1
|
He LX, He LY, Tang YJ, Qiao LK, Xu MC, Zhou ZY, Bai H, Zhang M, Ying GG. Deciphering spread of quinolone resistance in mariculture ponds: Cross-species and cross-environment transmission of resistome. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137198. [PMID: 39827796 DOI: 10.1016/j.jhazmat.2025.137198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Mariculture is known to harbor antibiotic resistance genes (ARGs), which can be released into marine ecosystems via oceanic farming ponds, posing a public health concern. In this study, metagenomic sequencing was used to decipher the profiles of quinolone-resistant microbiomes and the mechanisms of quinolone resistance in sediment, seawater, and fish gill samples from five mariculture ponds. Residues of both veterinary-specific (enrofloxacin and sarafloxacin) and prohibited quinolones (ofloxacin, ciprofloxacin, pefloxacin, norfloxacin, and lomefloxacin) were detected. We identified a total of 285 subtypes of ARGs across all samples. Pathogens played a crucial role in the prevalence and distribution of these ARGs. Out of the annotated 629 bacterial species, 42 were identified as pathogenic, predominantly belonging to the Proteobacteria phylum. Notably, the Acinetobacter genus was prevalent in the gills and exhibited correlations with various ARGs. The presence of the plasmid-mediated quinolone resistance (PMQR) genes in various bacterial species and the identification of sulfonamide resistance genes across different samples indicated the potential for cross-species and cross-environment transmission of ARGs. Metagenomic binning revealed that Exiguobacterium harbored five ARGs (vanA, vanB, fexA, msr(G), mefF), while Shewanella carried six ARGs (blaOXA-436, adeF, qacl, ANT (2'')-Ia, dfrA1, rsmA). Mutations in gyrA and parC contributed to quinolone resistance in these multidrug-resistant Exiguobacterium and Shewanella. Our findings suggest a potential for ARG transmission across various bacterial species and environments in mariculture. This study emphasized the risk of resistance spread within the mariculture ecosystem.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Yan-Jun Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Kai Qiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Meng-Chao Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Yin Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- Guangdong Provincial Engineering Technology Research Center for Life and Health 15 of River&Lake, Pearl River Hydraulic Research Institute, Pearl River Water 16 Resources Commission of the Ministry of Water Resources, Guangzhou 510611-17, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
2
|
Peters AC, Larsson DGJ, Laxminarayan R, Munthe C. Barriers and pathways to environmental surveillance of antibiotic resistance in middle- and low-income settings: a qualitative exploratory key expert study. Glob Health Action 2024; 17:2343318. [PMID: 38813982 PMCID: PMC11141306 DOI: 10.1080/16549716.2024.2343318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/11/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Local and global surveillance of antibiotic resistance (ABR) has proven a challenge to implement effectively in low- and middleincome (LMI) settings. Environmental surveillance solutions are increasingly highlighted as a strategy to help overcome such problems, and thus to promote global health as well as the local management of ABR in LMI countries. While technical and scientific aspects of such solutions are being probed continuously, no study has investigated their practical feasibility. OBJECTIVE Explore practical barriers for environmental surveillance of ABR in LMI countries, and pathways for surveillance experts to manage these. METHODS To start charting this unknown territory, we conducted an explorative, qualitative interview study with key informants, applying a constructivist grounded theory approach to analyze the results. RESULTS Barriers were identified across infrastructural, institutional and social dimensions, and pathways to manage them were mostly counterproductive from an ABR management perspective, including avoiding entire regions, applying substandard methods and failing to include local collaborators. CONCLUSION The research community as well as international agencies, organizations and states have key roles and responsibilities for improving the prospects of feasible environmental ABR surveillance in LMI-settings.
Collapse
Affiliation(s)
- Ann-Christin Peters
- Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute for Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ramanan Laxminarayan
- One Health Trust, Washington, DC, USA
- One Health Trust, Bangalore, India
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Christian Munthe
- Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
3
|
Shintani M, Vestergaard G, Milaković M, Kublik S, Smalla K, Schloter M, Udiković-Kolić N. Integrons, transposons and IS elements promote diversification of multidrug resistance plasmids and adaptation of their hosts to antibiotic pollutants from pharmaceutical companies. Environ Microbiol 2023; 25:3035-3051. [PMID: 37655671 DOI: 10.1111/1462-2920.16481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | | | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Croatia
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Zagreb, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Zagreb, Germany
| | | |
Collapse
|
4
|
Guzman-Otazo J, Joffré E, Agramont J, Mamani N, Jutkina J, Boulund F, Hu YOO, Jumilla-Lorenz D, Farewell A, Larsson DGJ, Flach CF, Iñiguez V, Sjöling Å. Conjugative transfer of multi-drug resistance IncN plasmids from environmental waterborne bacteria to Escherichia coli. Front Microbiol 2022; 13:997849. [DOI: 10.3389/fmicb.2022.997849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Watersheds contaminated with municipal, hospital, and agricultural residues are recognized as reservoirs for bacteria carrying antibiotic resistance genes (ARGs). The objective of this study was to determine the potential of environmental bacterial communities from the highly contaminated La Paz River basin in Bolivia to transfer ARGs to an Escherichia coli lab strain used as the recipient. Additionally, we tested ZnSO4 and CuSO4 at sub-inhibitory concentrations as stressors and analyzed transfer frequencies (TFs), diversity, richness, and acquired resistance profiles. The bacterial communities were collected from surface water in an urban site close to a hospital and near an agricultural area. High transfer potentials of a large set of resistance factors to E. coli were observed at both sites. Whole-genome sequencing revealed that putative plasmids belonging to the incompatibility group N (IncN, IncN2, and IncN3) were predominant among the transconjugants. All IncN variants were verified to be mobile by a second conjugation step. The plasmid backbones were similar to other IncN plasmids isolated worldwide and carried a wide range of ARGs extensively corroborated by phenotypic resistance patterns. Interestingly, all transconjugants also acquired the class 1 integron intl1, which is commonly known as a proxy for anthropogenic pollution. The addition of ZnSO4 and CuSO4 at sub-inhibitory concentrations did not affect the transfer rate. Metal resistance genes were absent from most transconjugants, suggesting a minor role, if any, of metals in the spread of multidrug-resistant plasmids at the investigated sites.
Collapse
|
5
|
Abstract
Antibiotic resistance is a global health challenge, involving the transfer of bacteria and genes between humans, animals and the environment. Although multiple barriers restrict the flow of both bacteria and genes, pathogens recurrently acquire new resistance factors from other species, thereby reducing our ability to prevent and treat bacterial infections. Evolutionary events that lead to the emergence of new resistance factors in pathogens are rare and challenging to predict, but may be associated with vast ramifications. Transmission events of already widespread resistant strains are, on the other hand, common, quantifiable and more predictable, but the consequences of each event are limited. Quantifying the pathways and identifying the drivers of and bottlenecks for environmental evolution and transmission of antibiotic resistance are key components to understand and manage the resistance crisis as a whole. In this Review, we present our current understanding of the roles of the environment, including antibiotic pollution, in resistance evolution, in transmission and as a mere reflection of the regional antibiotic resistance situation in the clinic. We provide a perspective on current evidence, describe risk scenarios, discuss methods for surveillance and the assessment of potential drivers, and finally identify some actions to mitigate risks.
Collapse
Affiliation(s)
- D G Joakim Larsson
- Centre for Antibiotic Resistance Research at University of Gothenburg, Gothenburg, Sweden.
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research at University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Rodríguez-Beltrán J, León-Sampedro R, Ramiro-Martínez P, de la Vega C, Baquero F, Levin BR, San Millán Á. Translational demand is not a major source of plasmid-associated fitness costs. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200463. [PMID: 34839712 PMCID: PMC8628068 DOI: 10.1098/rstb.2020.0463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Plasmids are key drivers of bacterial evolution because they are crucial agents for the horizontal transfer of adaptive traits, such as antibiotic resistance. Most plasmids entail a metabolic burden that reduces the fitness of their host if there is no selection for plasmid-encoded genes. It has been hypothesized that the translational demand imposed by plasmid-encoded genes is a major mechanism driving the fitness cost of plasmids. Plasmid-encoded genes typically present a different codon usage from host chromosomal genes. As a consequence, the translation of plasmid-encoded genes might sequestrate ribosomes on plasmid transcripts, overwhelming the translation machinery of the cell. However, the pervasiveness and origins of the translation-derived costs of plasmids are yet to be assessed. Here, we systematically altered translation efficiency in the host cell to disentangle the fitness effects produced by six natural antibiotic resistance plasmids. We show that limiting translation efficiency either by reducing the number of available ribosomes or their processivity does not increase plasmid costs. Overall, our results suggest that ribosomal paucity is not a major contributor to plasmid fitness costs. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Ricardo León-Sampedro
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Paula Ramiro-Martínez
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Carmen de la Vega
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
- Centro de Investigación Biológica en Red, Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, GA, USA
- Antibiotic Resistance Center, Emory University, Atlanta, GA, USA
| | - Álvaro San Millán
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
- Centro de Investigación Biológica en Red, Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología–CSIC, 28049 Madrid, Spain
| |
Collapse
|
7
|
Abstract
Horizontal transfer of bacterial plasmids generates genetic variability and contributes to the dissemination of the genes that enable bacterial cells to develop antimicrobial resistance (AMR). Several aspects of the conjugative process have long been known, namely, those related to the proteins that participate in the establishment of cell-to-cell contact and to the enzymatic processes associated with the processing of plasmid DNA and its transfer to the recipient cell. In this work, we describe the roles of newly identified proteins that influence the conjugation of several plasmids. Genes encoding high-molecular-weight bacterial proteins that contain one or several immunoglobulin-like domains (Big) are located in the transfer regions of several plasmids that usually harbor AMR determinants. These Big proteins are exported to the external medium and target two extracellular organelles: the flagella and conjugative pili. The plasmid gene-encoded Big proteins facilitate conjugation by reducing cell motility and facilitating cell-to-cell contact by binding both to the flagella and to the conjugative pilus. They use the same export machinery as that used by the conjugative pilus components. In the examples characterized in this paper, these proteins influence conjugation at environmental temperatures (i.e., 25°C). This suggests that they may play relevant roles in the dissemination of plasmids in natural environments. Taking into account that they interact with outer surface organelles, they could be targeted to control the dissemination of different bacterial plasmids carrying AMR determinants. IMPORTANCE Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid. Our paper identifies novel plasmid gene-encoded high-molecular-weight proteins that contain an immunoglobulin-like domain and are required for plasmid transmission. They are encoded by genes on different groups of plasmids. These proteins are exported outside the cell. They bind to extracellular cell appendages such as the flagella and conjugative pili. Expression of these proteins reduces cell motility and increases the ability of the bacterial cells to transfer the plasmid. These proteins could be targeted with specific antibodies to combat infections caused by AMR microorganisms that harbor these plasmids.
Collapse
|
8
|
Du B, Wang Q, Yang Q, Wang R, Yuan W, Yan L. Responses of bacterial and bacteriophage communities to long-term exposure to antimicrobial agents in wastewater treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125486. [PMID: 33676244 DOI: 10.1016/j.jhazmat.2021.125486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of antibacterial agents has received increasing concern due to their possible threats to human health. However, the effects of antibacterial residues on the evolution and dynamics between bacteria and bacteriophages in wastewater treatment systems have seldom been researched. Especially for phages, little is known about their response to antimicrobial exposure. In this study, two identical anoxic-aerobic wastewater treatment systems were established to evaluate the responses of bacterial and phage communities to long-term exposure to antimicrobial agents. The results indicated simultaneous exposure to combined antimicrobials significantly inhibited (p < 0.05) the abundance of phages and bacteria. Metagenomic sequencing analysis indicated the community of bacteria and phages changed greatly at the genus level due to combined antibacterial exposure. Additionally, long-term exposure to antimicrobial agents promoted the attachment of receptor-binding protein genes to Klebsiella, Escherichia and Salmonella (which were all members of Enterobacteriaceae). Compared to that in the control system, the numbers of receptor-binding protein genes on their possible phages (such as Lambdalikevirus and P2likevirus) were also obviously higher when the microorganisms were exposed to antimicrobials. The results are helpful to understanding the microbial communities and tracking the relationship of phage-bacterial host systems, especially under the pressure of antimicrobial exposure.
Collapse
Affiliation(s)
- Bingbing Du
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China.
| | - Ruifei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Wei Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Luyu Yan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Hutinel M, Fick J, Larsson DGJ, Flach CF. Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116733. [PMID: 33631686 DOI: 10.1016/j.envpol.2021.116733] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 05/23/2023]
Abstract
Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria.
Collapse
Affiliation(s)
- Marion Hutinel
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Herencias C, Rodríguez-Beltrán J, León-Sampedro R, Alonso-del Valle A, Palkovičová J, Cantón R, San Millán Á. Collateral sensitivity associated with antibiotic resistance plasmids. eLife 2021; 10:e65130. [PMID: 33470194 PMCID: PMC7837676 DOI: 10.7554/elife.65130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR.
Collapse
Affiliation(s)
- Cristina Herencias
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
- Centro de Investigación Biológica en Red Epidemiología y Salud Pública, Instituto de Salud Carlos IIIMadridSpain
| | - Ricardo León-Sampedro
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
- Centro de Investigación Biológica en Red Epidemiología y Salud Pública, Instituto de Salud Carlos IIIMadridSpain
| | - Aida Alonso-del Valle
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
| | - Jana Palkovičová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
| | - Rafael Cantón
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
- Red Española de Investigación en Patología Infecciosa. Instituto de Salud Carlos IIIMadridSpain
| | - Álvaro San Millán
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
- Centro de Investigación Biológica en Red Epidemiología y Salud Pública, Instituto de Salud Carlos IIIMadridSpain
- Centro Nacional de Biotecnología-CSICMadridSpain
| |
Collapse
|
11
|
Milaković M, Križanović S, Petrić I, Šimatović A, González-Plaza JJ, Gužvinec M, Andrašević AT, Pole L, Fuka MM, Udiković-Kolić N. Characterization of macrolide resistance in bacteria isolated from macrolide-polluted and unpolluted river sediments and clinical sources in Croatia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142357. [PMID: 33370905 DOI: 10.1016/j.scitotenv.2020.142357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Environments polluted with excessively high levels of antibiotics released from manufacturing sites can act as a source of transferable antibiotic resistance (AR) genes to human commensal and pathogenic bacteria. The aim of this study was to evaluate AR of bacteria isolated from the Sava river sediments (Croatia) at the discharge site of effluents from azithromycin production compared to those from the upstream site and isolates collected in Croatian hospitals. A total of 228 environmental strains of azithromycin-resistant bacteria were isolated and identified, with 124 from the discharge site and 104 from the upstream site. In addition, a total of 90 clinical, azithromycin-resistant streptococcal and staphylococcal isolates obtained from the Croatian Reference Center for Antibiotic Resistance Surveillance were analyzed. PCR screening of isolates on 11 relevant macrolide-resistance genes (MRGs) showed that discharge isolates had greater detection frequencies for 4 gene targets (ermB, msrE, mphE and ermF) compared to upstream isolates. Among clinical isolates, the most frequently detected gene was ermB, followed by msrD, mefE and mefC. The discharge site demonstrated a greater abundance of isolates with co-occurrence of two different MRGs (predominantly msrE-mphE) than the upstream site, but a lower abundance than the clinical sources (most commonly msrD-mefE). The simultaneous presence of three or even four MRGs was specific for the discharge and clinical isolates, but not for the upstream isolates. When MRG results were sorted by gene mechanism, the ribosomal methylation (erm) and protection genes (msr) were the most frequently detected among both the discharge and the clinical isolates. Following sequencing, high nucleotide sequence similarity was observed between ermB in the discharge isolates and the clinical streptococcal isolates, suggesting a possible transfer of the ermB gene between bacteria of clinical and environmental origin. Our study highlights the importance of environmental bacterial populations as reservoirs for clinically relevant macrolide-resistance genes.
Collapse
Affiliation(s)
- Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Stela Križanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ana Šimatović
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Juan J González-Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Marija Gužvinec
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Arjana Tambić Andrašević
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Lucia Pole
- Department of Microbiology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, 10 000 Zagreb, Croatia
| | - Mirna Mrkonjić Fuka
- Department of Microbiology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, 10 000 Zagreb, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
12
|
Evolution of IS26-bounded pseudo-compound transposons carrying the tet(C) tetracycline resistance determinant. Plasmid 2020; 112:102541. [DOI: 10.1016/j.plasmid.2020.102541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
|
13
|
Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae. mBio 2020; 11:mBio.02930-19. [PMID: 32127452 PMCID: PMC7064769 DOI: 10.1128/mbio.02930-19] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings—especially carbapenem-resistant K.pneumoniae. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a “One Health” perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this. Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K.pneumoniae, Escherichia coli, and Salmonella. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa. In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae. tmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning.
Collapse
|
14
|
Milaković M, Vestergaard G, González-Plaza JJ, Petrić I, Kosić-Vukšić J, Senta I, Kublik S, Schloter M, Udiković-Kolić N. Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136001. [PMID: 31855637 DOI: 10.1016/j.scitotenv.2019.136001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Environmental discharges of very high (mg/L) antibiotic levels from pharmaceutical production contributed to the selection, spread and persistence of antibiotic resistance. However, the effects of less antibiotic-polluted effluents (μg/L) from drug-formulation on exposed aquatic microbial communities are still scarce. Here we analyzed formulation effluents and sediments from the receiving creek collected at the discharge site (DW0), upstream (UP) and 3000 m downstream of discharge (DW3000) during winter and summer season. Chemical analyses indicated the largest amounts of trimethoprim (up to 5.08 mg/kg) and azithromycin (up to 0.39 mg/kg) at DW0, but sulfonamides accumulated at DW3000 (total up to 1.17 mg/kg). Quantitative PCR revealed significantly increased relative abundance of various antibiotic resistance genes (ARGs) against β-lactams, macrolides, sulfonamides, trimethoprim and tetracyclines in sediments from DW0, despite relatively high background levels of some ARGs already at UP site. However, only sulfonamide (sul2) and macrolide ARG subtypes (mphG and msrE) were still elevated at DW3000 compared to UP. Sequencing of 16S rRNA genes revealed pronounced changes in the sediment bacterial community composition from both DW sites compared to UP site, regardless of the season. Numerous taxa with increased relative abundance at DW0 decreased to background levels at DW3000, suggesting die-off or lack of transport of effluent-originating bacteria. In contrast, various taxa that were more abundant in sediments than in effluents increased in relative abundance at DW3000 but not at DW0, possibly due to selection imposed by high sulfonamide levels. Network analysis revealed strong correlation between some clinically relevant ARGs (e.g. blaGES, blaOXA, ermB, tet39, sul2) and taxa with elevated abundance at DW sites, and known to harbour opportunistic pathogens, such as Acinetobacter, Arcobacter, Aeromonas and Shewanella. Our results demonstrate the necessity for improved management of pharmaceutical and rural waste disposal for mitigating the increasing problems with antibiotic resistance.
Collapse
Affiliation(s)
- Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Gisle Vestergaard
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Juan Jose González-Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Josipa Kosić-Vukšić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, 10 000 Zagreb, Croatia
| | - Ivan Senta
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
15
|
Du B, Yang Q, Li X, Yuan W, Chen Y, Wang R. Impacts of long-term exposure to tetracycline and sulfamethoxazole on the sludge granules in an anoxic-aerobic wastewater treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:67-77. [PMID: 31150877 DOI: 10.1016/j.scitotenv.2019.05.313] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Occurrence and effects of antibiotics and antibiotic resistance in various wastewater treatment systems have been widely investigated. However, few reports address the impacts of antibiotic exposure on wastewater treatment system operating characteristics, especially the characteristics of sludge granules under long-term operation. In this study, two laboratory scale anoxic-aerobic systems were established to investigate the combined effects of tetracycline and sulfamethoxazole. The results indicated that under long-term exposure to 5 mg·L-1 tetracycline and 1 mg·L-1 sulfamethoxazole, removals of chemical oxygen demand and total nitrogen were inhibited, the tendency of sludge bulking was increased, more filamentous bacteria were observed and more extracellular polymeric substance was secreted. This tendency was stronger than that from exposure to tetracycline alone. Molecular biological analysis indicated that the microbial community changed significantly especially with Thiothrix (instead of Sphaerotilus under tetracycline alone) becoming the dominant population under combined antibiotics. The results are relevant for operation of WTS receiving wastewater with high antibiotic concentrations.
Collapse
Affiliation(s)
- Bingbing Du
- School of Environment, Henan Normal University, Xinxiang 453007, China; College of Basic Medical Science, Luohe Medical College, Luohe 462002, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Xunan Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wei Yuan
- School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yulong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ruifei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
16
|
Abstract
While the description of resistance to quinolones is almost as old as these antimicrobial agents themselves, transferable mechanisms of quinolone resistance (TMQR) remained absent from the scenario for more than 36 years, appearing first as sporadic events and afterward as epidemics. In 1998, the first TMQR was soundly described, that is, QnrA. The presence of QnrA was almost anecdotal for years, but in the middle of the first decade of the 21st century, there was an explosion of TMQR descriptions, which definitively changed the epidemiology of quinolone resistance. Currently, 3 different clinically relevant mechanisms of quinolone resistance are encoded within mobile elements: (i) target protection, which is mediated by 7 different families of Qnr (QnrA, QnrB, QnrC, QnrD, QnrE, QnrS, and QnrVC), which overall account for more than 100 recognized alleles; (ii) antibiotic efflux, which is mediated by 2 main transferable efflux pumps (QepA and OqxAB), which together account for more than 30 alleles, and a series of other efflux pumps (e.g., QacBIII), which at present have been sporadically described; and (iii) antibiotic modification, which is mediated by the enzymes AAC(6')Ib-cr, from which different alleles have been claimed, as well as CrpP, a newly described phosphorylase.
Collapse
|
17
|
González-Plaza JJ, Blau K, Milaković M, Jurina T, Smalla K, Udiković-Kolić N. Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. ENVIRONMENT INTERNATIONAL 2019; 130:104735. [PMID: 31260930 DOI: 10.1016/j.envint.2019.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 05/24/2023]
Abstract
High antibiotic releases from manufacturing facilities have been identified as a risk factor for antibiotic resistance development in bacterial pathogens. However, the role of antibiotic pollution in selection and transferability of antibiotic resistance genes (ARGs) is still limited. In this study, we analyzed effluents from azithromycin-synthesis and veterinary-drug formulation facilities as well as sediments from receiving river and creek taken at the effluent discharge sites, upstream and downstream of discharge. Culturing showed that the effluent discharge significantly increased the proportion of antibiotic resistant bacteria in exposed sediments compared to the upstream ones. Quantitative real-time PCR revealed that effluents from both industries contained high and similar relative abundances of resistance genes [sul1, sul2, qacE/qacEΔ1, tet(A)], class 1 integrons (intI1) and IncP-1 plasmids (korB). Consequently, these genes significantly increased in relative abundances in receiving sediments, with more pronounced effects being observed for river than for creek sediments due to lower background levels of the investigated genes in the river. In addition, effluent discharge considerably increased transfer frequencies of captured ARGs from exposed sediments into Escherichia coli CV601 recipient as shown by biparental mating experiments. Most plasmids exogenously captured from effluent and polluted sediments belonged to the broad host range IncP-1ε plasmid group, conferred multiple antibiotic resistance and harbored class 1 integrons. Discharge of pharmaceutical waste from antibiotic manufacturing sites thus poses a risk for development and dissemination of multi-resistant bacteria, including pathogens.
Collapse
Affiliation(s)
| | - Khald Blau
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | | |
Collapse
|
18
|
Milaković M, Vestergaard G, González-Plaza JJ, Petrić I, Šimatović A, Senta I, Kublik S, Schloter M, Smalla K, Udiković-Kolić N. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. ENVIRONMENT INTERNATIONAL 2019; 123:501-511. [PMID: 30622075 DOI: 10.1016/j.envint.2018.12.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/05/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Effluents from antibiotic manufacturing may contain high concentrations of antibiotics, which are the main driving force behind the selection and spread of antibiotic resistance genes in the environment. However, our knowledge about the impact of such effluent discharges on the antibiotic resistome and bacterial communities is still limited. To gain insight into this impact, we collected effluents from an azithromycin-manufacturing industry discharge site as well as upstream and downstream sediments from the receiving Sava river during both winter and summer season. Chemical analyses of sediment and effluent samples indicated that the effluent discharge significantly increased the amount of macrolide antibiotics, heavy metals and nutrients in the receiving river sediments. Quantitative PCR revealed a significant increase of relative abundances of macrolide-resistance genes and class 1 integrons in effluent-impacted sediments. Amplicon sequencing of 16S rRNA genes showed spatial and seasonal bacterial community shifts in the receiving sediments. Redundancy analysis and Mantel test indicated that macrolides and copper together with nutrients significantly correlated with community shift close to the effluent discharge site. The number of taxa that were significantly increased in relative abundance at the discharge site decreased rapidly at the downstream sites, showing the resilience of the indigenous sediment bacterial community. Seasonal changes in the chemical properties of the sediment along with changes in effluent community composition could be responsible for sediment community shifts between winter and summer. Altogether, this study showed that the discharge of pharmaceutical effluents altered physicochemical characteristics and bacterial community of receiving river sediments, which contributed to the enrichment of macrolide-resistance genes and integrons.
Collapse
Affiliation(s)
- Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Juan J González-Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ana Šimatović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivan Senta
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, D-38104 Braunschweig, Germany
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
19
|
Antibiotic Resistance in Pharmaceutical Industry Effluents and Effluent-Impacted Environments. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2019. [DOI: 10.1007/698_2019_389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Flach CF, Genheden M, Fick J, Joakim Larsson DG. A Comprehensive Screening of Escherichia coli Isolates from Scandinavia's Largest Sewage Treatment Plant Indicates No Selection for Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11419-11428. [PMID: 30215260 DOI: 10.1021/acs.est.8b03354] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There is concern that sewage treatment plants (STPs) serve as hotspots for emergence and selection of antibiotic resistant bacteria. However, field studies investigating resistance selection by comparing bacterial populations in influents and effluents have produced variable and sometimes contradictive results. Also, large taxonomic changes between influents and effluents make interpretation of studies measuring relative gene abundances ambiguous. The aim here was to investigate whether within-species selection occurs by conducting a comprehensive screening of Escherichia coli isolated from composite influent and effluent samples collected at Scandinavia's largest STP, accompanied by analyses of antibiotics residues. In total, 4028 isolates, collected on eight occasions during 18 months, were screened for resistance to seven antibiotics. Although differences in proportions of resistant E. coli between influent and effluent samples were detected for a few antibiotics on two occasions, aggregated data over time showed no such differences for any of the investigated antibiotics. Neither was there any enrichment of multiresistant or extended-spectrum beta-lactamase-producing isolates through the treatment process. Despite some antibiotics were detected at or close to concentrations predicted to provide some selective pressure, field observations of resistance profiles in E. coli do not provide support for systematic selection in the investigated STP.
Collapse
Affiliation(s)
- Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) , University of Gothenburg , 41346 Gothenburg , Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , 41346 Gothenburg , Sweden
| | - Maja Genheden
- Centre for Antibiotic Resistance Research (CARe) , University of Gothenburg , 41346 Gothenburg , Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , 41346 Gothenburg , Sweden
| | - Jerker Fick
- Department of Chemistry , Umeå University , 90187 Umeå , Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) , University of Gothenburg , 41346 Gothenburg , Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , 41346 Gothenburg , Sweden
| |
Collapse
|
21
|
Ambrose SJ, Harmer CJ, Hall RM. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid 2018; 99:40-55. [PMID: 30081066 DOI: 10.1016/j.plasmid.2018.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023]
Abstract
The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Multidrug-resistant Citrobacter freundii ST139 co-producing NDM-1 and CMY-152 from China. Sci Rep 2018; 8:10653. [PMID: 30006537 PMCID: PMC6045649 DOI: 10.1038/s41598-018-28879-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 11/14/2022] Open
Abstract
The emergence of carbapenemase-producing Citrobacter freundii poses a significant threat to public health worldwide. Here, we reported a C. freundii strain CWH001 which was resistant to all tested antimicrobials except tetracycline. Whole genome sequencing and analysis were performed. The strain, which belonged to a new sequence type ST139, showed close relationship with other foreign C. freundii strains through phylogenetic analysis. A novel variant of the intrinsic blaCMY gene located on the chromosome was identified and designated as blaCMY-152. Coexistence of blaNDM-1 with qnrS1 was found on a conjugative IncN plasmid, which had a backbone appearing in various plasmids. Other class A ESBL genes (blaVEB-3 and blaTEM-1) were also detected on two different novel plasmids. The emergence of multidrug-resistant C. freundii is of major concern, causing great challenges to the treatment of clinical infections. Great efforts need to be taken for the specific surveillance of this opportunistic pathogen.
Collapse
|
23
|
Kraupner N, Ebmeyer S, Bengtsson-Palme J, Fick J, Kristiansson E, Flach CF, Larsson DGJ. Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. ENVIRONMENT INTERNATIONAL 2018; 116:255-268. [PMID: 29704804 DOI: 10.1016/j.envint.2018.04.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/27/2018] [Accepted: 04/17/2018] [Indexed: 05/27/2023]
Abstract
There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 μg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 μg/L or higher. Only at 5-10 μg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 μg/L and the corresponding no observed effect concentration 0.1 μg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Nadine Kraupner
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Ebmeyer
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
24
|
Bengtsson-Palme J, Larsson DGJ, Kristiansson E. Using metagenomics to investigate human and environmental resistomes. J Antimicrob Chemother 2018; 72:2690-2703. [PMID: 28673041 DOI: 10.1093/jac/dkx199] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a global health concern declared by the WHO as one of the largest threats to modern healthcare. In recent years, metagenomic DNA sequencing has started to be applied as a tool to study antibiotic resistance in different environments, including the human microbiota. However, a multitude of methods exist for metagenomic data analysis, and not all methods are suitable for the investigation of resistance genes, particularly if the desired outcome is an assessment of risks to human health. In this review, we outline the current state of methods for sequence handling, mapping to databases of resistance genes, statistical analysis and metagenomic assembly. In addition, we provide an overview of important considerations related to the analysis of resistance genes, and recommend some of the currently used tools and methods that are best equipped to inform research and clinical practice related to antibiotic resistance.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| |
Collapse
|
25
|
Marathe NP, Janzon A, Kotsakis SD, Flach CF, Razavi M, Berglund F, Kristiansson E, Larsson DGJ. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. ENVIRONMENT INTERNATIONAL 2018; 112:279-286. [PMID: 29316517 DOI: 10.1016/j.envint.2017.12.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 05/28/2023]
Abstract
Evolution has provided environmental bacteria with a plethora of genes that give resistance to antibiotic compounds. Under anthropogenic selection pressures, some of these genes are believed to be recruited over time into pathogens by horizontal gene transfer. River sediment polluted with fluoroquinolones and other drugs discharged from bulk drug production in India constitute an environment with unprecedented, long-term antibiotic selection pressures. It is therefore plausible that previously unknown resistance genes have evolved and/or are promoted here. In order to search for novel resistance genes, we therefore analyzed such river sediments by a functional metagenomics approach. DNA fragments providing resistance to different antibiotics in E. coli were sequenced using Sanger and PacBio RSII platforms. We recaptured the majority of known antibiotic resistance genes previously identified by open shot-gun metagenomics sequencing of the same samples. In addition, seven novel resistance gene candidates (six beta-lactamases and one amikacin resistance gene) were identified. Two class A beta-lactamases, blaRSA1 and blaRSA2, were phylogenetically close to clinically important ESBLs like blaGES, blaBEL and blaL2, and were further characterized for their substrate spectra. The blaRSA1 protein, encoded as an integron gene cassette, efficiently hydrolysed penicillins, first generation cephalosporins and cefotaxime, while blaRSA2 was an inducible class A beta-lactamase, capable of hydrolyzing carbapenems albeit with limited efficiency, similar to the L2 beta-lactamase from Stenotrophomonas maltophilia. All detected novel genes were associated with plasmid mobilization proteins, integrons, and/or other resistance genes, suggesting a potential for mobility. This study provides insight into a resistome shaped by an exceptionally strong and long-term antibiotic selection pressure. An improved knowledge of mobilized resistance factors in the external environment may make us better prepared for the resistance challenges that we may face in clinics in the future.
Collapse
Affiliation(s)
- Nachiket P Marathe
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Anders Janzon
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Stathis D Kotsakis
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden.
| |
Collapse
|
26
|
Metagenomics Reveals the Impact of Wastewater Treatment Plants on the Dispersal of Microorganisms and Genes in Aquatic Sediments. Appl Environ Microbiol 2018; 84:AEM.02168-17. [PMID: 29269503 PMCID: PMC5812944 DOI: 10.1128/aem.02168-17] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae, Legionellaceae, Moraxellaceae, and Neisseriaceae, in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies. IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic footprint, including genes specific to antibiotic resistance and mobile genetic elements and their associated organisms, from WWTPs to lake sediments. Our work is novel in that we used metagenomic data sets to comprehensively evaluate total gene content and the genetic and taxonomic context of specific genes in environmental samples putatively impacted by WWTP inputs. Based on two different WWTPs with different treatment processes, our findings point to an influence of WWTPs on the presence, abundance, and composition of these factors in the environment.
Collapse
|
27
|
González-Plaza JJ, Šimatović A, Milaković M, Bielen A, Wichmann F, Udiković-Kolić N. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments. Front Microbiol 2018; 8:2675. [PMID: 29387045 PMCID: PMC5776109 DOI: 10.3389/fmicb.2017.02675] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs from environmental hotspots such as discharge sites of pharmaceutical effluents.
Collapse
Affiliation(s)
- Juan J González-Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Šimatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
28
|
Zhao Y, Wang L, Zhang Z, Feng J, Kang H, Fang L, Jiang X, Zhang D, Zhan Z, Zhou D, Tong Y. Structural genomics of pNDM-BTR harboring In191 and Tn6360, and other bla NDM-carrying IncN1 plasmids. Future Microbiol 2017; 12:1271-1281. [DOI: 10.2217/fmb-2017-0067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To characterize a conjugative bla NDM-1-carrying plasmid pNDM-BTR from a clinical Escherichia coli isolate. Materials & methods: The complete nucleotide sequence of pNDM-BTR was determined using next-generation sequencing technology. Comparative genomic analysis of bla NDM-carrying IncN1 plasmids, including pNDM-BTR, was performed, and the antimicrobial resistance phenotypes were determined. Results: pNDM-BTR contained three accessory modules, namely IS26, a novel Tn3-family transposon Tn6360 and the dfrA14 region composed of In191, ecoRII–ecoRIImet and ΔIS1X2. The relatively small IncN1 backbones could integrate massive accessory modules, most of which were integrated at two ‘hotspots’. These IncN1 plasmids contained distinct profiles of accessory modules, which included those carrying various resistance genes. Conclusion: This study provides a deeper insight into horizontal transfer of resistance genes among IncN1 plasmids.
Collapse
Affiliation(s)
- Yachao Zhao
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Lijun Wang
- Department of Laboratory Medicine, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing 102218, China
| | - Zhiyi Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Jiao Feng
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Huaixing Kang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Liqun Fang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Defu Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
- College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China
| | - Zhe Zhan
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| |
Collapse
|
29
|
Horizontal Dissemination of Antimicrobial Resistance Determinants in Multiple Salmonella Serotypes following Isolation from the Commercial Swine Operation Environment after Manure Application. Appl Environ Microbiol 2017; 83:AEM.01503-17. [PMID: 28802274 DOI: 10.1128/aem.01503-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to characterize the plasmids carrying antimicrobial resistance (AMR) determinants in multiple Salmonella serotypes recovered from the commercial swine farm environment after manure application on land. Manure and soil samples were collected on day 0 before and after manure application on six farms in North Carolina, and sequential soil samples were recollected on days 7, 14, and 21 from the same plots. All environmental samples were processed for Salmonella, and their plasmid contents were further characterized. A total of 14 isolates including Salmonella enterica serotypes Johannesburg (n = 2), Ohio (n = 2), Rissen (n = 1), Typhimurium var5- (n = 5), Worthington (n = 3), and 4,12:i:- (n = 1), representing different farms, were selected for plasmid analysis. Antimicrobial susceptibility testing was done by broth microdilution against a panel of 14 antimicrobials on the 14 confirmed transconjugants after conjugation assays. The plasmids were isolated by modified alkaline lysis, and PCRs were performed on purified plasmid DNA to identify the AMR determinants and the plasmid replicon types. The plasmids were sequenced for further analysis and to compare profiles and create phylogenetic trees. A class 1 integron with an ANT(2″)-Ia-aadA2 cassette was detected in the 50-kb IncN plasmids identified in S Worthington isolates. We identified 100-kb and 90-kb IncI1 plasmids in S Johannesburg and S Rissen isolates carrying the blaCMY-2 and tet(A) genes, respectively. An identical 95-kb IncF plasmid was widely disseminated among the different serotypes and across different farms. Our study provides evidence on the importance of horizontal dissemination of resistance determinants through plasmids of multiple Salmonella serotypes distributed across commercial swine farms after manure application.IMPORTANCE The horizontal gene transfer of antimicrobial resistance (AMR) determinants located on plasmids is considered to be the main reason for the rapid proliferation and spread of drug resistance. The deposition of manure generated in swine production systems into the environment is identified as a potential source of AMR dissemination. In this study, AMR gene-carrying plasmids were detected in multiple Salmonella serotypes across different commercial swine farms in North Carolina. The plasmid profiles were characterized based on Salmonella serotype donors and incompatibility (Inc) groups. We found that different Inc plasmids showed evidence of AMR gene transfer in multiple Salmonella serotypes. We detected an identical 95-kb plasmid that was widely distributed across swine farms in North Carolina. These conjugable resistance plasmids were able to persist on land after swine manure application. Our study provides strong evidence of AMR determinant dissemination present in plasmids of multiple Salmonella serotypes in the environment after manure application.
Collapse
|
30
|
Boulund F, Berglund F, Flach CF, Bengtsson-Palme J, Marathe NP, Larsson DGJ, Kristiansson E. Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics 2017; 18:682. [PMID: 28865446 PMCID: PMC5581476 DOI: 10.1186/s12864-017-4064-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluoroquinolones are broad-spectrum antibiotics used to prevent and treat a wide range of bacterial infections. Plasmid-mediated qnr genes provide resistance to fluoroquinolones in many bacterial species and are increasingly encountered in clinical settings. Over the last decade, several families of qnr genes have been discovered and characterized, but their true prevalence and diversity still remain unclear. In particular, environmental and host-associated bacterial communities have been hypothesized to maintain a large and unknown collection of qnr genes that could be mobilized into pathogens. RESULTS In this study we used computational methods to screen genomes and metagenomes for novel qnr genes. In contrast to previous studies, we analyzed an almost 20-fold larger dataset comprising almost 13 terabases of sequence data. In total, 362,843 potential qnr gene fragments were identified, from which 611 putative qnr genes were reconstructed. These gene sequences included all previously described plasmid-mediated qnr gene families. Fifty-two of the 611 identified qnr genes were reconstructed from metagenomes, and 20 of these were previously undescribed. All of the novel qnr genes were assembled from metagenomes associated with aquatic environments. Nine of the novel genes were selected for validation, and six of the tested genes conferred consistently decreased susceptibility to ciprofloxacin when expressed in Escherichia coli. CONCLUSIONS The results presented in this study provide additional evidence for the ubiquitous presence of qnr genes in environmental microbial communities, expand the number of known qnr gene variants and further elucidate the diversity of this class of resistance genes. This study also strengthens the hypothesis that environmental bacterial communities act as sources of previously uncharacterized qnr genes.
Collapse
Affiliation(s)
- Fredrik Boulund
- Department of Mathematical sciences, Chalmers university of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Department of Mathematical sciences, Chalmers university of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - DG Joakim Larsson
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical sciences, Chalmers university of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
pSY153-MDR, a p12969-DIM-related mega plasmid carrying blaIMP-45 and armA, from clinical Pseudomonas putida. Oncotarget 2017; 8:68439-68447. [PMID: 28978128 PMCID: PMC5620268 DOI: 10.18632/oncotarget.19496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/30/2017] [Indexed: 11/30/2022] Open
Abstract
This work characterized mega plasmid pSY153-MDR, carrying blaIMP-45 and armA, from a multidrug-resistant (MDR) Pseudomonas putida isolate from the urine of a cerebral infarction patient in China. The backbone of pSY153-MDR was closely related to Pseudomonas plasmids p12969-DIM, pOZ176, pBM413, pTTS12, and pRBL16, and could not be assigned to any of the known incompatibility groups. The accessory modules of pSY153-MDR were composed of 10 individual insertion sequence elements and two different MDR regions, and differed dramatically from the above plasmids. Fifteen non-redundant resistance markers were identified to be involved in resistance to at least eight distinct classes of antibiotics. All of these resistance genes were associated with mobile elements, and were embedded within the two MDR regions. blaIMP-45 and armA coexisted in a Tn1403–Tn1548 region, which was generated from homologous recombination of Tn1403- and Tn1548-like transposons. The second copy of armA was a component of the ISCR28–armA–∆ISCR28 structure, representing a novel armA vehicle. This vehicle was located within In48, which was related to In363 and In1058. Data presented here provide a deeper insight into the evolutionary history of SY153, especially in regard to how it became extensively drug-resistant.
Collapse
|
32
|
Flach CF, Pal C, Svensson CJ, Kristiansson E, Östman M, Bengtsson-Palme J, Tysklind M, Larsson DGJ. Does antifouling paint select for antibiotic resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:461-468. [PMID: 28284638 DOI: 10.1016/j.scitotenv.2017.01.213] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
There is concern that heavy metals and biocides contribute to the development of antibiotic resistance via co-selection. Most antifouling paints contain high amounts of such substances, which risks turning painted ship hulls into highly mobile refuges and breeding grounds for antibiotic-resistant bacteria. The objectives of this study were to start investigate if heavy-metal based antifouling paints can pose a risk for co-selection of antibiotic-resistant bacteria and, if so, identify the underlying genetic basis. Plastic panels with one side painted with copper and zinc-containing antifouling paint were submerged in a Swedish marina and biofilms from both sides of the panels were harvested after 2.5-4weeks. DNA was isolated from the biofilms and subjected to metagenomic sequencing. Biofilm bacteria were cultured on marine agar supplemented with tetracycline, gentamicin, copper sulfate or zinc sulfate. Biofilm communities from painted surfaces displayed lower taxonomic diversity and enrichment of Gammaproteobacteria. Bacteria from these communities showed increased resistance to both heavy metals and tetracycline but not to gentamicin. Significantly higher abundance of metal and biocide resistance genes was observed, whereas mobile antibiotic resistance genes were not enriched in these communities. In contrast, we found an enrichment of chromosomal RND efflux system genes, including such with documented ability to confer decreased susceptibility to both antibiotics and biocides/heavy metals. This was paralleled by increased abundances of integron-associated integrase and ISCR transposase genes. The results show that the heavy metal-based antifouling paint exerts a strong selection pressure on marine bacterial communities and can co-select for certain antibiotic-resistant bacteria, likely by favoring species and strains carrying genes that provide cross-resistance. Although this does not indicate an immediate risk for promotion of mobile antibiotic resistance, the clear increase of genes involved in mobilizing DNA provides a foundation for increased opportunities for gene transfer in such communities, which might also involve yet unknown resistance mechanisms.
Collapse
Affiliation(s)
- Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| | - Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Carl Johan Svensson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcus Östman
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Abstract
Antibiotic resistance is a global public health issue of growing proportions. All antibiotics are susceptible to resistance. The evidence is now clear that the environment is the single largest source and reservoir of resistance. Soil, aquatic, atmospheric, animal-associated, and built ecosystems are home to microbes that harbor antibiotic resistance elements and the means to mobilize them. The diversity and abundance of resistance in the environment is consistent with the ancient origins of antibiotics and a variety of studies support a long natural history of associated resistance. The implications are clear: Understanding the evolution of resistance in the environment, its diversity, and mechanisms is essential to the management of our existing and future antibiotic resources.
Collapse
Affiliation(s)
- Matthew D Surette
- M.G. DeGroote Institute for Infectious Disease Research and.,Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8N 4K1;
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research and.,Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8N 4K1;
| |
Collapse
|
34
|
Unique Features of Aeromonas Plasmid pAC3 and Expression of the Plasmid-Mediated Quinolone Resistance Genes. mSphere 2017; 2:mSphere00203-17. [PMID: 28567445 PMCID: PMC5444012 DOI: 10.1128/msphere.00203-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/07/2017] [Indexed: 11/29/2022] Open
Abstract
In the present study, plasmid pAC3 isolated from a highly fluoroquinolone-resistant isolate of Aeromonas species was sequenced and found to contain two fluoroquinolone resistance genes, aac(6′)-Ib-cr and qnrS2. Comparative analyses of plasmid pAC3 and other Aeromonas sp. IncU-type plasmids revealed a mobile insertion cassette element with a unique structure containing a qnrS2 gene and a typical miniature inverted-repeat transposable element (MITE) structure. This study also revealed that this MITE sequence appears in other Aeromonas species plasmids and chromosomes. Our results also demonstrate that the fluoroquinolone-dependent expression of qnrS2 is associated with rsd in E. coli DH5α harboring plasmid pAC3. Our findings suggest that the mobile element may play an important role in qnrS2 dissemination and that Aeromonas species constitute an important reservoir of fluoroquinolone resistance determinants in the environment. A highly fluoroquinolone-resistant isolate of Aeromonas species was isolated from a wastewater treatment plant and found to possess multiple resistance mechanisms, including mutations in gyrA and parC, efflux pumps, and plasmid-mediated quinolone resistance (PMQR) genes. Complete sequencing of the IncU-type plasmid, pAC3, present in the strain revealed a circular plasmid DNA 15,872 bp long containing two PMQR genes [qnrS2 and aac(6′)-Ib-cr]. A mobile insertion cassette element containing the qnrS2 gene and a typical miniature inverted-repeat transposable element (MITE) structure was identified in the plasmid. The present study revealed that this MITE sequence appears in other Aeromonas species plasmids and chromosomes. Plasmid pAC3 was introduced into Escherichia coli, and its PMQR genes were expressed, resulting in the acquisition of resistance. Proteome analysis of the recipient E. coli strain harboring the plasmid revealed that aac(6′)-Ib-cr expression was constitutive and that qnrS2 expression was dependent upon fluoroquinolone stress through regulation by regulator of sigma D (Rsd). To the best of our knowledge, this is the first report to characterize a novel MITE sequence upstream of the PMQR gene within a mobile insertion cassette, as well as the regulation of qnrS2 expression. Our results suggest that this mobile element may play an important role in qnrS2 dissemination. IMPORTANCE In the present study, plasmid pAC3 isolated from a highly fluoroquinolone-resistant isolate of Aeromonas species was sequenced and found to contain two fluoroquinolone resistance genes, aac(6′)-Ib-cr and qnrS2. Comparative analyses of plasmid pAC3 and other Aeromonas sp. IncU-type plasmids revealed a mobile insertion cassette element with a unique structure containing a qnrS2 gene and a typical miniature inverted-repeat transposable element (MITE) structure. This study also revealed that this MITE sequence appears in other Aeromonas species plasmids and chromosomes. Our results also demonstrate that the fluoroquinolone-dependent expression of qnrS2 is associated with rsd in E. coli DH5α harboring plasmid pAC3. Our findings suggest that the mobile element may play an important role in qnrS2 dissemination and that Aeromonas species constitute an important reservoir of fluoroquinolone resistance determinants in the environment.
Collapse
|
35
|
Complex Class 1 Integron Carrying qnrB62 and blaVIM-2 in a Citrobacter freundii Clinical Isolate. Antimicrob Agents Chemother 2016; 60:6937-6940. [PMID: 27572415 DOI: 10.1128/aac.00614-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022] Open
Abstract
The coexistence of qnrB62 and blaVIM-2 was detected in a Citrobacter clinical isolate. The reduced fluoroquinolone susceptibility is attributable to qnrB62, mutations of quinolone-resistance-determining regions, and an efflux pump or pumps. The genetic context surrounding chromosomal qnrB62 was a novel complex class 1 integron (In1184::ISCR1::qnrB62) containing a unique gene array (blaVIM-2-aacA4'-8-gucD). An 18-nucleotide deletion at the 3' end of the pspA gene [pspA(Δ18)], upstream of qnrB62, and an inverted repeat region (IRR2) were detected in In1184::ISCR1::qnrB62, indicating past transposition events.
Collapse
|
36
|
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. The structure and diversity of human, animal and environmental resistomes. MICROBIOME 2016; 4:54. [PMID: 27717408 PMCID: PMC5055678 DOI: 10.1186/s40168-016-0199-5] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/28/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Antibiotic resistance genes (ARGs) are widespread but cause problems only when present in pathogens. Environments where selection and transmission of antibiotic resistance frequently take place are likely to be characterized by high abundance and diversity of horizontally transferable ARGs. Large-scale quantitative data on ARGs is, however, lacking for most types of environments, including humans and animals, as is data on resistance genes to potential co-selective agents, such as biocides and metals. This paucity prevents efficient identification of risk environments. RESULTS We provide a comprehensive characterization of resistance genes, mobile genetic elements (MGEs) and bacterial taxonomic compositions for 864 metagenomes from humans (n = 350), animals (n = 145) and external environments (n = 369), all deeply sequenced using Illumina technology. Environment types showed clear differences in both resistance profiles and bacterial community compositions. Human and animal microbial communities were characterized by limited taxonomic diversity and low abundance and diversity of biocide/metal resistance genes and MGEs but a relatively high abundance of ARGs. In contrast, external environments showed consistently high taxonomic diversity which in turn was linked to high diversity of both biocide/metal resistance genes and MGEs. Water, sediment and soil generally carried low relative abundance and few varieties of known ARGs, whereas wastewater/sludge was on par with the human gut. The environments with the largest relative abundance and/or diversity of ARGs, including genes encoding resistance to last resort antibiotics, were those subjected to industrial antibiotic pollution and a limited set of deeply sequenced air samples from a Beijing smog event. CONCLUSIONS Our study identifies air and antibiotic-polluted environments as under-investigated transmission routes and reservoirs for antibiotic resistance. The high taxonomic and genetic diversity of external environments supports the hypothesis that these also form vast sources of unknown resistance genes, with potential to be transferred to pathogens in the future.
Collapse
Affiliation(s)
- Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
37
|
Sun F, Zhou D, Sun Q, Luo W, Tong Y, Zhang D, Wang Q, Feng W, Chen W, Fan Y, Xia P. Genetic characterization of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata. Sci Rep 2016; 6:33982. [PMID: 27658354 PMCID: PMC5034289 DOI: 10.1038/srep33982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 02/04/2023] Open
Abstract
We previously reported the complete sequence of the resistance plasmid pP10164-NDM, harboring blaNDM (conferring carbapenem resistance) and bleMBL (conferring bleomycin resistance), which is recovered from a clinical Leclercia adecarboxylata isolate P10164 from China. This follow-up work disclosed that there were still two multidrug-resistant (MDR) plasmids pP10164-2 and pP10164-3 coexisting in this strain. pP10164-2 and pP10164-3 were completely sequenced and shown to carry a wealth of resistance genes, which encoded the resistance to at least 10 classes of antibiotics (β-lactams. macrolides, quinolones, aminoglycosides, tetracyclines, amphenicols, quaternary ammonium compounds, sulphonamides, trimethoprim, and rifampicin) and 7 kinds of heavy mental (mercury, silver, copper, nickel, chromate, arsenic, and tellurium). All of these antibiotic resistance genes are associated with mobile elements such as transposons, integrons, and insertion sequence-based transposable units, constituting a total of three novel MDR regions, two in pP10164-2 and the other one in pP10164-3. Coexistence of three resistance plasmids pP10164-NDM, pP10164-2 and pP10164-3 makes L. adecarboxylata P10164 tend to become extensively drug-resistant.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qiang Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.,College of Food Science and Project Engineering, Bohai University, Jinzhou 121013, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yahan Fan
- Transfusion Department, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
38
|
Jutkina J, Rutgersson C, Flach CF, Joakim Larsson DG. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 548-549:131-138. [PMID: 26802341 DOI: 10.1016/j.scitotenv.2016.01.044] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 05/09/2023]
Abstract
Ability to understand the factors driving horizontal transfer of antibiotic resistance from unknown, harmless bacteria to pathogens is crucial in order to tackle the growing resistance problem. However, current methods to measure effects of stressors on horizontal gene transfer have limitations and often fall short, as the estimated endpoints can be a mix of both the number of transfer events and clonal growth of transconjugants. Our aim was therefore to achieve a proper strategy for assessing the minimal concentration of a stressor (exemplified by tetracycline) that drives horizontal transfer of antibiotic resistance from a complex community to a model pathogen. Conditions were optimized to improve a culture-based approach using the bacterial community of treated sewage effluent as donor, and fluorescent, traceable Escherichia coli as recipient. Reduced level of background resistance, differentiation of isolates as well as decreased risk for measuring effects of selection were achieved through the use of chromogenic medium, optimization of conjugation time as well as applying a different antibiotic for isolation of transconjugants than the one tested for its ability to drive transfer. Using this assay, we showed that a very low concentration of tetracycline, 10μg/L i.e. 150 times below the minimal inhibitory concentration of the recipient, promoted horizontal transfer of multiple antibiotic-resistance determinants. Higher concentrations favoured selection of a tetracycline-resistance phenotype along with a decline in the number of detectable transfer events. The described method can be used to evaluate different environmental conditions and factors that trigger horizontal dissemination of mobile resistance elements, eventually resulting in the formation of drug-resistant pathogens.
Collapse
Affiliation(s)
- Jekaterina Jutkina
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
| | - Carolin Rutgersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden.
| |
Collapse
|
39
|
Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. ENVIRONMENT INTERNATIONAL 2016; 86:140-9. [PMID: 26590482 DOI: 10.1016/j.envint.2015.10.015] [Citation(s) in RCA: 535] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 05/21/2023]
Abstract
There are concerns that selection pressure from antibiotics in the environment may accelerate the evolution and dissemination of antibiotic-resistant pathogens. Nevertheless, there is currently no regulatory system that takes such risks into account. In part, this is due to limited knowledge of environmental concentrations that might exert selection for resistant bacteria. To experimentally determine minimal selective concentrations in complex microbial ecosystems for all antibiotics would involve considerable effort. In this work, our aim was to estimate upper boundaries for selective concentrations for all common antibiotics, based on the assumption that selective concentrations a priori need to be lower than those completely inhibiting growth. Data on Minimal Inhibitory Concentrations (MICs) were obtained for 111 antibiotics from the public EUCAST database. The 1% lowest observed MICs were identified, and to compensate for limited species coverage, predicted lowest MICs adjusted for the number of tested species were extrapolated through modeling. Predicted No Effect Concentrations (PNECs) for resistance selection were then assessed using an assessment factor of 10 to account for differences between MICs and minimal selective concentrations. The resulting PNECs ranged from 8 ng/L to 64 μg/L. Furthermore, the link between taxonomic similarity between species and lowest MIC was weak. This work provides estimated upper boundaries for selective concentrations (lowest MICs) and PNECs for resistance selection for all common antibiotics. In most cases, PNECs for selection of resistance were below available PNECs for ecotoxicological effects. The generated PNECs can guide implementation of compound-specific emission limits that take into account risks for resistance promotion.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden.
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden.
| |
Collapse
|
40
|
Johnning A, Kristiansson E, Fick J, Weijdegård B, Larsson DGJ. Resistance Mutations in gyrA and parC are Common in Escherichia Communities of both Fluoroquinolone-Polluted and Uncontaminated Aquatic Environments. Front Microbiol 2015; 6:1355. [PMID: 26696975 PMCID: PMC4673309 DOI: 10.3389/fmicb.2015.01355] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023] Open
Abstract
Alterations in the target proteins of fluoroquinolones, especially in GyrA and ParC, are known to cause resistance. Here, we investigated environmental Escherichia communities to explore the possible link between the abundance of mutations, and the exposure to fluoroquinolones. Sediment samples were collected from a relatively pristine lake, up and downstream from a sewage treatment plant, and from several industrially polluted sites. The quinolone resistance-determining regions of gyrA and parC were analyzed using amplicon sequencing of metagenomic DNA. Five non-synonymous substitutions were present in all samples, and all of these mutations have been previously linked to fluoroquinolone resistance in Escherichia coli. In GyrA, substitutions S83L and D87N were on average detected at frequencies of 86 and 32%, respectively, and 31% of all amplicons encoded both substitutions. In ParC, substitutions S80I, E84G, and E84V were detected in 42, 0.9, and 6.0% of the amplicons, respectively, and 6.5% encoded double substitutions. There was no significant correlation between the level of fluoroquinolone pollution and the relative abundance of resistance mutations, with the exception of the most polluted site, which showed the highest abundance of said substitutions in both genes. Our results demonstrate that resistance mutations can be common in environmental Escherichia, even in the absence of a fluoroquinolone selective pressure.
Collapse
Affiliation(s)
- Anna Johnning
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Gothenburg, Sweden ; Department of Mathematical Sciences, Chalmers University of Technology Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University Umeå, Sweden
| | - Birgitta Weijdegård
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
41
|
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 2015. [PMID: 26576951 DOI: 10.1186/s12864-015-2153-5/figures/9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems. RESULTS Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes (n = 2522) and plasmids (n = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without (p < 0.0001). BMRGs were found in 86 % of bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (<0.7 %) but more common on those of human and domestic animal origin (5 % and 7 %, respectively). Finally, plasmids with both BMRGs and ARGs were more likely to be conjugative (p < 0.0001) and carry toxin-antitoxin systems (p < 0.0001) than plasmids without resistance genes. CONCLUSIONS This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co-selection, whereas ample possibilities exist for indirect selection via chromosomal BMRGs. Taken together, the derived patterns improve our understanding of co-selection potential between biocides, metals and antibiotics, and thereby provide guidance for risk-reducing actions.
Collapse
Affiliation(s)
- Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden.
| |
Collapse
|
42
|
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 2015; 16:964. [PMID: 26576951 PMCID: PMC4650350 DOI: 10.1186/s12864-015-2153-5] [Citation(s) in RCA: 486] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems. RESULTS Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes (n = 2522) and plasmids (n = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without (p < 0.0001). BMRGs were found in 86 % of bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (<0.7 %) but more common on those of human and domestic animal origin (5 % and 7 %, respectively). Finally, plasmids with both BMRGs and ARGs were more likely to be conjugative (p < 0.0001) and carry toxin-antitoxin systems (p < 0.0001) than plasmids without resistance genes. CONCLUSIONS This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co-selection, whereas ample possibilities exist for indirect selection via chromosomal BMRGs. Taken together, the derived patterns improve our understanding of co-selection potential between biocides, metals and antibiotics, and thereby provide guidance for risk-reducing actions.
Collapse
Affiliation(s)
- Chandan Pal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46, Gothenburg, Sweden.
| |
Collapse
|