1
|
da Costa RC, Serrano I, Chambel L, Oliveira M. The importance of "one health approach" to the AMR study and surveillance in Angola and other African countries. One Health 2024; 18:100691. [PMID: 39010949 PMCID: PMC11247297 DOI: 10.1016/j.onehlt.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/29/2024] [Indexed: 07/17/2024] Open
Abstract
The dissemination of multidrug-resistant (MDR) bacterial isolates in low- and middle-income countries, including several African countries, is a major concern. The poor sanitary conditions of rural and urban families observed in certain regions may favor the transmission of bacterial infections between animals and humans, including those promoted by strains resistant to practically all available antibiotics. In Angola, in particular, the presence of these strains in human hospitals has already been described. Nevertheless, the information on antimicrobial resistance (AMR) prevalence in Angola is still scarce, especially regarding veterinary isolates. This review aimed to synthesize data on antimicrobial resistance in African countries, with a special focus on Angola, from a One Health perspective. The main goals were to identify research gaps that may require further analysis, and to draw attention to the importance of the conscious use of antimicrobials and the establishment of preventive strategies, aiming to guarantee the safeguarding of public health. To understand these issues, the available literature on AMR in Africa was reviewed. We searched PubMed for articles pertinent to AMR in relevant pathogens in Angola and other African countries. In this review, we focused on AMR rates and surveillance capacity. The principal findings were that, in Africa, especially in sub-Saharan countries, AMR incidence is high due to the lack of legislation on antibiotics, to the close interaction of humans with animals and the environment, and to poverty. The information about current resistance patterns of common pathogenic bacteria is sparse, and the number of quality studies is limited in Angola and in some other Sub-Saharan African countries. Also, studies on the "One Health Approach" focusing on the environment, animals, and humans, are scarce in Africa. The surveillance capacity is minimal, and only a low number of AMR surveillance programs and national health programs are implemented. Most international and cooperative surveillance programs, when implemented, are not properly followed, concluded, nor reported. In Angola, the national health plan does not include AMR control, and there is a consistent omission of data submitted to international surveillance programs. By identifying One Health strengths of each country, AMR can be controlled with a multisectoral approach and governmental commitment.
Collapse
Affiliation(s)
- Romay Coragem da Costa
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Animal Health, Faculty of Veterinary Medicine, University José Eduardo dos Santos, Huambo, Angola
| | - Isa Serrano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Lélia Chambel
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Desire OE, Larson B, Richard O, Rolande MM, Serge KB. Investigating antibiotic resistance in enterococci in Gabonese livestock. Vet World 2022; 15:714-721. [PMID: 35497974 PMCID: PMC9047121 DOI: 10.14202/vetworld.2022.714-721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/10/2022] [Indexed: 01/14/2023] Open
Abstract
Background and Aim: The emergence of antibiotic resistance is a major problem worldwide. Antibiotics are often used to prevent or treat infections in livestock. This study aimed to investigate antibiotic resistance in enterococci in Gabonese livestock. Materials and Methods: We collected 174 animal samples (46 laying hens, 24 swine, 62 cattle, and 42 sheep) from farms in four provinces of Gabon. Bacterial strains belonging to the genus Enterococcus were obtained using selective media and polymerase chain reaction targeting the tuf gene. Antibiotic susceptibility was determined by the disk diffusion method on Mueller-Hinton agar. Results: Enterococci were present in 160 of the samples (97%), distributed as follows: laying hens (100%, 41/41), swine (100%, 22/22), small ruminants (88%, 37/42), and cattle (100%, 60/60). Resistance to cephalothin/cephalexin, streptomycin, and rifampicin (RIF) was high, and resistance to vancomycin (VAN), erythromycin, and tetracycline was moderate. A high diversity of resistance was found in Haut-Ogooué and Estuaire provinces. Laying hens and swine showed moderate levels of resistance to ciprofloxacin and penicillin, while sheep and cattle had high levels of resistance to RIF. All species showed a high level of resistance to VAN. We found various patterns of multiple resistances in the isolates, and the multiple resistance indexes ranged from 0.2 to 0.8. Conclusion: This study shows that livestock in Gabon can be considered potential reservoirs of resistance.
Collapse
Affiliation(s)
- Otsaghe Ekore Desire
- Centre International de Recherche Médicales de Franceville, BP: 769, Franceville, Gabon; Ecole Doctorale Régional d'Afrique Central, BP: 876, Franceville, Gabon
| | - Boundenga Larson
- Centre International de Recherche Médicales de Franceville, BP: 769, Franceville, Gabon; Department of Anthropology, Durham University, South Road, Durham, DH1 3LE, UK
| | - Onanga Richard
- Centre International de Recherche Médicales de Franceville, BP: 769, Franceville, Gabon
| | - Mabika Mabika Rolande
- Centre International de Recherche Médicales de Franceville, BP: 769, Franceville, Gabon
| | | |
Collapse
|
3
|
Ekore DO, Onanga R, Nguema PPM, Lozano C, Kumulungui BS. The Antibiotics Used in Livestock and Their Impact on Resistance in Enterococcus faecium and Enterococcus hirae on Farms in Gabon. Antibiotics (Basel) 2022; 11:224. [PMID: 35203826 PMCID: PMC8868485 DOI: 10.3390/antibiotics11020224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/10/2022] Open
Abstract
The emergence of antibiotic resistance is a major concern around the world. The objective of this study was to investigate the antibiotics used in livestock and their impact on resistance in Enterococcus faecium and Enterococcus hirae on farms in Gabon. A structured questionnaire was used to collect information on the farms. Samples were collected from farms (n = 20) tested for Enterococcus by culture and isolation and were identified using a polymerase chain reaction (PCR) and sequencing. Antibiotic susceptibility was determined by the disc diffusion method on Mueller Hinton agar. The 20 farms included laying hens (6), swine (6), sheep (4) and cattle farms (4). Tetracycline was the most used antibiotic family (91%) and the most used prophylactic method (47%) for the treatment of animals. A total of 555 samples were collected and 515 (93%) Enterococcus spp. isolates of the genus were obtained. The prevalence of E. faecium and E. hirae were 10% and 8%, respectively. The isolates from E. faecium and E. hirae we found were related to clinical and human isolates in the NCBI database. E. faecium and E. hirae isolates showed a high resistance to tetracycline (69% and 65%) and rifampicin (39% and 56%). The tet(M) gene was detected in 65 tetracycline-resistant isolates with a large majority in hens (78% (21/27) and 86% (12/14) in E. faecium and E. hirae, respectively). The consumption of antibiotics favours the emergence of antibiotic resistance in animals in Gabon.
Collapse
Affiliation(s)
- Désiré Otsaghe Ekore
- Centre International de Recherche Médicales de Franceville, Franceville, Gabon; (R.O.); (P.P.M.N.); (C.L.); (B.S.K.)
- Ecole Doctorale Régional d’Afrique Central, Franceville, Gabon
| | - Richard Onanga
- Centre International de Recherche Médicales de Franceville, Franceville, Gabon; (R.O.); (P.P.M.N.); (C.L.); (B.S.K.)
| | - Pierre Phillipe Mbehang Nguema
- Centre International de Recherche Médicales de Franceville, Franceville, Gabon; (R.O.); (P.P.M.N.); (C.L.); (B.S.K.)
- Institut de Recherche en Ecologie Tropical, Libreville, Gabon
| | - Chloé Lozano
- Centre International de Recherche Médicales de Franceville, Franceville, Gabon; (R.O.); (P.P.M.N.); (C.L.); (B.S.K.)
| | - Brice Serge Kumulungui
- Centre International de Recherche Médicales de Franceville, Franceville, Gabon; (R.O.); (P.P.M.N.); (C.L.); (B.S.K.)
| |
Collapse
|
4
|
Rebelo A, Mourão J, Freitas AR, Duarte B, Silveira E, Sanchez-Valenzuela A, Almeida A, Baquero F, Coque TM, Peixe L, Antunes P, Novais C. Diversity of metal and antibiotic resistance genes in Enterococcus spp. from the last century reflects multiple pollution and genetic exchange among phyla from overlapping ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147548. [PMID: 34000557 DOI: 10.1016/j.scitotenv.2021.147548] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As), mercury (Hg), and copper (Cu) are among the major historical and contemporary metal pollutants linked to global anthropogenic activities. Enterococcus have been considered indicators of fecal pollution and antibiotic resistance for years, but its largely underexplored metallome precludes understanding their role as metal pollution bioindicators as well. Our goal was to determine the occurrence, diversity, and phenotypes associated with known acquired genes/operons conferring tolerance to As, Hg or Cu among Enterococcus and to identify their genetic context (381 field isolates from diverse epidemiological and genetic backgrounds; 3547 enterococcal genomes available in databases representing a time span during 1900-2019). Genes conferring tolerance to As (arsA), Hg (merA) or Cu (tcrB) were used as biomarkers of widespread metal tolerance operons. Different variants of metal tolerance (MeT) genes (13 arsA, 6 merA, 1 tcrB) were more commonly recovered from the food-chain (arsA, tcrB) or humans (merA), and were shared with 49 other bacterial taxa. Comparative genomics analysis revealed that MeT genes occurred in heterogeneous operons, at least since the 1900s, with an increasing accretion of antibiotic resistance genes since the 1960's, reflecting diverse antimicrobial pollution. Multiple MeT genes were co-located on the chromosome or conjugative plasmids flanked by elements with high potential for recombination, often along with antibiotic resistance genes. Phenotypic analysis of some isolates carrying MeT genes revealed up to 128× fold increase in the minimum inhibitory concentrations to metals. The main distribution of functional MeT genes among Enterococcus faecium and Enterococcus faecalis from different sources, time spans, and clonal lineages, and their ability to acquire diverse genes from multiple taxa bacterial communities places these species as good candidates to be used as model organisms in future projects aiming at the identification and quantification of bioindicators of metal polluted environments by anthropogenic activities.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal; Área Técnico-científica de Saúde Ambiental, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal
| | - Joana Mourão
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal; Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Portugal; Instituto de Investigação Interdisciplinar, Universidade de Coimbra, Portugal
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Bárbara Duarte
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Eduarda Silveira
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Centro de Investigação Vasco da Gama (CIVG), Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Coimbra, Portugal; Faculdade de Farmácia, Universidade de Coimbra, Portugal
| | - Antonio Sanchez-Valenzuela
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Fernando Baquero
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Patrícia Antunes
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal.
| |
Collapse
|
5
|
Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 2021; 27:101-111. [PMID: 34454098 DOI: 10.1016/j.jgar.2021.08.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Imprudent and overuse of clinically relevant antibiotics in agriculture, veterinary and medical sectors contribute to the global epidemic increase in antimicrobial resistance (AMR). There is a growing concern among researchers and stakeholders that the environment acts as an AMR reservoir and plays a key role in the dissemination of antimicrobial resistance genes (ARGs). Various drivers are contributing factors to the spread of antibiotic-resistant bacteria and their ARGs either directly through antimicrobial drug use in health care, agriculture/livestock and the environment or antibiotic residues released from various domestic settings. Resistant micro-organisms and their resistance genes enter the soil, air, water and sediments through various routes or hotspots such as hospital wastewater, agricultural waste or wastewater treatment plants. Global mitigation strategies primarily involve the identification of high-risk environments that are responsible for the evolution and spread of resistance. Subsequently, AMR transmission is affected by the standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel and migration. This review provides a brief description of AMR as a global concern and the possible contribution of different environmental drivers to the transmission of antibiotic-resistant bacteria or ARGs through various mechanisms. We also aim to highlight the key knowledge gaps that hinder environmental regulators and mitigation strategies in delivering environmental protection against AMR.
Collapse
|
6
|
2CS-CHX T Operon Signature of Chlorhexidine Tolerance among Enterococcus faecium Isolates. Appl Environ Microbiol 2019; 85:AEM.01589-19. [PMID: 31562170 DOI: 10.1128/aem.01589-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022] Open
Abstract
Chlorhexidine (CHX) is a broad-spectrum antiseptic widely used in community and clinical contexts for many years that has recently acquired higher relevance in nosocomial infection control worldwide. Despite this, CHX tolerance among Enterococcus faecium bacteria, representing one of the leading agents causing nosocomial infections, has been poorly understood. This study provides new phenotypic and molecular data for better identification of CHX-tolerant E. faecium subpopulations in community and clinical contexts. The chlorhexidine MIC (MICCHX) distribution of 106 E. faecium isolates suggested the occurrence of tolerant subpopulations in diverse sources (human, animal, food, environment) and phylogenomic backgrounds (clades A1/A2/B), with predominance in clade A1. They carried a specific variant of the 2CS-CHXT operon, identified here. It encodes glucose and amino acid-polyamine-organocation family transporters, besides the DNA-binding response regulator ChtR, with a P102H mutation previously described only in CHX-tolerant clade A1 E. faecium, and the ChtS sensor. 2CS-CHXT seems to be associated with three regulons modulating diverse bacterial biological functions. Combined data from normal MIC distribution and 2CS-CHXT operon characterization support a tentative epidemiological cutoff (ECOFF) of 8 mg/liter to CHX, which is useful to detect tolerant E. faecium populations in future surveillance studies. The spread of tolerant E. faecium in diverse epidemiological backgrounds calls for the prudent use of CHX in multiple contexts.IMPORTANCE Chlorhexidine is one of the substances included in the World Health Organization's list of essential medicines, which comprises the safest and most effective medicines needed in global health systems. Although it has been widely applied as a disinfectant and antiseptic in health care (skin, hands, mouthwashes, eye drops) since the 1950s, its use in hospitals to prevent nosocomial infections has increased worldwide in recent years. Here, we provide a comprehensive study on chlorhexidine tolerance among strains of Enterococcus faecium, one of the leading nosocomial agents worldwide, and identify a novel 2CS-CHXT operon as a signature of tolerant strains occurring in diverse phylogenomic groups. Our data allowed for the proposal of a tentative epidemiological cutoff of 8 mg/liter, which is useful to detect tolerant E. faecium populations in surveillance studies in community and clinical contexts. The prediction of 2CS-CHXT regulons will also facilitate the design of future experimental studies to better uncover chlorhexidine tolerance among E. faecium bacteria.
Collapse
|
7
|
Freitas AR, Elghaieb H, León-Sampedro R, Abbassi MS, Novais C, Coque TM, Hassen A, Peixe L. Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters. J Antimicrob Chemother 2018; 72:3245-3251. [PMID: 29029072 DOI: 10.1093/jac/dkx321] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 01/11/2023] Open
Abstract
Objectives Oxazolidinone resistance is a serious limitation in the treatment of MDR Enterococcus infections. Plasmid-mediated oxazolidinone resistance has been strongly linked to animals where the use of phenicols might co-select resistance to both antibiotic families. Our goal was to assess the diversity of genes conferring phenicol/oxazolidinone resistance among diverse enterococci and to characterize the optrA genetic environment. Methods Chloramphenicol-resistant isolates (>16 mg/L, n = 245) from different sources (hospitals/healthy humans/wastewaters/animals) in Portugal, Angola and Tunisia (1996-2016) were selected. Phenicol (eight cat variants, fexA, fexB) or phenicol + oxazolidinone [cfr, cfr(B), optrA] resistance genes were searched for by PCR. Susceptibility (disc diffusion/microdilution), filter mating, stability of antibiotic resistance (500 bacterial generations), plasmid typing (S1-PFGE/hybridization), MLST and WGS (Illumina-HiSeq) were performed for optrA-positive isolates. Results Resistance to phenicols (n = 181, 74%) and phenicols + oxazolidinones (n = 2, 1%) was associated with the presence of cat(A-8) (40%, predominant in hospitals and swine), cat(A-7) (29%, predominant in poultry and healthy humans), cat(A-9) (2%), fexB (2%) and fexA + optrA (1%). fexA and optrA genes were co-located in a transferable plasmid (pAF379, 72 918 bp) of two ST86 MDR Tunisian Enterococcus faecalis (wastewaters) carrying several putative virulence genes. MICs of chloramphenicol, linezolid and tedizolid were stably maintained at 64, 4 and 1 mg/L, respectively. The chimeric pAF379 comprised relics of genetic elements from different Gram-positive bacteria and origins (human/porcine). Conclusions To the best of our knowledge, we report the first detection of optrA in an African country (Tunisia) within a transferable mosaic plasmid of different origins. Its identification in isolates from environmental sources is worrisome and alerts for the need of a concerted global surveillance on the occurrence and spread of optrA.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Houyem Elghaieb
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Ricardo León-Sampedro
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centros de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Barcelona, Spain
| | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Teresa M Coque
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centros de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Barcelona, Spain
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj Cédria, Soliman, Tunisia
| | - Luisa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Otokunefor K, Agbude P, Otokunefor TV. Non-clinical isolates as potential reservoirs of antibiotic resistance in Port Harcourt, Nigeria. Pan Afr Med J 2018; 30:167. [PMID: 30455796 PMCID: PMC6235506 DOI: 10.11604/pamj.2018.30.167.14261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/30/2018] [Indexed: 02/02/2023] Open
Abstract
Introduction Multidrug resistance (MDR) is a growing problem worldwide. This type resistance often arises due to the sequential acquisition of drug resistance determinants and subsequent clonal spread. It is therefore important to determine possible reservoirs of these MDR gene to help set out control strategies. This study was aimed at analysing susceptibility patterns of various non-clinical Gram negative bacterial strains to determine their potential as reservoirs of MDR. Methods Thirty-five non-clinical Gram negative bacteria were identified and susceptibility profile determined using standard methodologies. Results Findings showed a preponderance of Pseudomonas aeruginosa and Escherichia Coli. Resistance rates of above 80% were noted in 50% of antibiotics, though none of the isolates were resistant to Ofloxacin. Majority of isolates (68.6%) had a multiple antibiotic resistance (MAR) index greater than 0.5, but only 20% of Escherichia Eoli. were found in this category. A high level of MDR was noted in this study (71.4%), but again only 20% of these were Escherichia Coli. Conclusion Gram negative bacteria are the most common group of bacteria frequently encountered in clinical microbiology. In more recent years, infections with these organisms have been further complicated by the phenomenon of drug resistance. Non-clinical isolates have been postulated as possible reservoirs. Findings from this study of widespread multidrug resistance support this idea. This study however highlights the lack of MDR in Escherichia Coli, which is promising. More extensive studies will need to be carried out to properly assess the role of non-clinical isolates as reservoirs of MDR determinants.
Collapse
Affiliation(s)
- Kome Otokunefor
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Rivers State, Nigeria
| | - Paul Agbude
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Rivers State, Nigeria
| | | |
Collapse
|
9
|
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018; 23:E795. [PMID: 29601469 PMCID: PMC6017557 DOI: 10.3390/molecules23040795] [Citation(s) in RCA: 638] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Due to the increased demand of animal protein in developing countries, intensive farming is instigated, which results in antibiotic residues in animal-derived products, and eventually, antibiotic resistance. Antibiotic resistance is of great public health concern because the antibiotic-resistant bacteria associated with the animals may be pathogenic to humans, easily transmitted to humans via food chains, and widely disseminated in the environment via animal wastes. These may cause complicated, untreatable, and prolonged infections in humans, leading to higher healthcare cost and sometimes death. In the said countries, antibiotic resistance is so complex and difficult, due to irrational use of antibiotics both in the clinical and agriculture settings, low socioeconomic status, poor sanitation and hygienic status, as well as that zoonotic bacterial pathogens are not regularly cultured, and their resistance to commonly used antibiotics are scarcely investigated (poor surveillance systems). The challenges that follow are of local, national, regional, and international dimensions, as there are no geographic boundaries to impede the spread of antibiotic resistance. In addition, the information assembled in this study through a thorough review of published findings, emphasized the presence of antibiotics in animal-derived products and the phenomenon of multidrug resistance in environmental samples. This therefore calls for strengthening of regulations that direct antibiotic manufacture, distribution, dispensing, and prescription, hence fostering antibiotic stewardship. Joint collaboration across the world with international bodies is needed to assist the developing countries to implement good surveillance of antibiotic use and antibiotic resistance.
Collapse
Affiliation(s)
- Christy Manyi-Loh
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Sampson Mamphweli
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Edson Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Anthony Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|
10
|
High occurrence and unusual serotype diversity of non-typhoidal Salmonella in non-clinical niches, Angola. Epidemiol Infect 2016; 145:883-886. [DOI: 10.1017/s095026881600296x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYNon-typhoidal Salmonella is an important burden, particularly in developing countries of the African region. We report for the first time in Angola, a sub-Saharan African country with commercial/travel relationships with Europe, an unexpectedly high occurrence of Salmonella (n = 12/63, 19%) from a high diversity of sources, particularly farm and wild animals. The detection of diverse serotypes (n = 12), involving putative new S. enterica subsp. salamae serotypes, is also of note, reinforcing the need for a comprehensive surveillance in Angola critical to identify animal/food/environmental sources of salmonellosis with impact on animal health, local people, tourists and exported products.
Collapse
|
11
|
Ngbede EO, Raji MA, Kwanashie CN, Kwaga JKP. Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria. Trop Anim Health Prod 2016; 49:451-458. [PMID: 27987112 DOI: 10.1007/s11250-016-1212-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
This study investigated the occurrence, antimicrobial resistance and virulence of Enterococcus from poultry and cattle farms. Three hundred and ninety samples: cloacal/rectal swabs (n = 260) and manure (n = 130] were processed for recovery of Enterococcus species. Standard bacteriological methods were used to isolate, identify and characterize Enterococcus species for antimicrobial susceptibility and expression of virulence traits. Detection of antibiotic resistance and virulence genes was carried out by polymerase chain reaction. Enterococcus was recovered from 167 (42.8%) of the 390 samples tested with a predominance of Enterococcus faecium (27.7%). Other species detected were Enterococcus gallinarum, Enterococcus faecalis, Enterococcus hirae, Enterococcus raffinosus, Enterococcus avium, Enterococcus casseliflavus, Enterococcus mundtii and Enterococcus durans. All the isolates tested were susceptible to vancomycin, but resistance to tetracycline, erythromycin, ampicillin and gentamicin was also observed among 61.0, 61.0, 45.1 and 32.7% of the isolates, respectively. Sixty (53.1%) of the isolates were multidrug resistant presenting as 24 different resistance patterns with resistance to gentamicin-erythromycin-streptomycin-tetracycline (CN-ERY-STR-TET) being the most common (n = 11) pattern. In addition to expression of virulence traits (haemolysin, gelatinase, biofilm production), antibiotic resistance (tetK, tetL, tetM, tetO and ermB) and virulence (asa1, gelE, cylA) genes were detected among the isolates. Also, in vitro transfer of resistance determinants was observed among 75% of the isolates tested. Our data revealed poultry, cattle and manure in this area are hosts to varying Enterococcus species harbouring virulence and resistance determinants that can be transferred to other organisms and also are important for causing nosocomial infection.
Collapse
Affiliation(s)
- Emmanuel Ochefije Ngbede
- Department of Veterinary Pathology & Microbiology, University of Agriculture Makurdi, PMB 2373, Makurdi, Benue State, Nigeria. .,Department of Veterinary Microbiology, Ahmadu Bello University Zaria, PMB 1045, Zaria, Kaduna State, Nigeria.
| | - Mashood Abiola Raji
- Department of Veterinary Microbiology, Ahmadu Bello University Zaria, PMB 1045, Zaria, Kaduna State, Nigeria.,Department of Veterinary Microbiology, University of Ilorin, PMB 1515, Ilorin, Kwara State, Nigeria
| | - Clara Nna Kwanashie
- Department of Veterinary Microbiology, Ahmadu Bello University Zaria, PMB 1045, Zaria, Kaduna State, Nigeria
| | - Jacob Kwada Pajhi Kwaga
- Department of Veterinary Public Health & Preventive Medicine, Ahmadu Bello University Zaria, PMB 1045, Zaria, Kaduna State, Nigeria
| |
Collapse
|