1
|
Nageeb WM, AlHarbi N, Alrehaili AA, Zakai SA, Elfadadny A, Hetta HF. Global genomic epidemiology of chromosomally mediated non-enzymatic carbapenem resistance in Acinetobacter baumannii: on the way to predict and modify resistance. Front Microbiol 2023; 14:1271733. [PMID: 37869654 PMCID: PMC10587612 DOI: 10.3389/fmicb.2023.1271733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Although carbapenemases are frequently reported in resistant A. baumannii clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria. Methods A total of 980 whole genome sequences of A. baumannii were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango. Results Exhibiting the highest detection rate, AdeB codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the AdeB-predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of AdeC Q239L and AdeS D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance. Conclusion The study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in A. baumannii, shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements.
Collapse
Affiliation(s)
- Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nada AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Harmer CJ, Nigro SJ, Hall RM. Acinetobacter baumannii GC2 Sublineage Carrying the aac( 6')- Im Amikacin, Netilmicin, and Tobramycin Resistance Gene Cassette. Microbiol Spectr 2023; 11:e0120423. [PMID: 37409961 PMCID: PMC10434200 DOI: 10.1128/spectrum.01204-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
The aminoglycoside antibiotics amikacin, gentamicin, and tobramycin are important therapeutic options for Acinetobacter iinfections. Several genes that confer resistance to one or more of these antibiotics are prevalent in the globally distributed resistant clones of Acinetobacter baumannii, but the aac(6')-Im (aacA16) gene (amikacin, netilmicin, and tobramycin resistance), first reported in isolates from South Korea, has rarely been reported since. In this study, GC2 isolates (1999 to 2002) from Brisbane, Australia, carrying aac(6')-Im and belonging to the ST2:ST423:KL6:OCL1 type were identified and sequenced. The aac(6')-Im gene and surrounds have been incorporated into one end of the IS26-bounded AbGRI2 antibiotic resistance island and are accompanied by a characteristic 70.3-kbp deletion of adjacent chromosome. The compete genome of the 1999 isolate F46 (RBH46) includes only two copies of ISAba1 (in AbGRI1-3 and upstream of ampC) but later isolates, which differ from one another by <10 single nucleotide differences (SND), carry two to seven additional shared copies. Several complete GC2 genomes with aac(6')-Im in an AbGRI2 island (2004 to 2017; several countries) found in GenBank and two additional Australian A. baumannii isolates (2006) carry different gene sets, KL2, KL9, KL40, or KL52, at the capsule locus. These genomes include ISAba1 copies in a different set of shared locations. The distribution of SND between F46 and AYP-A2, a 2013 ST2:ST208:KL2:OCL1 isolate from Victoria, Australia, revealed that a 640-kbp segment that includes KL2 and the AbGRI1 resistance island replaces the corresponding region in F46. Over 1,000 A. baumannii draft genomes also include aac(6')-Im, indicating that it is currently globally disseminated and significantly underreported. IMPORTANCE Aminoglycosides are important therapeutic options for treatment of Acinetobacter infections. Here, we show that a little-known aminoglycoside resistance gene, aac(6')-Im (aacA16), that confers amikacin, netilmicin, and tobramycin resistance has been circulating undetected for many years in a sublineage of A. baumannii global clone 2 (GC2), generally with a second aminoglycoside resistance gene, aacC1, which confers resistance to gentamicin. These two genes are commonly found together in GC2 complete and draft genomes and globally distributed. One isolate appears to be ancestral, as its genome contains few ISAba1 copies, providing insight into the original source of this insertion sequence (IS), which is abundant in most GC2 isolates. Tracking ISAba1 spread can provide a simple means to track the development and ongoing evolution as well as the dissemination of specific lineages and detect the formation of many sublineages. The complete ancestral genome will provide an essential base point for tracking this process.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Steven J. Nigro
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Lee CH, Lee JH, Lee JY, Cui CH, Cho BK, Kim SC. Novel Split Intein-Mediated Enzymatic Channeling Accelerates the Multimeric Bioconversion Pathway of Ginsenoside. ACS Synth Biol 2022; 11:3296-3304. [PMID: 36150110 DOI: 10.1021/acssynbio.2c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cascade reaction systems, such as protein fusion and synthetic protein scaffold systems, can both spatially control the metabolic flux and boost the productivity of multistep enzymatic reactions. Despite many efforts to generate fusion proteins, this task remains challenging due to the limited expression of complex enzymes. Therefore, we developed a novel fusion system that bypasses the limited expression of complex enzymes via a post-translational linkage. Here, we report a split intein-mediated cascade system wherein orthogonal split inteins serve as adapters for protein ligation. A genetically programmable, self-assembled, and traceless split intein was utilized to generate a biocatalytic cascade to produce the ginsenoside compound K (CK) with various pharmacological activities, including anticarcinogenic, anti-inflammatory, and antidiabetic effects. We used two types of split inteins, consensus atypical (Cat) and Rma DnaB, to form a covalent scaffold with the three enzymes involved in the CK conversion pathway. The multienzymatic complex with a size greater than 240 kDa was successfully assembled in a soluble form and exhibited specific activity toward ginsenoside conversion. Furthermore, our split intein cascade system significantly increased the CK conversion rate and reduced the production time by more than 2-fold. Our multienzymatic cascade system that uses split inteins can be utilized as a platform for regulating multimeric bioconversion pathways and boosting the production of various high-value substances.
Collapse
Affiliation(s)
- Cho-Heun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jun-Hyoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Chang-Hao Cui
- Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
4
|
Dataset of single nucleotide polymorphisms and comprehensive proteomic analysis of Streptococcus equi subsp. equi ATCC 39506. Data Brief 2021; 38:107402. [PMID: 34621931 PMCID: PMC8479396 DOI: 10.1016/j.dib.2021.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
Streptococcus equi subspecies equi (S. equi) is an opportunistic pathogen and a major causative agent of equine strangles, a contagious respiratory infection in horses and other equines. In this study, we provide the dataset associated with our research publication “Streptococcus equi-derived extracellular vesicles as a vaccine candidate against Streptococcus equi infections” [1]. We describe the genomic differences between S. equi 4047 and S. equi ATCC 39506 and outline the comprehensive proteome information of various fractions, including the whole cell lysate, membrane proteome, secretory proteome, and extracellular vesicle proteome. In addition, we included a dataset of highly immunoreactive proteins identified through immunoprecipitation. The specifications table provides a detailed summary of the gene annotation and quantitative information obtained for each proteome. The proteomics data were analyzed using shotgun proteomics with LTQ Velos and Q Exactive mass spectrometry in the data-dependent acquisition mode. We have deposited the acquired data, including the mass spectrometry raw files and exported MASCOT search results, in the PRIDE public repository under the accession numbers PXD025152 and PXD025527.
Collapse
|
5
|
Streptococcus equi-derived extracellular vesicles as a vaccine candidate against Streptococcus equi infection. Vet Microbiol 2021; 259:109165. [PMID: 34225054 DOI: 10.1016/j.vetmic.2021.109165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Streptococcus equi subspecies equi is a pathogenic bacterium that causes strangles, a highly contagious respiratory infection in horses and other equines. The limitations of current vaccines against S. equi infection warrants the development of an affordable, safe, and effective vaccine. Because gram-positive extracellular vesicles (EVs) transport various immunogenic antigens, they are attractive vaccine candidates. Here, we purified the EVs of S. equi ATCC 39506 and evaluated them as a vaccine candidate against S. equi infection in mice. As an initial step, comparative proteomic analysis was performed to characterize the functional features of the EVs. Reverse vaccinology and knowledge-based annotations were then used to screen potential vaccine candidates (PVCs) for S. equi ATCC 39506. Finally, 32 PVCs were found to be enriched in the EV fraction, suggesting the usefulness of this fraction as a vaccine. Importantly, a significantly higher survival rate after S. equi infection was detected in mice immunized with S. equi-derived EVs via the intraperitoneal route than in mice immunized with heat-killed bacteria. Of note, immunoprecipitation-mass spectrometry results validated various immunogenic antigens within the EV proteome. In conclusion, our results suggest that S. equi-derived EVs can serve as a vaccine candidate against S. equi infection.
Collapse
|
6
|
Lee SY, Yun SH, Lee H, Yi YS, Park EC, Kim W, Kim HY, Lee JC, Kim GH, Kim SI. Analysis of the Extracellular Proteome of Colistin-Resistant Korean Acinetobacter baumannii Strains. ACS OMEGA 2020; 5:5713-5720. [PMID: 32226849 PMCID: PMC7097930 DOI: 10.1021/acsomega.9b03723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
We analyzed the extracellular proteome of colistin-resistant Korean Acinetobacter baumannii (KAB) strains to identify proteome profiles that can be used to characterize extensively drug-resistant KAB strains. Four colistin-resistant KAB strains with colistin resistance associated with point mutations in pmrB and pmrC genes were analyzed. Analysis of the extracellular proteome of these strains revealed the presence of 506 induced common proteins, which were hence considered as the core extracellular proteome. Class C ADC-30 and class D OXA-23 β-lactamases were abundantly induced in these strains. Porins (CarO and CarO-like porin), outer membrane proteins (OmpH and BamABDE), transport protein (AdeK), receptor (TonB), and several proteins of unknown function were among the specifically induced proteins. Based on the sequence homology analysis of proteins from the core proteome and those of other A. baumannii strains and pathogenic bacterial species as well as further in silico screening, we propose that CarO-like porin is an A. baumannii-specific protein and that two tryptic peptides that originate from CarO-like porin detected by tandem mass spectrometry are peptide makers of this protein.
Collapse
Affiliation(s)
- Sang-Yeop Lee
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Ochang 28119, Korea
- Center
for Convegent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sung Ho Yun
- Center
for Research Equipment, Korea Basic Science
Institute, Ochang 28119, Korea
| | - Hayoung Lee
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Ochang 28119, Korea
- Department
of Bio-Analytical Science, University of
Science and Technology (UST), Daejeon 34113, Korea
| | - Yoon-Sun Yi
- Center
for Research Equipment, Korea Basic Science
Institute, Ochang 28119, Korea
| | - Edmond Changkyun Park
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Ochang 28119, Korea
- Center
for Convegent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department
of Bio-Analytical Science, University of
Science and Technology (UST), Daejeon 34113, Korea
| | - Wooyoung Kim
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Ochang 28119, Korea
- Center
for Convegent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department
of Toxicology, College of Pharmacy, Chungnam
National University, Daejeon 34134, Korea
| | - Hye-Yeon Kim
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Ochang 28119, Korea
- Center
for Convegent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Je Chul Lee
- Department
of Microbiology, School of Medicine, Kyungpook
National University, Daegu 41944, Korea
| | - Gun-Hwa Kim
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Ochang 28119, Korea
- Department
of Bio-Analytical Science, University of
Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Il Kim
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Ochang 28119, Korea
- Center
for Convegent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Department
of Bio-Analytical Science, University of
Science and Technology (UST), Daejeon 34113, Korea
- E-mail: . Phone: +82-43-240-5422. Fax: +82-43-240-5416
| |
Collapse
|
7
|
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 11:2277-2299. [PMID: 30532562 PMCID: PMC6245380 DOI: 10.2147/idr.s169894] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of nosocomial infections due to its increased antibiotic resistance and virulence. The ability of A. baumannii to form biofilms contributes to its survival in adverse environmental conditions including hospital environments and medical devices. A. baumannii has undoubtedly propelled the interest of biomedical researchers due to its broad range of associated infections especially in hospital intensive care units. The interplay among microbial physicochemistry, alterations in the phenotype and genotypic determinants, and the impact of existing ecological niche and the chemistry of antimicrobial agents has led to enhanced biofilm formation resulting in limited access of drugs to their specific targets. Understanding the triggers to biofilm formation is a step towards limiting and containing biofilm-associated infections and development of biofilm-specific countermeasures. The present review therefore focused on explaining the impact of environmental factors, antimicrobial resistance, gene alteration and regulation, and the prevailing microbial ecology in A. baumannii biofilm formation and gives insights into prospective anti-infective treatments.
Collapse
Affiliation(s)
- Emmanuel C Eze
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| | - Hafizah Y Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| |
Collapse
|
8
|
Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202. Clin Proteomics 2018; 15:28. [PMID: 30186054 PMCID: PMC6118003 DOI: 10.1186/s12014-018-9204-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Outer membrane vesicles (OMVs) of Acinetobacter baumannii are cytotoxic and elicit a potent innate immune response. OMVs were first identified in A. baumannii DU202, an extensively drug-resistant clinical strain. Herein, we investigated protein components of A. baumannii DU202 OMVs following antibiotic treatment by proteogenomic analysis. Methods Purified OMVs from A. baumannii DU202 grown in different antibiotic culture conditions were screened for pathogenic and immunogenic effects, and subjected to quantitative proteomic analysis by one-dimensional electrophoresis and liquid chromatography combined with tandem mass spectrometry (1DE-LC-MS/MS). Protein components modulated by imipenem were identified and discussed. Results OMV secretion was increased > twofold following imipenem treatment, and cytotoxicity toward A549 human lung carcinoma cells was elevated. A total of 277 proteins were identified as components of OMVs by imipenem treatment, among which β-lactamase OXA-23, various proteases, outer membrane proteins, β-barrel assembly machine proteins, peptidyl-prolyl cis–trans isomerases and inherent prophage head subunit proteins were significantly upregulated. Conclusion In vitro stress such as antibiotic treatment can modulate proteome components in A. baumannii OMVs and thereby influence pathogenicity. Electronic supplementary material The online version of this article (10.1186/s12014-018-9204-2) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Lee SY, Oh MH, Yun SH, Choi CW, Park EC, Song HS, Lee H, Yi YS, Shin J, Chung C, Moon JY, Lee JC, Kim GH, Kim SI. Genomic characterization of extensively drug-resistant Acinetobacter baumannii strain, KAB03 belonging to ST451 from Korea. INFECTION GENETICS AND EVOLUTION 2018; 65:150-158. [PMID: 30053642 DOI: 10.1016/j.meegid.2018.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
Abstract
Extensively drug-resistant (XDR) Acinetobacter baumannii strains have emerged rapidly worldwide. The antibiotic resistance characteristics of XDR A. baumannii strains show regional differences; therefore, it is necessary to analyze both genomic and proteomic characteristics of emerging XDR A. baumannii clinical strains isolated in Korea to elucidate their multidrug resistance. Here, we isolated new sequence type of XDR A. baumannii clinical strain (KAB03) from Korean hospitals and performed comprehensive genome analyses. The strain belongs to new sequence type, ST451. Single nucleotide polymorphism (SNP) analysis with other types of A. baumannii strains revealed that KAB03 has unique SNP pattern in the regions of gyrB and gpi of MLST profiles. A. baumannii KAB03 harbours three antibiotic resistance islands (AbGRI1, 2, and 3). AbGRI1 harbours two copies of Tn2006 containing blaOXA-23, which play an important role in antibiotic resistance. AbGRI2 possesses aminoglycoside resistant gene aph(3')-Ic and class A β-lactamase blaTEM. AbGIR3 has macrolide resistant genes and aminoglycoside resistant gene armA. A. baumannii KAB03 harbours mutations in pmrB and pmrC, which are believed to confer colistin resistance. In addition, proteomic and transcriptional analysis of KAB03 confirmed that β-lactamases (ADC-73 and OXA-23), Ade efflux pumps (AdeIJK), outer membrane proteins (OmpA and OmpW), and colistin resistance genes (PmrCAB) were major proteins responsible for antibiotic resistance. Our proteogenomic results provide valuable information for multi-drug resistance in emerging XDR A. baumannii strains belonging to ST451.
Collapse
Affiliation(s)
- Sang-Yeop Lee
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 330-714, Republic of Korea
| | - Sung Ho Yun
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea
| | - Chi-Won Choi
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea; KBNP Technology Institute, KBNP, INC., Anyang 14059, Republic of Korea
| | - Edmond Changkyun Park
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyun Seok Song
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hayoung Lee
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yoon-Sun Yi
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea
| | - Juhyun Shin
- Department of Urology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Chaeuk Chung
- Department of Pulmonary and Critical Care Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jae Young Moon
- Department of Pulmonary and Critical Care Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Gun-Hwa Kim
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Seung Il Kim
- Drug & Disease Target Team, Korea Basic Science Institute, Ochang 28119, Republic of Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
10
|
Cecchini T, Yoon EJ, Charretier Y, Bardet C, Beaulieu C, Lacoux X, Docquier JD, Lemoine J, Courvalin P, Grillot-Courvalin C, Charrier JP. Deciphering Multifactorial Resistance Phenotypes in Acinetobacter baumannii by Genomics and Targeted Label-free Proteomics. Mol Cell Proteomics 2017; 17:442-456. [PMID: 29259044 DOI: 10.1074/mcp.ra117.000107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/22/2017] [Indexed: 12/19/2022] Open
Abstract
Resistance to β-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired β-lactamases (i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident β-lactamases (i.e. ADC and OXA-51-like) and six components of the two major efflux systems (i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to β-lactam with those of the production of acquired as well as resident β-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level.
Collapse
Affiliation(s)
- Tiphaine Cecchini
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Eun-Jeong Yoon
- ¶Institut Pasteur, Unité des Agents Antibactériens, Paris, France
| | - Yannick Charretier
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Chloé Bardet
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Corinne Beaulieu
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France
| | - Xavier Lacoux
- ‖R&D ImmunoAssays, bioMérieux SA, Marcy l'Etoile, France
| | | | - Jerome Lemoine
- §UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | | | | | - Jean-Philippe Charrier
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France;
| |
Collapse
|
11
|
Identification of antigens from nosocomial Acinetobacter baumannii clinical isolates in sera from ICU staff and infected patients using the antigenome technique. World J Microbiol Biotechnol 2017; 33:189. [DOI: 10.1007/s11274-017-2355-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
|
12
|
Fu S, Liu X, Luo M, Xie K, Nice EC, Zhang H, Huang C. Proteogenomic studies on cancer drug resistance: towards biomarker discovery and target identification. Expert Rev Proteomics 2017; 14:351-362. [PMID: 28276747 DOI: 10.1080/14789450.2017.1299006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Chemoresistance is a major obstacle for current cancer treatment. Proteogenomics is a powerful multi-omics research field that uses customized protein sequence databases generated by genomic and transcriptomic information to identify novel genes (e.g. noncoding, mutation and fusion genes) from mass spectrometry-based proteomic data. By identifying aberrations that are differentially expressed between tumor and normal pairs, this approach can also be applied to validate protein variants in cancer, which may reveal the response to drug treatment. Areas covered: In this review, we will present recent advances in proteogenomic investigations of cancer drug resistance with an emphasis on integrative proteogenomic pipelines and the biomarker discovery which contributes to achieving the goal of using precision/personalized medicine for cancer treatment. Expert commentary: The discovery and comprehensive understanding of potential biomarkers help identify the cohort of patients who may benefit from particular treatments, and will assist real-time clinical decision-making to maximize therapeutic efficacy and minimize adverse effects. With the development of MS-based proteomics and NGS-based sequencing, a growing number of proteogenomic tools are being developed specifically to investigate cancer drug resistance.
Collapse
Affiliation(s)
- Shuyue Fu
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Xiang Liu
- b Department of Pathology , Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital , Chengdu , P.R. China
| | - Maochao Luo
- c West China School of Public Health, Sichuan University , Chengdu , P.R.China
| | - Ke Xie
- d Department of Oncology , Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital , Chengdu , P.R. China
| | - Edouard C Nice
- e Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- f School of Medicine , Yangtze University , P. R. China
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| |
Collapse
|
13
|
Park AJ, Krieger JR, Khursigara CM. Survival proteomes: the emerging proteotype of antimicrobial resistance. FEMS Microbiol Rev 2016; 40:323-42. [PMID: 26790948 DOI: 10.1093/femsre/fuv051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is one of the greatest challenges in modern medicine. Infectious diseases that have historically been eliminated with routine antibiotic therapy are now re-emerging as life threatening illnesses. A better understanding of the specific mechanisms that contribute to resistance are required to optimize the treatment of infectious microorganisms and limit the survival of recalcitrant populations. This challenging area of research is made more problematic by the observation that multiple, overlapping, and/or compensatory resistance mechanism are often present within a single bacterial species. High-resolution proteomics has emerged as an effective tool to study antimicrobial resistance as it allows for the quantitative investigation of multiple systems concurrently. Furthermore, the ability to examine extracellular mechanisms of resistance and important post-translational modifications make this research tool well suited for the challenge. This review discusses how proteomics has contributed to the understanding of antimicrobial resistance and focuses on advances afforded by the more recent development of technologies that produce quantitative high-resolution proteomic information. We discuss current strategies for studying resistance, including comparative analysis of resistant and susceptible strains and protein-based responses to antimicrobial challenge. Lastly, we suggest specific experimental approaches aimed at advancing our understanding of protein-based resistance mechanisms and maximizing therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
14
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
15
|
Quantitative and Systems-Based Approaches for Deciphering Bacterial Membrane Interactome and Gene Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:135-54. [PMID: 26621466 DOI: 10.1007/978-3-319-23603-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-throughput genomic and proteomic methods provide a concise description of the molecular constituents of a cell, whereas systems biology strives to understand the way these components function as a whole. Recent developments, such as genome editing technologies and protein epitope-tagging coupled with high-sensitivity mass-spectrometry, allow systemic studies to be performed at an unprecedented scale. Available methods can be successfully applied to various goals, both expanding fundamental knowledge and solving applied problems. In this review, we discuss the present state and future of bacterial cell envelope interactomics, with a specific focus on host-pathogen interactions and drug target discovery. Both experimental and computational methods will be outlined together with examples of their practical implementation.
Collapse
|