 showed antimicrobial activity against phage‐resistant bacterial mutants. Based on these results, endolysin Abtn‐4 may be a promising candidate therapeutic agent for multidrug‐resistant bacterial infections.
Collapse
Affiliation(s)
- Yuyu Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Cong Cong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruihua Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Huijing Cui
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ministry of Education Center for Food Safety of Animal Origin, Dalian, China
| |
Collapse
|
37
|
Bacteriophage-Derived Endolysins Applied as Potent Biocontrol Agents to Enhance Food Safety. Microorganisms 2020; 8:microorganisms8050724. [PMID: 32413991 PMCID: PMC7285104 DOI: 10.3390/microorganisms8050724] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/04/2023] Open
Abstract
Endolysins, bacteriophage-encoded enzymes, have emerged as antibacterial agents that can be actively applied in food processing systems as food preservatives to control pathogens and ultimately enhance food safety. Endolysins break down bacterial peptidoglycan structures at the terminal step of the phage reproduction cycle to enable phage progeny release. In particular, endolysin treatment is a novel strategy for controlling antibiotic-resistant bacteria, which are a severe and increasingly frequent problem in the food industry. In addition, endolysins can eliminate biofilms on the surfaces of utensils. Furthermore, the cell wall-binding domain of endolysins can be used as a tool for rapidly detecting pathogens. Research to extend the use of endolysins toward Gram-negative bacteria is now being extensively conducted. This review summarizes the trends in endolysin research to date and discusses the future applications of these enzymes as novel food preservation tools in the field of food safety.
Collapse
|
38
|
Fang K, Park OJ, Hong SH. Controlling biofilms using synthetic biology approaches. Biotechnol Adv 2020; 40:107518. [PMID: 31953206 PMCID: PMC7125041 DOI: 10.1016/j.biotechadv.2020.107518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022]
Abstract
Bacterial biofilms are formed by the complex but ordered regulation of intra- or inter-cellular communication, environmentally responsive gene expression, and secretion of extracellular polymeric substances. Given the robust nature of biofilms due to the non-growing nature of biofilm bacteria and the physical barrier provided by the extracellular matrix, eradicating biofilms is a very difficult task to accomplish with conventional antibiotic or disinfectant treatments. Synthetic biology holds substantial promise for controlling biofilms by improving and expanding existing biological tools, introducing novel functions to the system, and re-conceptualizing gene regulation. This review summarizes synthetic biology approaches used to eradicate biofilms via protein engineering of biofilm-related enzymes, utilization of synthetic genetic circuits, and the development of functional living agents. Synthetic biology also enables beneficial applications of biofilms through the production of biomaterials and patterning biofilms with specific temporal and spatial structures. Advances in synthetic biology will add novel biofilm functionalities for future therapeutic, biomanufacturing, and environmental applications.
Collapse
Affiliation(s)
- Kuili Fang
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Oh-Jin Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA; Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
39
|
Strategies to Combat Multidrug-Resistant and Persistent Infectious Diseases. Antibiotics (Basel) 2020; 9:antibiotics9020065. [PMID: 32041137 PMCID: PMC7168131 DOI: 10.3390/antibiotics9020065] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/16/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic failure is one of the most worrying health problems worldwide. We are currently facing an international crisis with several problematic facets: new antibiotics are no longer being discovered, resistance mechanisms are occurring in almost all clinical isolates of bacteria, and recurrent infections caused by persistent bacteria are hampering the successful treatment of infections. In this context, new anti-infectious strategies against multidrug-resistant (MDR) and persistent bacteria, as well as the rescue of Food and Drug Administration (FDA)-approved compounds (drug repurposing), are being explored. Among the highlighted new anti-infectious strategies, in this review, we focus on antimicrobial peptides, anti-virulence compounds, phage therapy, and new molecules. As drugs that are being repurposed, we highlight anti-inflammatory compounds, anti-psychotics, anti-helminthics, anti-cancerous drugs, and statins.
Collapse
|
40
|
Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents 2019; 55:105844. [PMID: 31715257 DOI: 10.1016/j.ijantimicag.2019.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Endolysins are the lytic products of bacteriophages which play a specific role in the release of phage progeny by degrading the peptidoglycan of the host bacterium. In the light of antibiotic resistance, endolysins are being considered as alternative therapeutic agents because of their exceptional ability to target bacterial cells when applied externally. Endolysins have been studied against a number of drug-resistant pathogens to assess their therapeutic ability. This review focuses on the structure of endolysins in terms of cell binding and catalytic domains, lytic ability, resistance, safety, immunogenicity and future applications. It primarily reviews recent advancements made in evaluation of the therapeutic potential of endolysins, including their origin, host range, applications, and synergy with conventional and non-conventional antimicrobial agents.
Collapse
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
41
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Streptococcus pyogenes Capsule Promotes Microcolony-Independent Biofilm Formation. J Bacteriol 2019; 201:JB.00052-19. [PMID: 31085695 PMCID: PMC6707922 DOI: 10.1128/jb.00052-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
Biofilms play an important role in the pathogenesis of group A streptococcus (GAS), a Gram-positive pathogen responsible for a wide range of infections and with a significant public health impact. Although most GAS serotypes are able to form biofilms, there is a large amount of heterogeneity between individual strains in biofilm formation, as measured by standard crystal violet assays. It is generally accepted that biofilm formation includes the initial adhesion of bacterial cells to a surface followed by microcolony formation, biofilm maturation, and extensive production of extracellular matrix that links together proliferating cells and provides a scaffold for the three-dimensional (3D) biofilm structure. However, our studies show that for GAS strain JS95, microcolony formation is not an essential step in static biofilm formation, and instead, biofilm can be effectively formed from slow-growing or nonreplicating late-exponential- or early-stationary-phase planktonic cells via sedimentation and fixation of GAS chains. In addition, we show that the GAS capsule specifically contributes to the alternative sedimentation-initiated biofilms. Microcolony-independent sedimentation biofilms are similar in morphology and 3D structure to biofilms initiated by actively dividing planktonic bacteria. We conclude that GAS can form biofilms by an alternate noncanonical mechanism that does not require transition from microcolony formation to biofilm maturation and which may be obscured by biofilm phenotypes that arise via the classical biofilm maturation processes.IMPORTANCE The static biofilm assay is a common tool for easy biomass quantification of biofilm-forming bacteria. However, Streptococcus pyogenes biofilm formation as measured by the static assay is strain dependent and yields heterogeneous results for different strains of the same serotype. In this study, we show that two independent mechanisms, for which the protective capsule contributes opposing functions, may contribute to static biofilm formation. We propose that separation of these mechanisms for biofilm formation might uncover previously unappreciated biofilm phenotypes that may otherwise be masked in the classic static assay.
Collapse
|
43
|
Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb Drug Resist 2019; 25:890-908. [DOI: 10.1089/mdr.2018.0319] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
44
|
Complete Genome Sequence of Hypervirulent Streptococcus pyogenes emm3 Strain 1838. Microbiol Resour Announc 2019; 8:MRA01494-18. [PMID: 30643894 PMCID: PMC6328667 DOI: 10.1128/mra.01494-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence for Streptococcus pyogenes strain 1838 (type emm3) isolated from a patient with toxic shock syndrome. The strain lacked the speK- and sla-encoding prophage frequently encountered among emm3 strains and possessed an Arg66His mutation in CovR of the 2-component virulence regulatory system CovRS.
Collapse
|
45
|
Vázquez R, García E, García P. Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials. Front Immunol 2018; 9:2252. [PMID: 30459750 PMCID: PMC6232686 DOI: 10.3389/fimmu.2018.02252] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Lower respiratory tract infections and tuberculosis are responsible for the death of about 4.5 million people each year and are the main causes of mortality in children under 5 years of age. Streptococcus pneumoniae is the most common bacterial pathogen associated with severe pneumonia, although other Gram-positive and Gram-negative bacteria are involved in respiratory infections as well. The ability of these pathogens to persist and produce infection under the appropriate conditions is also associated with their capacity to form biofilms in the respiratory mucous membranes. Adding to the difficulty of treating biofilm-forming bacteria with antibiotics, many of these strains are becoming multidrug resistant, and thus the alternative therapeutics available for combating this kind of infections are rapidly depleting. Given these concerns, it is urgent to consider other unconventional strategies and, in this regard, phage lysins represent an attractive resource to circumvent some of the current issues in infection treatment. When added exogenously, lysins break specific bonds of the peptidoglycan and have potent bactericidal effects against susceptible bacteria. These enzymes possess interesting features, including that they do not trigger an adverse immune response and raise of resistance is very unlikely. Although Gram-negative bacteria had been considered refractory to these compounds, strategies to overcome this drawback have been developed recently. In this review we describe the most relevant in vitro and in vivo results obtained to date with lysins against bacterial respiratory pathogens.
Collapse
Affiliation(s)
- Roberto Vázquez
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
46
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 766] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
47
|
Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. MATERIALS 2018; 11:ma11091676. [PMID: 30201944 PMCID: PMC6163278 DOI: 10.3390/ma11091676] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Biofilm formation in healthcare is an issue of considerable concern, as it results in increased morbidity and mortality, imposing a significant financial burden on the healthcare system. Biofilms are highly resistant to conventional antimicrobial therapies and lead to persistent infections. Hence, there is a high demand for novel strategies other than conventional antibiotic therapies to control biofilm-based infections. There are two approaches which have been employed so far to control biofilm formation in healthcare settings: one is the development of biofilm inhibitors based on the understanding of the molecular mechanism of biofilm formation, and the other is to modify the biomaterials which are used in medical devices to prevent biofilm formation. This review will focus on the recent advances in anti-biofilm approaches by interrupting the quorum-sensing cellular communication system and the multidrug efflux pumps which play an important role in biofilm formation. Research efforts directed towards these promising strategies could eventually lead to the development of better anti-biofilm therapies than the conventional treatments.
Collapse
|
48
|
Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res 2018; 212-213:38-58. [DOI: 10.1016/j.micres.2018.04.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
|
49
|
Scholte C, Nelson D, Garcia M, Linden S, Elsasser T, Kahl S, Qu Y, Moyes K. Short communication: Recombinant bacteriophage endolysin PlyC is nontoxic and does not alter blood neutrophil oxidative response in lactating dairy cows. J Dairy Sci 2018; 101:6419-6423. [DOI: 10.3168/jds.2017-13908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/13/2018] [Indexed: 01/03/2023]
|
50
|
Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses 2018; 10:v10060292. [PMID: 29844287 PMCID: PMC6024856 DOI: 10.3390/v10060292] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023] Open
Abstract
Peptidoglycan degrading enzymes are of increasing interest as antibacterial agents, especially against multi-drug resistant pathogens. Herein we present a review about the biological features of virion-associated lysins and endolysins, phage-derived enzymes that have naturally evolved to compromise the bacterial peptidoglycan from without and from within, respectively. These natural features may determine the adaptability of the enzymes to kill bacteria in different environments. Endolysins are by far the most studied group of peptidoglycan-degrading enzymes, with several studies showing that they can exhibit potent antibacterial activity under specific conditions. However, the lytic activity of most endolysins seems to be significantly reduced when tested against actively growing bacteria, something that may be related to fact that these enzymes are naturally designed to degrade the peptidoglycan from within dead cells. This may negatively impact the efficacy of the endolysin in treating some infections in vivo. Here, we present a critical view of the methods commonly used to evaluate in vitro and in vivo the antibacterial performance of PG-degrading enzymes, focusing on the major hurdles concerning in vitro-to-in vivo translation.
Collapse
|