1
|
Hong Tuan Ha AS, Mammeri A, Plainvert C, Charfi R, Poyart C, Tazi A, Mammeri H. Clinical emergence of a novel extended-spectrum variant deriving from the OXY-1 β-lactamase. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04922-8. [PMID: 39172287 DOI: 10.1007/s10096-024-04922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
The genomic comparison of two Klebsiella michiganensis clinical isolates recovered from the same patient, one resistant to piperacillin-tazobactam and intermediate to cefotaxime, the other resistant to ceftazidime but susceptible to piperacillin-tazobactam, revealed one mutation in the blaOXY-1-24 gene accounting for a L169M substitution in the Ω loop. Cloning experiment in Escherichia coli demonstrated the contribution of this mutation to the hydrolysis spectrum extension towards ceftazidime and cefepime, whereas the resistance to piperacillin-tazobactam was reduced. To the best of our knowledge, this study shows for the first time that ceftazidime resistance can occur in vivo from OXY-1 precursor by structural alteration.
Collapse
Affiliation(s)
- Anne-Sophie Hong Tuan Ha
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, 27 rue du Faubourg Saint-Jacques, Paris, 75014, France
| | - Alice Mammeri
- INSERM, CNRS, Institut Necker Enfants Malades, Université Paris Cité, , Paris, 75015, France
| | - Céline Plainvert
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, 27 rue du Faubourg Saint-Jacques, Paris, 75014, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris Cité, Paris, France
| | - Rym Charfi
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, 27 rue du Faubourg Saint-Jacques, Paris, 75014, France
| | - Claire Poyart
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, 27 rue du Faubourg Saint-Jacques, Paris, 75014, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris Cité, Paris, France
| | - Asmaa Tazi
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, 27 rue du Faubourg Saint-Jacques, Paris, 75014, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris Cité, Paris, France
| | - Hedi Mammeri
- Service de Bactériologie, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, 27 rue du Faubourg Saint-Jacques, Paris, 75014, France.
- INSERM, CNRS, Institut Necker Enfants Malades, Université Paris Cité, , Paris, 75015, France.
| |
Collapse
|
2
|
Xiang K, Zhang Z, Li N, Zhang P, Liu F, Li H, Duan H, Zhang C, Ge J. Whole-Genome Sequence and Pathogenicity Analysis of Providencia Heimbachae Causing Diarrhea in Weaned Piglets. Curr Microbiol 2023; 80:364. [PMID: 37812274 DOI: 10.1007/s00284-023-03478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Providencia heimbachae was previously identified in piglets with post-weaned diarrhea and associated with hindlimb paralysis. However, the pathogenic mechanisms and virulence factors of P. heimbachae are not fully known. Whole-genome sequence analysis will be helpful to extend our understanding of the characterization of P. heimbachae at a genomic level. In this study, we sequenced the whole genome of P. heimbachae for the first time using PacBio RS II sequencers and assembled de novo through hierarchical genome assembly process (HGAP). Furthermore, we performed further genome annotation. The genome of P. heimbachae 99101 consists of a circular chromosome (4,262,828 bp) and a circular plasmid (231,957 bp) with G + C contents of 40.43 and 47.16%, respectively. Genome-wide sequence analysis yielded a total of 286 predicted virulence factors, 178 resistance genes, 17 chaperone protein manipulators of fimbriae, 47 genes involved in the encoding of flagellin, 12 cell membrane-associated virulence genes, 18 Enterobacteriaceae common antigens, etc. Based on genome analysis, we preliminarily confirmed through animal experiments that the capsule was the virulence factor of P. heimbachae causing hindlimb paralysis in animals. Our study provides a genetic basis for further elucidation of the characteristics and functional mechanisms of P. heimbachae as a conditionally pathogenic bacterium, as well as a direction for research into the mechanism of action of P. heimbachae infecting humans, extending knowledge of P. heimbachae as an important zoonotic pathogen.
Collapse
Affiliation(s)
- Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuo Zhang
- Shenyang Animal Disease Prevention and Control Center, Shenyang, 110031, China
| | - Nuowa Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ping Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Feng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyuan Duan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
3
|
Sun J, Chikunova A, Boyle AL, Voskamp P, Timmer M, Ubbink M. Enhanced activity against a third-generation cephalosporin by destabilization of the active site of a class A beta-lactamase. Int J Biol Macromol 2023; 250:126160. [PMID: 37549761 DOI: 10.1016/j.ijbiomac.2023.126160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The β-lactamase BlaC conveys resistance to a broad spectrum of β-lactam antibiotics to its host Mycobacterium tuberculosis but poorly hydrolyzes third-generation cephalosporins, such as ceftazidime. Variants of other β-lactamases have been reported to gain activity against ceftazidime at the cost of the native activity. To understand this trade-off, laboratory evolution was performed, screening for enhanced ceftazidime activity. The variant BlaC Pro167Ser shows faster breakdown of ceftazidime, poor hydrolysis of ampicillin and only moderately reduced activity against nitrocefin. NMR spectroscopy, crystallography and kinetic assays demonstrate that the resting state of BlaC P167S exists in an open and a closed state. The open state is more active in the hydrolysis of ceftazidime. In this state the catalytic residue Glu166, generally believed to be involved in the activation of the water molecule required for deacylation, is rotated away from the active site, suggesting it plays no role in the hydrolysis of ceftazidime. In the closed state, deacylation of the BlaC-ceftazidime adduct is slow, while hydrolysis of nitrocefin, which requires the presence of Glu166 in the active site, is barely affected, providing a structural explanation for the trade-off in activities.
Collapse
Affiliation(s)
- Jing Sun
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aleksandra Chikunova
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Monika Timmer
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
4
|
Evaluation of Phenotypic Tests to Detect Extended-Spectrum β-Lactamase (ESBL)-Producing Klebsiella oxytoca Complex Strains. J Clin Microbiol 2023; 61:e0170622. [PMID: 36912648 PMCID: PMC10117083 DOI: 10.1128/jcm.01706-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Klebsiella oxytoca complex (KoC) species may overproduce their chromosomal class A OXY β-lactamases, conferring reduced susceptibility to piperacillin-tazobactam, expanded-spectrum cephalosporins and aztreonam. Moreover, since clavulanate maintains its ability to inhibit these enzymes, the resulting resistance phenotype may falsely resemble the production of acquired extended-spectrum β-lactamases (ESBLs). In this work, a collection of 44 KoC strains of human and animal origin was characterized with whole-genome sequencing (WGS) and broth microdilution (BMD) susceptibility testing. Comparison of ESBL producers (n = 11; including CTX-M-15 [n = 6] and CTX-M-1 [n = 5] producers) and hyperproducers of OXYs (n = 21) showed certain phenotypic differences: piperacillin-tazobactam (MIC90s: 16 versus >64 μg/mL), cefotaxime (MIC90s: 64 versus 4 μg/mL), ceftazidime (MIC90s: 32 versus 4 μg/mL), cefepime (MIC90s: 8 versus 4 μg/mL) and associated resistance to non-β-lactams (e.g., trimethoprim-sulfamethoxazole: 90.9% versus 14.3%, respectively). However, a clear phenotype-based distinction between the two groups was difficult. Therefore, we evaluated 10 different inhibitor-based confirmatory tests to allow such categorization. All tests showed a sensitivity of 100%. However, only combination disk tests (CDTs) with cefepime/cefepime-clavulanate and ceftazidime/ceftazidime-clavulanate or the double-disk synergy test (DDST) showed high specificity (100%, 95.5%, and 100%, respectively). All confirmatory tests in BMD or using the MIC gradient strip did not perform well (specificity, ≤87.5%). Of note, ceftazidime/ceftazidime-avibactam tests also exhibited low specificity (CDT, 87.5%; MIC gradient strip, 77.8%). Our results indicate that standard antimicrobial susceptibility profiles can raise some suspicion, but only the use of cefepime/cefepime-clavulanate CDT or DDST can guarantee distinction between ESBL-producing KoC strains and those hyperproducing OXY enzymes.
Collapse
|
5
|
Lumpe J, Gumbleton L, Gorzalski A, Libuit K, Varghese V, Lloyd T, Tadros F, Arsimendi T, Wagner E, Stephens C, Sevinsky J, Hess D, Pandori M. GAMBIT (Genomic Approximation Method for Bacterial Identification and Tracking): A methodology to rapidly leverage whole genome sequencing of bacterial isolates for clinical identification. PLoS One 2023; 18:e0277575. [PMID: 36795668 PMCID: PMC9934365 DOI: 10.1371/journal.pone.0277575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/29/2022] [Indexed: 02/17/2023] Open
Abstract
Whole genome sequencing (WGS) of clinical bacterial isolates has the potential to transform the fields of diagnostics and public health. To realize this potential, bioinformatic software that reports identification results needs to be developed that meets the quality standards of a diagnostic test. We developed GAMBIT (Genomic Approximation Method for Bacterial Identification and Tracking) using k-mer based strategies for identification of bacteria based on WGS reads. GAMBIT incorporates this algorithm with a highly curated searchable database of 48,224 genomes. Herein, we describe validation of the scoring methodology, parameter robustness, establishment of confidence thresholds and the curation of the reference database. We assessed GAMBIT by way of validation studies when it was deployed as a laboratory-developed test in two public health laboratories. This method greatly reduces or eliminates false identifications which are often detrimental in a clinical setting.
Collapse
Affiliation(s)
- Jared Lumpe
- Independent Researcher, Meriden, Connecticut, United States of America
- * E-mail: (JL); (MP); (DH)
| | - Lynette Gumbleton
- Nevada State Public Health Laboratory, Reno, NV, United States of America
| | - Andrew Gorzalski
- Nevada State Public Health Laboratory, Reno, NV, United States of America
| | - Kevin Libuit
- Theiagen Consulting LLC, Highlands Ranch, CO, United States of America
| | - Vici Varghese
- Alameda County Department of Public Health, Oakland, CA, United States of America
| | - Tyler Lloyd
- Alameda County Department of Public Health, Oakland, CA, United States of America
| | - Farid Tadros
- Biology Department, Santa Clara University, Santa Clara, CA, United States of America
| | - Tyler Arsimendi
- Biology Department, Santa Clara University, Santa Clara, CA, United States of America
| | - Eileen Wagner
- Theiagen Consulting LLC, Highlands Ranch, CO, United States of America
| | - Craig Stephens
- Biology Department, Santa Clara University, Santa Clara, CA, United States of America
| | - Joel Sevinsky
- Theiagen Consulting LLC, Highlands Ranch, CO, United States of America
| | - David Hess
- Nevada State Public Health Laboratory, Reno, NV, United States of America
- Biology Department, Santa Clara University, Santa Clara, CA, United States of America
- Department of Pathology and Laboratory Medicine, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- * E-mail: (JL); (MP); (DH)
| | - Mark Pandori
- Nevada State Public Health Laboratory, Reno, NV, United States of America
- Alameda County Department of Public Health, Oakland, CA, United States of America
- Department of Pathology and Laboratory Medicine, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- * E-mail: (JL); (MP); (DH)
| |
Collapse
|
6
|
Molecular Epidemiology of Extended-Spectrum Beta-Lactamase and AmpC Producing Enterobacteriaceae among Sepsis Patients in Ethiopia: A Prospective Multicenter Study. Antibiotics (Basel) 2022; 11:antibiotics11020131. [PMID: 35203734 PMCID: PMC8868273 DOI: 10.3390/antibiotics11020131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Extended-spectrum beta-lactamases (ESBLs) and AmpC producing Enterobacteriaceae are public health threats. This study aims to characterize ESBL and AmpC producing Enterobacteriaceae isolated from sepsis patients. A multicenter study was conducted at four hospitals located in central (Tikur Anbessa and Yekatit 12), southern (Hawassa) and northern (Dessie) parts of Ethiopia. Blood culture was performed among 1416 sepsis patients. Enterobacteriaceae (n = 301) were confirmed using MALDI-TOF and subjected for whole genome sequencing using the Illumina (HiSeq 2500) system. The overall genotypic frequencies of ESBL and AmpC producing Enterobacteriaceae were 75.5% and 14%, respectively. The detection of ESBL producing Enterobacteriaceae at Hawassa, Yekatit 12, Tikur Anbessa and Dessie was 95%, 90%, 82% and 55.8%, respectively. The detection frequency of blaCTX-M, blaTEM and blaSHV genes was 73%, 63% and 33%, respectively. The most frequently detected ESBL gene was blaCTX-M-15 (70.4%). The common AmpC genes were blaACT (n = 22) and blaCMY (n = 13). Of Enterobacteriaceae that harbored AmpC (n = 42), 71% were ESBL co-producers. Both blaTEM-1B (61.5%) and blaSHV-187 (27.6%) were the most frequently detected variants of blaTEM and blaSHV, respectively. The molecular epidemiology of ESBL producing Enterobacteriaceae showed high frequencies and several variants of ESBL and AmpC genes. Good antimicrobial stewardship and standard bacteriological laboratory services are necessary for the effective treatment of ESBL producing Enterobacteriaceae.
Collapse
|
7
|
Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clin Microbiol Rev 2021; 35:e0000621. [PMID: 34851134 DOI: 10.1128/cmr.00006-21] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella oxytoca is actually a complex of nine species-Klebsiella grimontii, Klebsiella huaxiensis, Klebsiella michiganensis, K. oxytoca, Klebsiella pasteurii, Klebsiella spallanzanii, and three unnamed novel species. Phenotypic tests can assign isolates to the complex, but precise species identification requires genome-based analysis. The K. oxytoca complex is a human commensal but also an opportunistic pathogen causing various infections, such as antibiotic-associated hemorrhagic colitis (AAHC), urinary tract infection, and bacteremia, and has caused outbreaks. Production of the cytotoxins tilivalline and tilimycin lead to AAHC, while many virulence factors seen in Klebsiella pneumoniae, such as capsular polysaccharides and fimbriae, have been found in the complex; however, their association with pathogenicity remains unclear. Among the 5,724 K. oxytoca clinical isolates in the SENTRY surveillance system, the rates of nonsusceptibility to carbapenems, ceftriaxone, ciprofloxacin, colistin, and tigecycline were 1.8%, 12.5%, 7.1%, 0.8%, and 0.1%, respectively. Resistance to carbapenems is increasing alarmingly. In addition to the intrinsic blaOXY, many genes encoding β-lactamases with varying spectra of hydrolysis, including extended-spectrum β-lactamases, such as a few CTX-M variants and several TEM and SHV variants, have been found. blaKPC-2 is the most common carbapenemase gene found in the complex and is mainly seen on IncN or IncF plasmids. Due to the ability to acquire antimicrobial resistance and the carriage of multiple virulence genes, the K. oxytoca complex has the potential to become a major threat to human health.
Collapse
|
8
|
KPC Beta-Lactamases Are Permissive to Insertions and Deletions Conferring Substrate Spectrum Modifications and Resistance to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2020; 64:AAC.01175-20. [PMID: 33020157 DOI: 10.1128/aac.01175-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
To explore the mutational possibilities of insertions and deletions (indels) in the Klebsiella pneumoniae carbapenemase (KPC) beta-lactamase, we selected for ceftazidime-avibactam-resistant mutants. Of 96 screened mutants, we obtained 19 indels (2 to 15 amino acids), all located in the loops surrounding the active site. Three antibiotic susceptibility phenotypes emerged: an extended-spectrum-beta-lactamase-like phenotype, an activity restricted to ceftazidime, and a carbapenem-susceptible KPC-like phenotype. Tolerance for indels reflects the evolvability of KPC beta-lactamase, which could challenge the therapeutic management of patients.
Collapse
|
9
|
Bernabeu S, Ratnam KC, Boutal H, Gonzalez C, Vogel A, Devilliers K, Plaisance M, Oueslati S, Malhotra-Kumar S, Dortet L, Fortineau N, Simon S, Volland H, Naas T. A Lateral Flow Immunoassay for the Rapid Identification of CTX-M-Producing Enterobacterales from Culture Plates and Positive Blood Cultures. Diagnostics (Basel) 2020; 10:diagnostics10100764. [PMID: 32998433 PMCID: PMC7600033 DOI: 10.3390/diagnostics10100764] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
We have developed a lateral flow immunoassay (LFIA), named NG-Test CTX-M MULTI (NG-Test), to detect group 1, 2, 8, 9, 25 CTX-M producers from agar plates and from positive blood cultures in less than 15 min. The NG-Test was validated retrospectively on 113 well-characterized enterobacterial isolates, prospectively on 102 consecutively isolated ESBL-producers from the Bicêtre hospital and on 100 consecutive blood cultures positive with a gram-negative bacilli (GNB). The NG-Test was able to detect all CTX-M producers grown on the different agar plates used in clinical microbiology laboratories. No false positive nor negative results were observed. Among the 102 consecutive ESBL isolates, three hyper mucous isolates showed an incorrect migration leading to invalid results (no control band). Using an adapted protocol, the results could be validated. The NG-Test detected 99/102 ESBLs as being CTX-Ms. Three SHV producers were not detected. Among the 100 positive blood cultures with GNB tested 10/11 ESBL-producers were detected (8 CTX-M-15, 2 CTX-M-27). One SHV-2-producing-E. cloacae was missed. The NG-Test CTX-M MULTI showed 100% sensitivity and specificity with isolates cultured on agar plates and was able to detect 98% of the ESBL-producers identified in our clinical setting either from colonies or from positive blood cultures.
Collapse
Affiliation(s)
- Sandrine Bernabeu
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | | | - Hervé Boutal
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Camille Gonzalez
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | - Anaïs Vogel
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Karine Devilliers
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Marc Plaisance
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Saoussen Oueslati
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium;
- Members of ESCMID Study Group for Antimicrobial Resistance Surveillance—ESGARS, Headquarter, 4010 Basel, Switzerland
| | - Laurent Dortet
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Nicolas Fortineau
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Stéphanie Simon
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Hervé Volland
- Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, Laboratoire d’Etudes et de Recherches en Immunonalyse, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (H.B.); (A.V.); (K.D.); (M.P.); (S.S.); (H.V.)
| | - Thierry Naas
- Team Resist, UMR1184, School of Medicine of Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 94276 Le Kremlin-Bicêtre, France; (S.B.); (S.O.); (L.D.); (N.F.)
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (K.C.R.); (C.G.)
- Members of ESCMID Study Group for Antimicrobial Resistance Surveillance—ESGARS, Headquarter, 4010 Basel, Switzerland
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
- Service de Bactériologie, AP-HP, CHU de Bicêtre, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
- Correspondence: ; Tel.: +33-1-45-21-29-86
| |
Collapse
|
10
|
Zhang G, Sun K, Ai G, Li J, Tang N, Song Y, Wang C, Feng J. A novel family of intrinsic chloramphenicol acetyltransferase CATC in Vibrio parahaemolyticus: Naturally occurring variants reveal diverse resistance levels against chloramphenicol. Int J Antimicrob Agents 2019; 54:75-79. [DOI: 10.1016/j.ijantimicag.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 01/29/2023]
|
11
|
Aruhomukama D, Sserwadda I, Mboowa G. Investigating colistin drug resistance: The role of high-throughput sequencing and bioinformatics. F1000Res 2019; 8:150. [PMID: 31354944 PMCID: PMC6635981 DOI: 10.12688/f1000research.18081.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Bacterial infections involving antibiotic-resistant gram-negative bacteria continue to increase and represent a major global public health concern. Resistance to antibiotics in these bacteria is mediated by chromosomal and/or acquired resistance mechanisms, these give rise to multi-drug resistant (MDR), extensive-drug resistant (XDR) or pan-drug resistant (PDR) bacterial strains. Most recently, plasmid-mediated resistance to colistin, an antibiotic that had been set apart as the last resort antibiotic in the treatment of infections involving MDR, XDR and PDR gram-negative bacteria has been reported. Plasmid-mediated colistin resistant gram-negative bacteria have been described to be PDR, implying a state devoid of alternative antibiotic therapeutic options. This review concisely describes the evolution of antibiotic resistance to plasmid-mediated colistin resistance and discusses the potential role of high-throughput sequencing technologies, genomics, and bioinformatics towards improving antibiotic resistance surveillance, the search for novel drug targets and precision antibiotic therapy focused at combating colistin resistance, and antibiotic resistance as a whole.
Collapse
Affiliation(s)
- Dickson Aruhomukama
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| | - Ivan Sserwadda
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| | - Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| |
Collapse
|
12
|
Aruhomukama D, Sserwadda I, Mboowa G. Investigating colistin drug resistance: The role of high-throughput sequencing and bioinformatics. F1000Res 2019; 8:150. [PMID: 31354944 PMCID: PMC6635981 DOI: 10.12688/f1000research.18081.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 10/13/2023] Open
Abstract
Bacterial infections involving antibiotic resistant gram-negative bacteria continue to increase and represent a major global public health concern. Resistance to antibiotics in these bacteria is mediated by chromosomal and/or acquired resistance mechanisms, these give rise to multi-drug resistant (MDR) or extensive drug resistant (XDR) bacterial strains. Most recently, a novel acquired plasmid mediated resistance mechanism to colistin, an antibiotic that had been set apart as the last resort antibiotic in the treatment of infections involving MDR and XDR gram-negative bacteria, has been reported. Plasmid mediated colistin resistant gram-negative bacteria have been described to be pan-drug resistant, implying a state devoid of alternative antibiotic therapeutic options. This review describes the evolution of antibiotic resistance to plasmid mediated colistin resistance, and discusses the potential role of high-throughput sequencing technologies, genomics and bioinformatics towards improving antibiotic resistance surveillance, the search for novel drug targets and precision antibiotic therapy focused at combating colistin resistance, and antimicrobial resistance as a whole.
Collapse
Affiliation(s)
- Dickson Aruhomukama
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| | - Ivan Sserwadda
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| | - Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| |
Collapse
|
13
|
Guschin VA, Manuilov VA, Makarov VV, Tkachuk AP. The proper structure of a biosafety system as a way of reducing the vulnerability of a society, economy or state in the face of a biogenic threat. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2018. [DOI: 10.24075/brsmu.2018.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand how vulnerable are a society, an economy and a state in the face of a biohazard, one should attempt to identify any potential holes in the national biosafety system, such as the lack of important components or technologies for biological monitoring and the inadequacy of existing analytical methods used to prevent or counteract biogenic threats. In Russia, biological monitoring is quite advanced. However, the agencies that ensure proper functioning of its components lack collaboration and do not form a well-coordinated network. Each of such agencies alone cannot provide comprehensive information on the subject. In the Russian Federation, there are at least 4 state-funded programs that collect epidemiological data and are quite efficient in performing the narrow task of monitoring infections. But because there is no central database where epidemiological data can be channeled and subsequently shared, these agencies do not complete each other. This leaves the Russian society, economy and state vulnerable to biogenic threats. We need an adequately organized, modern, fully functional and effective system for monitoring biohazards that will serve as a basis for the national biosafety system and also a tool for the identification and elimination of its weaknesses.
Collapse
Affiliation(s)
- V. A. Guschin
- Laboratory of Population Variability Mechanisms in Pathogenic Microorganisms, Gamaleya Research Institute of Epidemiology and Microbiology, Moscow; Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow
| | - V. A. Manuilov
- Laboratory of Translational Medicine, Gamaleya Research Institute of Epidemiology and Microbiology, Moscow
| | - V. V. Makarov
- Center for Strategic Planning of the Ministry of Health of the Russian Federation, Moscow
| | - A. P. Tkachuk
- Laboratory of Translational Medicine, Gamaleya Research Institute of Epidemiology and Microbiology, Moscow
| |
Collapse
|
14
|
Rossen JWA, Friedrich AW, Moran-Gilad J. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect 2017; 24:355-360. [PMID: 29117578 DOI: 10.1016/j.cmi.2017.11.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Next generation sequencing (NGS) is increasingly being used in clinical microbiology. Like every new technology adopted in microbiology, the integration of NGS into clinical and routine workflows must be carefully managed. AIM To review the practical aspects of implementing bacterial whole genome sequencing (WGS) in routine diagnostic laboratories. SOURCES Review of the literature and expert opinion. CONTENT In this review, we discuss when and how to integrate whole genome sequencing (WGS) in the routine workflow of the clinical laboratory. In addition, as the microbiology laboratories have to adhere to various national and international regulations and criteria for their accreditation, we deliberate on quality control issues for using WGS in microbiology, including the importance of proficiency testing. Furthermore, the current and future place of this technology in the diagnostic hierarchy of microbiology is described as well as the necessity of maintaining backwards compatibility with already established methods. Finally, we speculate on the question of whether WGS can entirely replace routine microbiology in the future and the tension between the fact that most sequencers are designed to process multiple samples in parallel whereas for optimal diagnosis a one-by-one processing of the samples is preferred. Special reference is made to the cost and turnaround time of WGS in diagnostic laboratories. IMPLICATIONS Further development is required to improve the workflow for WGS, in particular to shorten the turnaround time, reduce costs, and streamline downstream data analyses. Only when these processes reach maturity will reliance on WGS for routine patient management and infection control management become feasible, enabling the transformation of clinical microbiology into a genome-based and personalized diagnostic field.
Collapse
Affiliation(s)
- J W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands; European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland.
| | - A W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - J Moran-Gilad
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland; Department of Health Systems Management, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Public Health Services, Ministry of Health, Jerusalem, Israel
| | | |
Collapse
|
15
|
Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M, García-Cobos S, Kooistra-Smid AMD, Raangs EC, Rosema S, Veloo ACM, Zhou K, Friedrich AW, Rossen JWA. Reprint of "Application of next generation sequencing in clinical microbiology and infection prevention". J Biotechnol 2017; 250:2-10. [PMID: 28495072 DOI: 10.1016/j.jbiotec.2017.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data, information on resistance and virulence, as well as information for typing is obtained, useful for outbreak investigation. The obtained genome data can be further used for the development of an outbreak-specific screening test. In this review, a general introduction to NGS is presented, including the library preparation and the major characteristics of the most common NGS platforms, such as the MiSeq (Illumina) and the Ion PGM™ (ThermoFisher). An overview of the software used for NGS data analyses used at the medical microbiology diagnostic laboratory in the University Medical Center Groningen in The Netherlands is given. Furthermore, applications of NGS in the clinical setting are described, such as outbreak management, molecular case finding, characterization and surveillance of pathogens, rapid identification of bacteria using the 16S-23S rRNA region, taxonomy, metagenomics approaches on clinical samples, and the determination of the transmission of zoonotic micro-organisms from animals to humans. Finally, we share our vision on the use of NGS in personalised microbiology in the near future, pointing out specific requirements.
Collapse
Affiliation(s)
- Ruud H Deurenberg
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Monika A Chlebowicz
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Natacha Couto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Mithila Ferdous
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Silvia García-Cobos
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anna M D Kooistra-Smid
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands; Certe, Department of Medical Microbiology, Groningen, The Netherlands
| | - Erwin C Raangs
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Sigrid Rosema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Alida C M Veloo
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Alexander W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
16
|
Exploring the Role of the Ω-Loop in the Evolution of Ceftazidime Resistance in the PenA β-Lactamase from Burkholderia multivorans, an Important Cystic Fibrosis Pathogen. Antimicrob Agents Chemother 2017; 61:AAC.01941-16. [PMID: 27872073 DOI: 10.1128/aac.01941-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022] Open
Abstract
The unwelcome evolution of resistance to the advanced generation cephalosporin antibiotic, ceftazidime is hindering the effective therapy of Burkholderia cepacia complex (BCC) infections. Regrettably, BCC organisms are highly resistant to most antibiotics, including polymyxins; ceftazidime and trimethoprim-sulfamethoxazole are the most effective treatment options. Unfortunately, resistance to ceftazidime is increasing and posing a health threat to populations susceptible to BCC infection. We found that up to 36% of 146 tested BCC clinical isolates were nonsusceptible to ceftazidime (MICs ≥ 8 μg/ml). To date, the biochemical basis for ceftazidime resistance in BCC is largely undefined. In this study, we investigated the role of the Ω-loop in mediating ceftazidime resistance in the PenA β-lactamase from Burkholderia multivorans, a species within the BCC. Single amino acid substitutions were engineered at selected positions (R164, T167, L169, and D179) in the PenA β-lactamase. Cell-based susceptibility testing revealed that 21 of 75 PenA variants engineered in this study were resistant to ceftazidime, with MICs of >8 μg/ml. Under steady-state conditions, each of the selected variants (R164S, T167G, L169A, and D179N) demonstrated a substrate preference for ceftazidime compared to wild-type PenA (32- to 320-fold difference). Notably, the L169A variant hydrolyzed ceftazidime significantly faster than PenA and possessed an ∼65-fold-lower apparent Ki (Kiapp) than that of PenA. To understand why these amino acid substitutions result in enhanced ceftazidime binding and/or turnover, we employed molecular dynamics simulation (MDS). The MDS suggested that the L169A variant starts with the most energetically favorable conformation (-28.1 kcal/mol), whereas PenA possessed the most unfavorable initial conformation (136.07 kcal/mol). In addition, we observed that the spatial arrangement of E166, N170, and the hydrolytic water molecules may be critical for enhanced ceftazidime hydrolysis by the L169A variant. Importantly, we found that two clinical isolates of B. multivorans possessed L169 amino acid substitutions (L169F and L169P) in PenA and were highly resistant to ceftazidime (MICs ≥ 512 μg/ml). In conclusion, substitutions in the Ω-loop alter the positioning of the hydrolytic machinery as well as allow for a larger opening of the active site to accommodate the bulky R1 and R2 side chains of ceftazidime, resulting in resistance. This analysis provides insights into the emerging phenotype of ceftazidime-resistant BCC and explains the evolution of amino acid substitutions in the Ω-loop of PenA of this significant clinical pathogen.
Collapse
|
17
|
Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 2016; 243:16-24. [PMID: 28042011 DOI: 10.1016/j.jbiotec.2016.12.022] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023]
Abstract
Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data, information on resistance and virulence, as well as information for typing is obtained, useful for outbreak investigation. The obtained genome data can be further used for the development of an outbreak-specific screening test. In this review, a general introduction to NGS is presented, including the library preparation and the major characteristics of the most common NGS platforms, such as the MiSeq (Illumina) and the Ion PGM™ (ThermoFisher). An overview of the software used for NGS data analyses used at the medical microbiology diagnostic laboratory in the University Medical Center Groningen in The Netherlands is given. Furthermore, applications of NGS in the clinical setting are described, such as outbreak management, molecular case finding, characterization and surveillance of pathogens, rapid identification of bacteria using the 16S-23S rRNA region, taxonomy, metagenomics approaches on clinical samples, and the determination of the transmission of zoonotic micro-organisms from animals to humans. Finally, we share our vision on the use of NGS in personalised microbiology in the near future, pointing out specific requirements.
Collapse
|
18
|
Saral A, Leonard DA, Duzgun AO, Cicek AC, June CM, Sandalli C. Kinetic characterization of GES-22 β-lactamase harboring the M169L clinical mutation. J Antibiot (Tokyo) 2016; 69:858-862. [PMID: 27168312 DOI: 10.1038/ja.2016.48] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/16/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
The class A β-lactamase GES-22 has been identified in Acinetobacter baumannii isolates in Turkey, and subsequently shown to differ from GES-11 by a single substitution (M169L). Because M169 is part of the omega loop, a structure that is known to have major effects on substrate selectivity in class A β-lactamases, we expressed, purified and kinetically characterized this novel variant. Our results show that compared with GES-116 × His, GES-226 × His displays more efficient hydrolysis of penicillins, and aztreonam, but a loss of efficiency against ceftazidime. In addition, the M169L substitution confers on GES-22 more efficient hydrolysis of the mechanistic inhibitors clavulanic acid and sulbactam. These effects are highly similar to other mutations at the homologous position in other class A β-lactamases, suggesting that this methionine has a key structural role in aligning active site residues and in substrate selectivity across the class.
Collapse
Affiliation(s)
- Aysegul Saral
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin, Turkey.,Microbiology and Molecular Biology Research Laboratory, Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA
| | - Azer Ozad Duzgun
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, Gumushane, Turkey
| | - Aysegul Copur Cicek
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA
| | - Cemal Sandalli
- Microbiology and Molecular Biology Research Laboratory, Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|