1
|
Ortiz-Cartagena C, Pablo-Marcos D, Fernández-García L, Blasco L, Pacios O, Bleriot I, Siller M, López M, Fernández J, Aracil B, Fraile-Ribot PA, García-Fernández S, Fernández-Cuenca F, Hernández-García M, Cantón R, Calvo-Montes J, Tomás M. CRISPR-Cas13a-Based Assay for Accurate Detection of OXA-48 and GES Carbapenemases. Microbiol Spectr 2023; 11:e0132923. [PMID: 37466441 PMCID: PMC10434040 DOI: 10.1128/spectrum.01329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Carbapenem-resistant pathogens have been recognized as a health concern as they are both difficult to treat and detect in clinical microbiology laboratories. Researchers are making great efforts to develop highly specific, sensitive, accurate, and rapid diagnostic techniques, required to prevent the spread of these microorganisms and improve the prognosis of patients. In this context, CRISPR-Cas systems are proposed as promising tools for the development of diagnostic methods due to their high specificity; the Cas13a endonuclease can discriminate single nucleotide changes and displays collateral cleavage activity against single-stranded RNA molecules when activated. This technology is usually combined with isothermal pre-amplification reactions in order to increase its sensitivity. We have developed a new LAMP-CRISPR-Cas13a-based assay for the detection of OXA-48 and GES carbapenemases in clinical samples without the need for nucleic acid purification and concentration. To evaluate the assay, we used 68 OXA-48-like-producing Klebsiella pneumoniae clinical isolates as well as 64 Enterobacter cloacae complex GES-6, 14 Pseudomonas aeruginosa GES-5, 9 Serratia marcescens GES-6, 5 P. aeruginosa GES-6, and 3 P. aeruginosa (GES-15, GES-27, and GES-40) and 1 K. pneumoniae GES-2 isolates. The assay, which takes less than 2 h and costs approximately 10 € per reaction, exhibited 100% specificity and sensitivity (99% confidence interval [CI]) for both OXA-48 and all GES carbapenemases. IMPORTANCE Carbapenems are one of the last-resort antibiotics for defense against multidrug-resistant pathogens. Multiple nucleic acid amplification methods, including multiplex PCR, multiplex loop-mediated isothermal amplification (LAMP) and multiplex RPAs, can achieve rapid, accurate, and simultaneous detection of several resistance genes to carbapenems in a single reaction. However, these assays need thermal cycling steps and specialized instruments, giving them limited application in the field. In this work, we adapted with high specificity and sensitivity values, a new LAMP CRISPR-Cas13a-based assay for the detection of OXA-48 and GES carbapenemases in clinical samples without the need for RNA extraction.
Collapse
Affiliation(s)
- Concha Ortiz-Cartagena
- Multidisciplinary and Translational Microbiology Group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Daniel Pablo-Marcos
- Microbiology Service, University Hospital Marqués de Valdecilla – IDIVAL, Santander, Spain
| | - Laura Fernández-García
- Multidisciplinary and Translational Microbiology Group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Lucía Blasco
- Multidisciplinary and Translational Microbiology Group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Olga Pacios
- Multidisciplinary and Translational Microbiology Group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Multidisciplinary and Translational Microbiology Group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - María Siller
- Microbiology Service, University Hospital Marqués de Valdecilla – IDIVAL, Santander, Spain
| | - María López
- Multidisciplinary and Translational Microbiology Group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Javier Fernández
- Microbiology Service, University Hospital Central de Asturias. Translational Microbiology Group, ISPA, Oviedo, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Arturo Fraile-Ribot
- Microbiology Service, University Hospital Son Espases and Health Research Institute Illes Balears (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Felipe Fernández-Cuenca
- Clinical Unit of Infectious Diseases and Microbiology, University Hospital Virgen Macarena, Institute of Biomedicine of Sevilla (University Hospital Virgen Macarena/CSIC/University of Sevilla), Sevilla, Spain
| | - Marta Hernández-García
- Microbiology Service, University Hospital Ramón y Cajal and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Microbiology Service, University Hospital Ramón y Cajal and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Calvo-Montes
- Microbiology Service, University Hospital Marqués de Valdecilla – IDIVAL, Santander, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Multidisciplinary and Translational Microbiology Group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| |
Collapse
|
2
|
Caliskan-Aydogan O, Alocilja EC. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms 2023; 11:1491. [PMID: 37374993 PMCID: PMC10305383 DOI: 10.3390/microorganisms11061491] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority.
Collapse
Affiliation(s)
- Oznur Caliskan-Aydogan
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C. Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Berbers B, Vanneste K, Roosens NHCJ, Marchal K, Ceyssens PJ, De Keersmaecker SCJ. Using a combination of short- and long-read sequencing to investigate the diversity in plasmid- and chromosomally encoded extended-spectrum beta-lactamases (ESBLs) in clinical Shigella and Salmonella isolates in Belgium. Microb Genom 2023; 9:mgen000925. [PMID: 36748573 PMCID: PMC9973847 DOI: 10.1099/mgen.0.000925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/03/2022] [Indexed: 01/25/2023] Open
Abstract
For antimicrobial resistance (AMR) surveillance, it is important not only to detect AMR genes, but also to determine their plasmidic or chromosomal location, as this will impact their spread differently. Whole-genome sequencing (WGS) is increasingly used for AMR surveillance. However, determining the genetic context of AMR genes using only short-read sequencing is complicated. The combination with long-read sequencing offers a potential solution, as it allows hybrid assemblies. Nevertheless, its use in surveillance has so far been limited. This study aimed to demonstrate its added value for AMR surveillance based on a case study of extended-spectrum beta-lactamases (ESBLs). ESBL genes have been reported to occur also on plasmids. To gain insight into the diversity and genetic context of ESBL genes detected in clinical isolates received by the Belgian National Reference Center between 2013 and 2018, 100 ESBL-producing Shigella and 31 ESBL-producing Salmonella were sequenced with MiSeq and a representative selection of 20 Shigella and six Salmonella isolates additionally with MinION technology, allowing hybrid assembly. The bla CTX-M-15 gene was found to be responsible for a rapid rise in the ESBL Shigella phenotype from 2017. This gene was mostly detected on multi-resistance-carrying IncFII plasmids. Based on clustering, these plasmids were determined to be distinct from the circulating plasmids before 2017. They were spread to different Shigella species and within Shigella sonnei between multiple genotypes. Another similar IncFII plasmid was detected after 2017 containing bla CTX-M-27 for which only clonal expansion occurred. Matches of up to 99 % to plasmids of various bacterial hosts from all over the world were found, but global alignments indicated that direct or recent ESBL-plasmid transfers did not occur. It is most likely that travellers introduced these in Belgium and subsequently spread them domestically. However, a clear link to a specific country could not be made. Moreover, integration of bla CTX-M in the chromosome of two Shigella isolates was determined for the first time, and shown to be related to ISEcp1. In contrast, in Salmonella, ESBL genes were only found on plasmids, of which bla CTX-M-55 and IncHI2 were the most prevalent, respectively. No matching ESBL plasmids or cassettes were detected between clinical Shigella and Salmonella isolates. The hybrid assembly data allowed us to check the accuracy of plasmid prediction tools. MOB-suite showed the highest accuracy. However, these tools cannot replace the accuracy of long-read and hybrid assemblies. This study illustrates the added value of hybrid assemblies for AMR surveillance and shows that a strategy where even just representative isolates of a collection used for hybrid assemblies could improve international AMR surveillance as it allows plasmid tracking.
Collapse
Affiliation(s)
- Bas Berbers
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052 Ghent, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | | | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | | |
Collapse
|
4
|
Detection of Multidrug-Resistant Enterobacterales-From ESBLs to Carbapenemases. Antibiotics (Basel) 2021; 10:antibiotics10091140. [PMID: 34572722 PMCID: PMC8465816 DOI: 10.3390/antibiotics10091140] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Multidrug-resistant Enterobacterales (MDRE) are an emerging threat to global health, leading to rising health care costs, morbidity and mortality. Multidrug-resistance is commonly caused by different β-lactamases (e.g., ESBLs and carbapenemases), sometimes in combination with other resistance mechanisms (e.g., porin loss, efflux). The continuous spread of MDRE among patients in hospital settings and the healthy population require adjustments in healthcare management and routine diagnostics. Rapid and reliable detection of MDRE infections as well as gastrointestinal colonization is key to guide therapy and infection control measures. However, proper implementation of these strategies requires diagnostic methods with short time-to-result, high sensitivity and specificity. Therefore, research on new techniques and improvement of already established protocols is inevitable. In this review, current methods for detection of MDRE are summarized with focus on culture based and molecular techniques, which are useful for the clinical microbiology laboratory.
Collapse
|
5
|
Bonnin RA, Jousset AB, Emeraud C, Oueslati S, Dortet L, Naas T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front Med (Lausanne) 2021; 7:616490. [PMID: 33553210 PMCID: PMC7855592 DOI: 10.3389/fmed.2020.616490] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Gram-negative bacteria, especially Enterobacterales, have emerged as major players in antimicrobial resistance worldwide. Resistance may affect all major classes of anti-gram-negative agents, becoming multidrug resistant or even pan-drug resistant. Currently, β-lactamase-mediated resistance does not spare even the most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The dissemination of carbapenemases-encoding genes among Enterobacterales is a matter of concern, given the importance of carbapenems to treat nosocomial infections. Based on their amino acid sequences, carbapenemases are grouped into three major classes. Classes A and D use an active-site serine to catalyze hydrolysis, while class B (MBLs) require one or two zinc ions for their activity. The most important and clinically relevant carbapenemases are KPC, IMP/VIM/NDM, and OXA-48. However, several carbapenemases belonging to the different classes are less frequently detected. They correspond to class A (SME-, Nmc-A/IMI-, SFC-, GES-, BIC-like…), to class B (GIM, TMB, LMB…), class C (CMY-10 and ACT-28), and to class D (OXA-372). This review will address the genetic diversity, biochemical properties, and detection methods of minor acquired carbapenemases in Enterobacterales.
Collapse
Affiliation(s)
- Rémy A Bonnin
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Agnès B Jousset
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Laurent Dortet
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Jelinkova P, Hrdy J, Markova J, Dresler J, Pajer P, Pavlis O, Branich P, Borilova G, Reichelova M, Babak V, Reslova N, Kralik P. Development and Inter-Laboratory Validation of Diagnostics Panel for Detection of Biothreat Bacteria Based on MOL-PCR Assay. Microorganisms 2020; 9:microorganisms9010038. [PMID: 33374468 PMCID: PMC7823616 DOI: 10.3390/microorganisms9010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Early detection of biohazardous bacteria that can be misused as biological weapons is one of the most important measures to prevent the spread and outbreak of biological warfare. For this reason, many instrument platforms need to be introduced into operation in the field of biological warfare detection. Therefore the purpose of this study is to establish a new detection panel for biothreat bacteria (Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Brucella spp.) and confirm it by collaborative validation by using a multiplex oligonucleotide ligation followed by polymerase chain reaction and hybridization to microspheres by MagPix detection platform (MOL-PCR). Appropriate specific sequences in bacterial DNA were selected and tested to assemble the detection panel, and MOLigo probes (short specific oligonucleotides) were designed to show no cross-reactivity when tested between bacteria and to decrease the background signal measurement on the MagPix platform. During testing, sensitivity was assessed for all target bacteria using serially diluted DNA and was determined to be at least 0.5 ng/µL. For use as a diagnostic kit and easier handling, the storage stability of ligation premixes (MOLigo probe mixes) was tested. This highly multiplex method can be used for rapid screening to prevent outbreaks arising from the use of bacterial strains for bioterrorism, because time of analysis take under 4 h.
Collapse
Affiliation(s)
- Pavlina Jelinkova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
- Correspondence:
| | - Jakub Hrdy
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jirina Markova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic; (J.D.); (P.P.); (O.P.)
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic; (J.D.); (P.P.); (O.P.)
| | - Oto Pavlis
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic; (J.D.); (P.P.); (O.P.)
| | - Pavel Branich
- Military Veterinary Institute, Opavska 29, 748 01 Hlucin, Czech Republic;
| | - Gabriela Borilova
- Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (G.B.); (P.K.)
| | - Marketa Reichelova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
- Collection of Animal Pathogenic Microorganisms, Department of Bacteriology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Vladimir Babak
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; (J.H.); (J.M.); (M.R.); (V.B.)
| | - Nikol Reslova
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic;
| | - Petr Kralik
- Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (G.B.); (P.K.)
| |
Collapse
|
7
|
Lucena Baeza L, Hamprecht A. A profile of the GenePOC Carba C assay for the detection and differentiation of gene sequences associated with carbapenem-non-susceptibility. Expert Rev Mol Diagn 2020; 20:757-769. [PMID: 32567412 DOI: 10.1080/14737159.2020.1785287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The novel GenePOC/Revogene Carba C assay (GenePOC, Québec, Canada; now Meridian Bioscience, Cincinnati, OH, USA) is a CE-IVD marked, FDA-approved qualitative in vitro diagnostic test for the detection of genes associated with carbapenem-non-susceptibility. Colonies of Enterobacterales can be directly tested without prior DNA isolation. The test consists of a fluorescent-based real-time PCR assay that runs on the centripetal microfluidic revogene platform, providing results within 70 minutes. The assay was evaluated in two studies comprising a total of 294 molecularly characterized clinical Enterobacterales isolates. The overall sensitivity for the detection of carbapenemase gene sequences with the GenePOC assay was 100% (95% CI, 98.4% to 100). Besides the common KPC, VIM, NDM and OXA-48-like carbapenemase genes, also the very variable IMP variants were all detected. The specificity of the assay was 100% (95% CI, 98.8% to 100%). In this article the performance of the GenePOC/Revogene Carba C assay is evaluated and other currently available methods for the detection of carbapenemases are reviewed.
Collapse
Affiliation(s)
- Luis Lucena Baeza
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne , Cologne, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne , Cologne, Germany.,University of Cologne , Cologne, Germany.,German Centre for Infection Research , Partner Site Bonn-Cologne, Cologne, Germany.,University of Oldenburg , Institute for Medical Microbiology and Virology, Oldenburg, Germany
| |
Collapse
|
8
|
Gand M, Mattheus W, Roosens NHC, Dierick K, Marchal K, De Keersmaecker SCJ, Bertrand S. A multiplex oligonucleotide ligation-PCR method for the genoserotyping of common Salmonella using a liquid bead suspension assay. Food Microbiol 2019; 87:103394. [PMID: 31948635 DOI: 10.1016/j.fm.2019.103394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
Abstract
Salmonella is a major pathogen having a public health and economic impact in both humans and animals. Six serotypes of the Salmonella genus are mentioned in the Belgian and European regulation as to be rapidly excluded from the food chain (EU regulation N°2160/2003, Belgian royal decree 27/04/2017). The reference method for Salmonella serotyping, including slide-agglutination and biochemical tests, is time-consuming, expensive, not always objective, and therefore does not match the fast identification criteria required by the legislation. In this study, a molecular method, using genetic markers detected by Multiplex Oligonucleotide Ligation - PCR and Luminex technology, was developed for the identification of the 6 Salmonella serotypes and their variants subjected to an official control. The resulting method was validated with the analysis of 971 Salmonella isolated from different matrixes (human, animal, food or environment) and 33 non-Salmonella strains. The results were compared with the reference identifications, achieving an accuracy of 99.7%. The cost-effective high-throughput genoserotyping assay is performed in 1 day and generates objective results, thanks to the automatic interpretation of raw data using a barcode system. In conclusion, it is fully adapted to the implementation in first line laboratories and meets the requirements of the regulation.
Collapse
Affiliation(s)
- Mathieu Gand
- Sciensano, Infectious Diseases in Humans, Bacterial Diseases, B-1180 Brussels, Belgium; Department of Information Technology, IDLab, Imec, Ghent University, B-9052 Ghent, Belgium
| | - Wesley Mattheus
- Sciensano, Infectious Diseases in Humans, Bacterial Diseases, B-1180 Brussels, Belgium.
| | - Nancy H C Roosens
- Sciensano, Transversal Activities in Applied Genomics, B-1050 Brussels, Belgium
| | - Katelijne Dierick
- Sciensano, Infectious Diseases in Humans, Food Pathogen, B-1050 Brussels, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Imec, Ghent University, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
9
|
Abstract
Surveillance studies have shown that OXA-48-like carbapenemases are the most common carbapenemases in Enterobacterales in certain regions of the world and are being introduced on a regular basis into regions of nonendemicity, where they are responsible for nosocomial outbreaks. OXA-48, OXA-181, OXA-232, OXA-204, OXA-162, and OXA-244, in that order, are the most common enzymes identified among the OXA-48-like carbapenemase group. OXA-48 is associated with different Tn1999 variants on IncL plasmids and is endemic in North Africa and the Middle East. OXA-162 and OXA-244 are derivatives of OXA-48 and are present in Europe. OXA-181 and OXA-232 are associated with ISEcp1, Tn2013 on ColE2, and IncX3 types of plasmids and are endemic in the Indian subcontinent (e.g., India, Bangladesh, Pakistan, and Sri Lanka) and certain sub-Saharan African countries. Overall, clonal dissemination plays a minor role in the spread of OXA-48-like carbapenemases, but certain high-risk clones (e.g., Klebsiella pneumoniae sequence type 147 [ST147], ST307, ST15, and ST14 and Escherichia coli ST38 and ST410) have been associated with the global dispersion of OXA-48, OXA-181, OXA-232, and OXA-204. Chromosomal integration of bla OXA-48 within Tn6237 occurred among E. coli ST38 isolates, especially in the United Kingdom. The detection of Enterobacterales with OXA-48-like enzymes using phenotypic methods has improved recently but remains challenging for clinical laboratories in regions of nonendemicity. Identification of the specific type of OXA-48-like enzyme requires sequencing of the corresponding genes. Bacteria (especially K. pneumoniae and E. coli) with bla OXA-48, bla OXA-181, and bla OXA-232 are emerging in different parts of the world and are most likely underreported due to problems with the laboratory detection of these enzymes. The medical community should be aware of the looming threat that is posed by bacteria with OXA-48-like carbapenemases.
Collapse
|
10
|
Xu F, Min F, Wang J, Luo Y, Huang S, Chen M, Wu R, Zhang Y. Development and evaluation of a Luminex xTAG assay for sulfonamide resistance genes in Escherichia coli and Salmonella isolates. Mol Cell Probes 2019; 49:101476. [PMID: 31678631 DOI: 10.1016/j.mcp.2019.101476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 02/04/2023]
Abstract
Clinically occurring sulfonamide resistance in gram-negative bacteria is codified by several sul genes, mostly associated with the mobilized genetic elements named integrons, and integrons are frequently found in plasmids. There are four sul genes (sul1, sul2, sul3 and sul4) that encode resistance to sulfonamides. The aim of the present study was to develop a bead-based xTAG assay for the simultaneous detection of all four sul genes and related Class 1 integrons (int1) in Escherichia coli and Salmonella isolates. The limits of detection ranged from 10 to 1000 copies/μL of input purified plasmid DNA. Forty-one bacterial isolates from clinical samples were examined using the newly developed xTAG assay and also by conventional PCR to determine the relative performance of each. The results obtained by xTAG assay showed higher detection rates and accuracy for sul genes than conventional PCR. It indicated that the xTAG-multiplex PCR is a convenient method for rapid identification of sul genes.
Collapse
Affiliation(s)
- Fengjiao Xu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510640, China.
| | - Fangui Min
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, China
| | - Jing Wang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, China
| | - Yinzhu Luo
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, China
| | - Shuwu Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, China
| | - Meiling Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, China
| | - Ruike Wu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Ventola E, Bogaerts B, De Keersmaecker SCJ, Vanneste K, Roosens NHC, Mattheus W, Ceyssens PJ. Shifting national surveillance of Shigella infections toward geno-serotyping by the development of a tailored Luminex assay and NGS workflow. Microbiologyopen 2019; 8:e00807. [PMID: 30924299 PMCID: PMC6692546 DOI: 10.1002/mbo3.807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023] Open
Abstract
The phylogenetically closely related Shigella species and enteroinvasive Escherichia coli (EIEC) are responsible for millions of episodes of bacterial dysenteriae worldwide. Given its distinct epidemiology and public health relevance, only Shigellae are subject to mandatory reporting and follow‐up by public health authorities. However, many clinical laboratories struggle to differentiate non‐EIEC, EIEC, and Shigella in their current workflows, leading to inaccuracies in surveillance and rising numbers of misidentified E. coli samples at the National Reference Centre (NRC). In this paper, we describe two novel tools to enhance Shigella surveillance. First, we developed a low‐cost Luminex‐based multiplex assay combining five genetic markers for species identification with 11 markers for serotype prediction for S. sonnei and S. flexneri isolates. Using a test panel of 254 clinical samples, this assay has a sensitivity of 100% in differentiation of EIEC/Shigella pathotype from non‐EIEC strains, and 68.7% success rate in distinction of Shigella and EIEC. A novel, and particularly successful marker was a Shigella‐specific deletion in the spermidine acetyltransferase gene speG, reflecting its metabolic decay. For Shigella serotype prediction, the multiplex assay scored a sensitivity and specificity of 96.6% and 98.4%, respectively. All discrepancies were analyzed with whole‐genome sequencing and shown to be related to causative mutations (stop codons, indels, and promoter mutations) in glycosyltransferase genes. This observation spurred the development of an in silico workflow which extracts the Shigella serotype from Next‐Generation Sequencing (NGS) data, taking into account gene functionality. Both tools will be implemented in the workflow of the NRC, and will play a major role in the shift from phenotypic to genotyping‐based surveillance of shigellosis in Belgium.
Collapse
Affiliation(s)
- Eleonora Ventola
- National Reference Centre of Salmonella and Shigella, Brussels, Belgium.,Department of Biology and Biotechnology "C. Darwin", "Sapienza" Università di Roma, Rome, Italy
| | - Bert Bogaerts
- Transversal activities in Applied Genomics, Brussels, Belgium
| | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Brussels, Belgium
| | | | - Wesley Mattheus
- National Reference Centre of Salmonella and Shigella, Brussels, Belgium
| | | |
Collapse
|
12
|
Costa-de-Oliveira S, Teixeira-Santos R, Silva AP, Pinho E, Mergulhão P, Silva-Dias A, Marques N, Martins-Oliveira I, Rodrigues AG, Paiva JA, Cantón R, Pina-Vaz C. Potential Impact of Flow Cytometry Antimicrobial Susceptibility Testing on the Clinical Management of Gram-Negative Bacteremia Using the FASTinov ® Kit. Front Microbiol 2017; 8:2455. [PMID: 29312169 PMCID: PMC5733032 DOI: 10.3389/fmicb.2017.02455] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022] Open
Abstract
Laboratory assessment of antimicrobial susceptibility is a prerequisite for adequate management of infections. The aim of this research was to evaluate the performance of the novel FASTinov® kit for antimicrobial susceptibility testing (AST) of Gram negative bacilli directly on positive blood cultures. One hundred and two positive blood cultures from patients of a Portuguese University Hospital were included. AST were performed with routine method, Vitek2, with FASTinov® kit, and with the gold standard microdilution. Bacteria directly extracted from blood cultures were used to inoculate the FASTinov® kit. Time-to-result as well as the number of patients receiving initially inappropriate therapy (and those in whom de-escalation would have been done) and length of stay (LOS) was recorded. Seventy percent of patients were over 70 years old and 18.6% were admitted in intensive care units. Regarding the isolates, 88.2% were Enterobacteriaceae, 9.8% Pseudomonas spp. and 1% Acinetobacter spp. Extended spectrum β-lactamases producing-Enterobacteriaceae were found in 7.8% of cases and 10.8% were multi-drug resistant. Fifty-one hours was the mean of time-to-result for routine test (Vitek2) vs. 2 h response regarding Fastinov® test. The overall agreement between FASTinov® and the reference microdilution method was 98%. According to the susceptibility phenotype, 16.7% of patients received initially inappropriate therapy and the mean hospital LOS of these patients was significantly higher. FASTinov® kit revealed an excellent correlation with the AST standard method and provided much earlier results than Vitek2.
Collapse
Affiliation(s)
- Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,FASTinov, S.A., Matosinhos, Portugal
| | - Rita Teixeira-Santos
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,FASTinov, S.A., Matosinhos, Portugal
| | - Ana P Silva
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Elika Pinho
- Department of Emergency and Intensive Care, Centro Hospitalar Sao Joao, Porto, Portugal
| | - Paulo Mergulhão
- Department of Emergency and Intensive Care, Centro Hospitalar Sao Joao, Porto, Portugal.,Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Silva-Dias
- CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,FASTinov, S.A., Matosinhos, Portugal
| | | | | | - Acácio G Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,FASTinov, S.A., Matosinhos, Portugal
| | - José A Paiva
- Department of Emergency and Intensive Care, Centro Hospitalar Sao Joao, Porto, Portugal.,Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Cidália Pina-Vaz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,FASTinov, S.A., Matosinhos, Portugal
| |
Collapse
|
13
|
van den Bijllaardt W, Janssens MM, Buiting AG, Muller AE, Mouton JW, Verweij JJ. Extended-spectrum β-lactamase (ESBL) polymerase chain reaction assay on rectal swabs and enrichment broth for detection of ESBL carriage. J Hosp Infect 2017; 98:264-269. [PMID: 29080706 DOI: 10.1016/j.jhin.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Extended-spectrum β-lactamase (ESBL) screening and contact precautions on patients at high risk for ESBL carriage are considered important infection control measures. Since contact precautions are costly and may negatively impact patient care, rapid exclusion of ESBL carriage and therefore earlier discontinuation of contact precautions are desired. AIM In the present study, the performance of an ESBL polymerase chain reaction (PCR) targeting blaCTX-M genes was evaluated as a screening assay for ESBL carriage. METHODS Two methods were assessed: PCR performed directly on rectal swabs and PCR on enrichment broth after incubation overnight. The reference standard was culture of ESBL-producing Enterobacteriaceae on selective agar after overnight enrichment and confirmation by the combination disc diffusion method. Microarray was used for discrepancy analysis. A secondary analysis was performed to evaluate the added value of including a blaSHV target in the PCR. FINDINGS A total of 551 rectal swabs from 385 patients were included, of which 28 (5%) were ESBL positive in culture. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 86%, 98%, 67%, and 99%, respectively, for PCR directly on swabs, and 96%, 98%, 75%, and 100%, respectively, for PCR on enrichment broth. Adding a blaSHV target to the assay resulted in a lower PPV without increasing the sensitivity and NPV. CONCLUSION Screening for ESBL by PCR directly on rectal swabs has a high negative predictive value, is up to 48h faster than traditional culture and therefore facilitates earlier discontinuation of contact precautions, thereby improving patient care and saving valuable resources in the hospital.
Collapse
Affiliation(s)
- W van den Bijllaardt
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | - M M Janssens
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - A G Buiting
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - A E Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands; Department of Medical Microbiology, Haaglanden Medical Centre, The Hague, The Netherlands
| | - J W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - J J Verweij
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
14
|
Decousser JW, Poirel L, Nordmann P. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance. Expert Rev Mol Diagn 2017; 17:327-350. [DOI: 10.1080/14737159.2017.1289087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jean-Winoc Decousser
- Department of Virology, Bacteriology - Infection Control, Parasitology - Mycology, Assistance Publique - Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- IAME, UMR 1137, INSERM, Paris, France
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance, University of fribourg, fribourg, switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance, University of fribourg, fribourg, switzerland
- Institute for Microbiology, University of Lausanne and University hospital Center, Lausanne, Switzerland
| |
Collapse
|