1
|
Nielsen MBD, Jørgensen AR, Stilling M, Mikkelsen MKD, Jørgensen NP, Bue M. Dynamic distribution of systemically administered antibiotics in orthopeadically relevant target tissues and settings. APMIS 2024; 132:992-1025. [PMID: 39530161 PMCID: PMC11582342 DOI: 10.1111/apm.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
This review aimed to summarize the current literature on antibiotic distribution in orthopedically relevant tissues and settings where dynamic sampling methods have been used. PubMed and Embase databases were systematically searched. English-published studies between 2004 and 2024 involving systemic antibiotic administration in orthopedically relevant tissues and settings based on dynamic measurements were included. In total, 5385 titles were identified. After title and abstract screening, 97 eligible studies (43 different antibiotic drugs) were included. The studies covered both preclinical (42%) and clinical studies including healthy and infected tissues (21%) and prophylactic and steady-state situations (35%). Microdialysis emerged as the predominant sampling method in 98% of the studies. Most of the presented antibiotics (80%) were only assessed once or twice. Among the most extensively studied antibiotics were cefuroxime (18 studies), linezolid (9 studies) and vancomycin (9 studies). This review presents valuable insights into the microenvironmental distribution of antibiotics in orthopedically relevant target tissues and settings and seeks to provide a basis for improving dosing recommendations and treatment outcomes. However, it is important to acknowledge that our findings are limited to the specific drug, dosing regimens, administration method and target tissue, and are crucially linked to the selected PK/PD target.
Collapse
Affiliation(s)
- Maria Bech Damsgaard Nielsen
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
- Aarhus Denmark Microdialysis Research (ADMIRE)Orthopaedic Research Laboratory, Aarhus University HospitalAarhus NDenmark
| | - Andrea René Jørgensen
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
- Aarhus Denmark Microdialysis Research (ADMIRE)Orthopaedic Research Laboratory, Aarhus University HospitalAarhus NDenmark
| | - Maiken Stilling
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
- Aarhus Denmark Microdialysis Research (ADMIRE)Orthopaedic Research Laboratory, Aarhus University HospitalAarhus NDenmark
- Department of Orthopaedic SurgeryAarhus University HospitalAarhus NDenmark
| | - Mads Kristian Duborg Mikkelsen
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
- Aarhus Denmark Microdialysis Research (ADMIRE)Orthopaedic Research Laboratory, Aarhus University HospitalAarhus NDenmark
| | | | - Mats Bue
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
- Aarhus Denmark Microdialysis Research (ADMIRE)Orthopaedic Research Laboratory, Aarhus University HospitalAarhus NDenmark
- Department of Orthopaedic SurgeryAarhus University HospitalAarhus NDenmark
| |
Collapse
|
2
|
De Sutter PJ, Hermans E, De Cock P, Van Bocxlaer J, Gasthuys E, Vermeulen A. Penetration of Antibiotics into Subcutaneous and Intramuscular Interstitial Fluid: A Meta-Analysis of Microdialysis Studies in Adults. Clin Pharmacokinet 2024; 63:965-980. [PMID: 38955946 DOI: 10.1007/s40262-024-01394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The interstitial fluid of tissues is the effect site for antibiotics targeting extracellular pathogens. Microdialysis studies investigating these concentrations in muscle and subcutaneous tissue have reported notable variability in tissue penetration. This study aimed to comprehensively summarise the existing data on interstitial fluid penetration in these tissues and to identify potential factors influencing antibiotic distribution. METHODS A literature review was conducted, focusing on subcutaneous and intramuscular microdialysis studies of antibiotics in both adult healthy volunteers and patients. Random-effect meta-analyses were used to aggregate effect size estimates of tissue penetration. The primary parameter of interest was the unbound penetration ratio, which represents the ratio of the area under the concentration-time curve in interstitial fluid relative to the area under the concentration-time curve in plasma, using unbound concentrations. RESULTS In total, 52 reports were incorporated into this analysis. The unbound antibiotic exposure in the interstitial fluid of healthy volunteers was, on average, 22% lower than in plasma. The unbound penetration ratio values were higher after multiple dosing but did not significantly differ between muscle and subcutaneous tissue. Unbound penetration ratio values were lower for acids and bases compared with neutral antibiotics. Neither the molecular weight nor the logP of the antibiotics accounted for the variations in the unbound penetration ratio. Obesity was associated with lower interstitial fluid penetration. Conditions such as sepsis, tissue inflammation and tissue ischaemia were not significantly associated with altered interstitial fluid penetration. CONCLUSIONS This study highlights the variability and generally lower exposure of unbound antibiotics in the subcutaneous and intramuscular interstitial fluid compared with exposure in plasma. Future research should focus on understanding the therapeutic relevance of these differences and identify key covariates that may influence them.
Collapse
Affiliation(s)
- Pieter-Jan De Sutter
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Eline Hermans
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Pieter De Cock
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Jan Van Bocxlaer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Elke Gasthuys
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
3
|
Accelerator mass spectrometry for quantification of micro- and therapeutic dose diclofenac in microdialysis samples. Bioanalysis 2022; 14:1111-1122. [PMID: 36165918 DOI: 10.4155/bio-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Microdialysis sampling after drug microdosing may provide tissue pharmacokinetic data early in clinical drug development. However, low administered doses and small sample volumes pose an analytical challenge, particularly for highly protein-bound drugs. Materials & methods: Carbon-14 [14C]diclofenac was used as a model drug to assess the technical and analytical feasibility of in vivo microdialysis after microdose administration in an in vitro setup. Results: [14C]diclofenac dialysate concentrations were accurately quantified with accelerator MS. [14C]diclofenac dialysate recoveries were similar in the presence and absence of therapeutic diclofenac concentrations but were considerably decreased when albumin was added to the immersion solution, suggesting high protein binding. Conclusion: These results demonstrate the feasibility of combining microdosing and microdialysis to assess tissue pharmacokinetics.
Collapse
|
4
|
Oesterreicher Z, Eberl S, Wulkersdorfer B, Matzneller P, Eder C, van Duijn E, Vaes WHJ, Reiter B, Stimpfl T, Jäger W, Nussbaumer-Proell A, Marhofer D, Marhofer P, Langer O, Zeitlinger M. Microdosing as a Potential Tool to Enhance Clinical Development of Novel Antibiotics: A Tissue and Plasma PK Feasibility Study with Ciprofloxacin. Clin Pharmacokinet 2022; 61:697-707. [PMID: 34997559 PMCID: PMC9095552 DOI: 10.1007/s40262-021-01091-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE In microdose studies, drug pharmacokinetics is measured in humans after administration of subtherapeutic doses. While previous microdose studies focused primarily on plasma pharmacokinetics, we set out to evaluate the feasibility of microdosing for a pharmacokinetic assessment in subcutaneous tissue and epithelial lining fluid. METHODS Healthy subjects received a single intravenous bolus injection of a microdose of [14C]ciprofloxacin (1.1 µg, 7 kBq) with (cohort A, n = 9) or without (cohort B, n = 9) a prior intravenous infusion of a therapeutic dose of unlabeled ciprofloxacin (400 mg). Microdialysis and bronchoalveolar lavage were applied for determination of subcutaneous and intrapulmonary drug concentrations. Microdose [14C]ciprofloxacin was quantified by accelerator mass spectrometry and therapeutic-dose ciprofloxacin by liquid chromatography-tandem mass spectrometry. RESULTS The pharmacokinetics of therapeutic-dose ciprofloxacin (cohort A) in plasma, subcutaneous tissue, and epithelial lining fluid was in accordance with previous data. In plasma and subcutaneous tissue, the dose-adjusted area under the concentration-time curve of microdose ciprofloxacin was similar in cohorts A and B and within an 0.8-fold to 1.1-fold range of the area under the concentration-time curve of therapeutic-dose ciprofloxacin. Penetration of microdose ciprofloxacin into subcutaneous tissue was similar in cohorts A and B and comparable to that of therapeutic-dose ciprofloxacin with subcutaneous tissue-to-plasma area under the concentration-time curve ratios of 0.44, 0.44, and 0.38, respectively. Penetration of microdose ciprofloxacin into epithelial lining fluid was highly variable and failed to predict the epithelial lining fluid penetration of therapeutic-dose ciprofloxacin. CONCLUSIONS Our study confirms the feasibility of microdosing for pharmacokinetic measurements in plasma and subcutaneous tissue. Microdosing combined with microdialysis is a potentially useful tool in clinical antimicrobial drug development, but its applicability for the assessment of pulmonary pharmacokinetics with bronchoalveolar lavage requires further studies. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03177720 (registered 6 June, 2017).
Collapse
Affiliation(s)
- Zoe Oesterreicher
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Internal Medicine 2, Gastroenterology and Hepatology and Rheumatology, University Hospital of St. Pölten, St. Pölten, Austria
| | - Sabine Eberl
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Beatrix Wulkersdorfer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Peter Matzneller
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Claudia Eder
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | - Birgit Reiter
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Alina Nussbaumer-Proell
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Daniela Marhofer
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Marhofer
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University of Vienna, Vienna, Austria
- Orthopaedic Hospital Speising, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Ullah S, Beer R, Fuhr U, Taubert M, Zeitlinger M, Kratzer A, Dorn C, Arshad U, Kofler M, Helbok R. Brain Exposure to Piperacillin in Acute Hemorrhagic Stroke Patients Assessed by Cerebral Microdialysis and Population Pharmacokinetics. Neurocrit Care 2021; 33:740-748. [PMID: 32219679 PMCID: PMC7736006 DOI: 10.1007/s12028-020-00947-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The broad antibacterial spectrum of piperacillin/tazobactam makes the combination suitable for the treatment of nosocomial bacterial central nervous system (CNS) infections. As limited data are available regarding piperacillin CNS exposure in patients without or with low-grade inflammation, a clinical study was conducted (1) to quantify CNS exposure of piperacillin by cerebral microdialysis and (2) to evaluate different dosing regimens in order to improve probability of target attainment (PTA) in brain. METHODS Ten acute hemorrhagic stroke patients (subarachnoid hemorrhage, n = 6; intracerebral hemorrhage, n = 4) undergoing multimodality neuromonitoring received 4 g piperacillin/0.5 g tazobactam every 8 h by 30-min infusions for the management of healthcare-associated pneumonia. Cerebral microdialysis was performed as part of the clinical neuromonitoring routine, and brain interstitial fluid samples were retrospectively analyzed for piperacillin concentrations after the first and after multiple doses for at least 5 days and quantified by high-performance liquid chromatography. Population pharmacokinetic modeling and Monte Carlo simulations with various doses and types of infusions were performed to predict exposure. A T>MIC of 50% was selected as pharmacokinetic/pharmacodynamic target parameter. RESULTS Median peak concentrations of unbound piperacillin in brain interstitial space fluid were 1.16 (range 0.08-3.59) and 2.78 (range 0.47-7.53) mg/L after the first dose and multiple doses, respectively. A one-compartment model with a transit compartment and a lag time (for the first dose) between systemic and brain exposure was appropriate to describe the brain concentrations. Bootstrap median estimates of the parameters were: transfer rate from plasma to brain (0.32 h-1), transfer rate from brain to plasma (7.31 h-1), and lag time [2.70 h (coefficient of variation 19.7%)]. The simulations suggested that PTA would exceed 90% for minimum inhibitory concentrations (MICs) up to 0.5 mg/L and 1 mg/L at a dose of 12-16 and 24 g/day, respectively, regardless of type of infusion. For higher MICs, PTA dropped significantly. CONCLUSION Limited CNS exposure of piperacillin might be an obstacle in treating patients without general meningeal inflammation except for infections with highly susceptible pathogens. Brain exposure of piperacillin did not improve significantly with a prolongation of infusions.
Collapse
Affiliation(s)
- Sami Ullah
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Uwe Fuhr
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max Taubert
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Usman Arshad
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Mario Kofler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Schroepf S, Burau D, Muench HG, Derendorf H, Zeitlinger M, Genzel-Boroviczény O, Adam D, Kloft C. Microdialysis sampling to monitor target-site vancomycin concentrations in septic infants: a feasible way to close the knowledge gap. Int J Antimicrob Agents 2021; 58:106405. [PMID: 34289402 DOI: 10.1016/j.ijantimicag.2021.106405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
This work is dedicated to the memory of Hartmut Derendorf (1953-2020), a pioneer of modern pharmacokinetics and valued mentor of this project. OBJECTIVES Septic infants/neonates need effective antibiotic exposure, but dosing recommendations are challenging as the pharmacokinetics in this age are highly variable. For vancomycin, which is used as a standard treatment, comprehensive pharmacokinetic knowledge especially at the infection site is lacking. Hence, an exploratory clinical study was conducted to assess the feasibility and safety of microdialysis sampling for vancomycin monitoring at the target site. METHODS Nine infants/neonates with therapeutic indications for vancomycin treatment were administered 15 mg/kg as 1-hour infusions every 8-24 hours. Microdialysis catheters were implanted in the subcutaneous interstitial space fluid of the lateral thigh. Samples were collected every 30 minutes over 24 hours, followed by retrodialysis for catheter calibration. Prior in vitro investigations have evaluated impact factors on relative recovery and retrodialysis. RESULTS In vitro investigations showed the applicability of microdialysis for vancomycin monitoring. Microdialysis sampling was well tolerated in all infants/neonates (23-255 days) without major bleeding or other adverse events. Pharmacokinetic profiles were obtained and showed plausible vancomycin concentration-time courses. CONCLUSIONS Microdialysis as a minimally invasive technique for continuous longer-term sampling is feasible and safe in infants/neonates. Interstitial space fluid profiles were plausible and showed substantial interpatient variation. Hence, a larger microdialysis trial is warranted to further characterise the pharmacokinetics and variability of vancomycin at the target site and ultimately improve vancomycin dosing in these vulnerable patients.
Collapse
Affiliation(s)
- Sebastian Schroepf
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Muenchen, Germany.
| | - Daniela Burau
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Hans-Georg Muench
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Muenchen, Germany
| | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Wien, Austria
| | | | | | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
7
|
Efficacy and mechanism of actions of natural antimicrobial drugs. Pharmacol Ther 2020; 216:107671. [PMID: 32916205 DOI: 10.1016/j.pharmthera.2020.107671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Microbial infections have significantly increased over the last decades, and the mortality rates remain unacceptably high. The emergence of new resistance patterns and the spread of new viruses challenge the eradication of infectious diseases. The declining efficacy of antimicrobial drugs has become a global public health problem. Natural products derived from natural sources, such as plants, animals, and microorganisms, have significant efficacy for the treatment of infectious diseases accompanied by less adverse effects, synergy, and ability to overcome drug resistance. As the Chinese female scientist Youyou Tu received the Nobel Prize for the antimalarial drug artemisinin, antimicrobial drugs developed from Traditional Chinese Medicine are expected to receive increasing attention again. This review summarizes the antimicrobial agents derived from natural products approved for nearly 20 years and describes their efficacy and mode of action. The aim of this unit is to review the current status of antimicrobial drugs from natural products in order to increase the value of natural products as a source of novel drug candidates for infectious diseases.
Collapse
|
8
|
Clinical Pharmacokinetics and Pharmacodynamics of Telavancin Compared with the Other Glycopeptides. Clin Pharmacokinet 2019; 57:797-816. [PMID: 29332251 PMCID: PMC5999141 DOI: 10.1007/s40262-017-0623-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Telavancin was discovered by modifying the chemical structure of vancomycin and belongs to the group of lipoglycopeptides. It employs its antimicrobial potential through two distinct mechanisms of action: inhibition of bacterial cell wall synthesis and induction of bacterial membrane depolarization and permeabilization. In this article we review the clinically relevant pharmacokinetic and pharmacodynamic data of telavancin. For comparison, the pharmacokinetic and pharmacodynamic data of the other glycopeptides are presented. Although, in contrast to the newer lipoglycopeptides, telavancin demonstrates a relatively short half-life and rapid total clearance, its apparent volume of distribution (Vd) is almost identical to that of dalbavancin. The accumulation of telavancin after repeated dosing is only marginal, whereas the pharmacokinetic values of the other glycopeptides show much greater differences after administration of multiple doses. Despite its high plasma-protein binding of 90% and relatively low Vd of approximately 11 L, telavancin shows near complete equilibration of the free fraction in plasma with soft tissue. The ratio of the area under the plasma concentration-time curve from time zero to 24 h (AUC24) of unbound plasma concentrations to the minimal inhibitory concentration (MIC) required to inhibit growth of 90% of organisms (MIC90) of Staphylococcus aureus and S. epidermidis of telavancin are sufficiently high to achieve pharmacokinetic/pharmacodynamic targets indicative for optimal bacterial killing. Considering both the AUC24/MIC ratios of telavancin and the near complete equilibration of the free fraction in plasma with soft tissue, telavancin is an appropriate antimicrobial agent to treat soft tissue infections caused by Gram-positive pathogens. Although the penetration of telavancin into epithelial lining fluid (ELF) requires further investigations, the AUC24/MIC ratio for S. aureus indicates that bactericidal activity in the ELF could be expected.
Collapse
|
9
|
Nowak H, Weidemann C, Martini S, Oesterreicher ZA, Dorn C, Adamzik M, Kees F, Zeitlinger M, Rahmel T. Repeated determination of moxifloxacin concentrations in interstitial space fluid of muscle and subcutis in septic patients. J Antimicrob Chemother 2019; 74:2681-2689. [PMID: 31299075 DOI: 10.1093/jac/dkz259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND For an effective antimicrobial treatment, it is crucial that antibiotics reach sufficient concentrations in plasma and tissue. Currently no data exist regarding moxifloxacin plasma concentrations and exposure levels in tissue under septic conditions. OBJECTIVES To determine the pharmacokinetics of moxifloxacin in plasma and interstitial space fluid over a prolonged period. PATIENTS AND METHODS Ten septic patients were treated with 400 mg of moxifloxacin once a day; on days 1, 3 and 5 of treatment plasma sampling and microdialysis in the subcutis and muscle of the upper thigh were performed to determine concentrations of moxifloxacin in different compartments. This trial was registered in the German Clinical Trials Register (DRKS, register number DRKS00012985). RESULTS Mean unbound fraction of moxifloxacin in plasma was 85.5±3.4%. On day 1, Cmax in subcutis and muscle was 2.8±1.8 and 2.5±1.3 mg/L, respectively, AUC was 24.8±15.1 and 21.3±10.5 mg·h/L, respectively, and fAUC0-24/MIC was 100.9±62.9 and 86.5±38.3 h, respectively. Cmax for unbound moxifloxacin in plasma was 3.5±0.9 mg/L, AUC was 23.5±7.5 mg·h/L and fAUC0-24/MIC was 91.6±24.8 h. Key pharmacokinetic parameters on days 3 and 5 showed no significant differences. Clearance was higher than in healthy adults, but tissue concentrations were comparable, most likely due to a lower protein binding. CONCLUSIONS Surprisingly, the first dose already achieved exposure comparable to steady-state conditions. The approved daily dose of 400 mg was adequate in our patient population. Thus, it seems that in septic patients a loading dose on the first day of treatment with moxifloxacin is not required.
Collapse
Affiliation(s)
- Hartmuth Nowak
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, In der Schornau 23-25, D Bochum, Germany
| | - Caroline Weidemann
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, In der Schornau 23-25, D Bochum, Germany
| | - Stefan Martini
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, In der Schornau 23-25, D Bochum, Germany
| | - Zoe Anne Oesterreicher
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, A Vienna, Austria
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Universitaetsstr. 31, D Regensburg, Germany
| | - Michael Adamzik
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, In der Schornau 23-25, D Bochum, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Universitaetsstr. 31, D Regensburg, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, A Vienna, Austria
| | - Tim Rahmel
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, In der Schornau 23-25, D Bochum, Germany
| |
Collapse
|
10
|
A population pharmacokinetic model of intravenous telavancin in healthy individuals to assess tissue exposure. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1097-1106. [PMID: 31062064 DOI: 10.1007/s00210-019-01647-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 10/26/2022]
Abstract
Non-compartmental analysis of telavancin microdialysis data indicated a sustained exposure in soft tissues and that unbound plasma concentrations were underestimated in vitro. The objective of the present evaluation was to develop a population pharmacokinetic model of telavancin to describe its plasma protein binding, its distribution into muscle, and subcutaneous tissue and to predict pharmacokinetic/-dynamic target attainment (PTA). Total plasma concentrations and microdialysate concentrations (plasma, subcutaneous, and muscle tissue) were available up to 24 h (plasma microdialysate, up to 8 h) post-dose from eight healthy subjects after a single intravenous infusion of 10 mg/kg telavancin. Population pharmacokinetic modeling and simulations were performed using NONMEM. A two-compartment model with saturable protein binding best described plasma concentrations. Plasma unbound fractions at steady state were 23, 15, and 11% at 100, 50, and 10% of the maximum predicted concentrations respectively. Distribution into muscle and subcutaneous tissue was non-linear and described appropriately by one additional compartment each. Based on total plasma concentrations, predicted median (95% confidence interval) values of AUC/MIC (MIC 0.125 mg/L, clinical breakpoint for MRSA) at steady state were 4009 [3421-4619] with a PTA of 96 [78-100] %. The fAUC/MIC in muscle was 496 [227-1232] with a PTA of 100 [98-100] %. The %fT>MIC was approximately 100% in plasma and interstitial space fluid of muscle and subcutaneous tissues up to an MIC of 0.25 mg/L. The model provided a new hypothesis on telavancin plasma protein binding in vivo. Proposed pharmacodynamic targets in plasma and muscle are achieved with currently approved doses of 10 mg/kg daily.
Collapse
|
11
|
Zhang L, Yao L, Kang Z, Huang Z, Gu X, Shen X, Ding H. Microdialysis Determination of Cefquinome Pharmacokinetics in Murine Thigh From Healthy, Neutropenic, and Actinobacillus pleuropneumoniae-Infected Mice. Front Pharmacol 2019; 10:249. [PMID: 30914957 PMCID: PMC6422941 DOI: 10.3389/fphar.2019.00249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/26/2019] [Indexed: 11/19/2022] Open
Abstract
This study was aimed at applying microdialysis to explore cefquinome pharmacokinetics in thigh and plasma of healthy, neutropenic, and Actinobacillus pleuropneumoniae-infected mice. The relative recoveries (RRs) were tested in vitro by dialysis and retrodialysis and in vivo by retrodialysis. ICR mice were randomly divided into four groups: H-40 (healthy mice receiving cefquinome at 40 mg/kg), H-160, N-40 (neutropenic mice), and I-40 mg/kg (thigh infected-mice with A. pleuropneumoniae). After cefquinome administration, plasma was collected by retro-orbital puncture and thigh dialysate was collected by using a microdialysis probe with Ringer’s solution at a perfusion rate of 1.5 μL/min. Plasma and thigh dialysate samples were assessed by HPLC–MS/MS and analyzed by a non-compartment model. The mean in vivo recoveries in the thigh were 39.35, 38.59, and 37.29% for healthy, neutropenic, and infected mice, respectively. The mean plasma protein-binding level was 16.40% and was independent of drug concentrations. For all groups, the mean values of the free AUCinf in plasma were higher than those in murine thigh, while the elimination T1/2β for plasma were lower than those for murine thigh. Cefquinome penetration (AUCthigh/AUCplasma) from the plasma to thigh was 0.76, 0.88, 0.47, and 0.98 for H-40, N-40, I-40, and H-160 mg/kg, respectively. These results indicated that infection significantly affected cefquinome pharmacokinetics in murine thigh. In conclusion, we successfully applied a microdialysis method to evaluate the pharmacokinetics of cefquinome in murine thigh of healthy, neutropenic, and A. pleuropneumonia-infected mice and the pharmacokinetics of cefquinome was obviously affected by infection in thigh.
Collapse
Affiliation(s)
- Longfei Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Lihua Yao
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zheng Kang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zilong Huang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Gu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiangguang Shen
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Huanzhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Roch M, Varela MC, Taglialegna A, Rose WE, Rosato AE. Activity of Telavancin against Staphylococcus aureus Isolates, Including Those with Decreased Susceptibility to Ceftaroline, from Cystic Fibrosis Patients. Antimicrob Agents Chemother 2018; 62:e00956-18. [PMID: 29914961 PMCID: PMC6125506 DOI: 10.1128/aac.00956-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) acquisition in cystic fibrosis (CF) patients confers a clinical outcome worse than that in non-CF patients with an increased rate of declined lung function. Telavancin, an approved lipoglycopeptide used to treat infections due to S. aureus, has a dual mode of action causing inhibition of peptidoglycan synthesis and membrane depolarization. MRSA infections in CF patients remain an important problem with no foreseeable decline in prevalence rates. Although telavancin is currently in clinical use for the treatment of complicated skin infections and hospital-acquired pneumonia, the activity against S. aureus infections in CF patients has not been investigated. In this work, we studied the activity of telavancin against CF patient-derived S. aureus strains collected from geographically diverse CF centers in the United States. We found that the telavancin MIC90 was 0.06 μg/ml, 8-fold lower than the ceftaroline or daptomycin MIC90 and 25-fold lower than the linezolid and vancomycin MIC90 We demonstrate that telavancin at serum free concentrations has rapid bactericidal activity, with a decrease of more than 3 log10 CFU/ml being achieved during the first 4 to 6 h of treatment, performing better in this assay than vancomycin and ceftaroline, including against S. aureus strains resistant to ceftaroline. Telavancin resistance was infrequent (0.3%), although we found that it can occur in vitro in both CF- and non-CF patient-derived S. aureus strains by progressive passages with subinhibitory concentrations. Genetic analysis of telavancin-resistant in vitro mutants showed gene polymorphisms in cell wall and virulence genes and increased survival in a Galleria mellonella infection model. Thus, we conclude that telavancin represents a promising therapeutic option for infections in CF patients with potent in vitro activity and a low resistance development potential.
Collapse
Affiliation(s)
- Melanie Roch
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Maria Celeste Varela
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
13
|
Pharmacokinetics of Telavancin at Fixed Doses in Normal-Body-Weight and Obese (Classes I, II, and III) Adult Subjects. Antimicrob Agents Chemother 2018; 62:AAC.02475-17. [PMID: 29311094 DOI: 10.1128/aac.02475-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
A recommended total-body-weight (TBW) dosing strategy for telavancin may not be optimal in obese patients. The primary objective of this study was to characterize and compare the pharmacokinetics (PK) of telavancin across four body size groups: normal to overweight and obese classes I, II, and III. Healthy adult subjects (n = 32) received a single, weight-stratified, fixed dose of 500 mg (n = 4), 750 mg (n = 8), or 1,000 mg (n = 20) of telavancin. Noncompartmental PK analyses revealed that subjects with a body mass index (BMI) of ≥40 kg/m2 had a higher volume of distribution (16.24 ± 2.7 liters) than subjects with a BMI of <30 kg/m2 (11.71 ± 2.6 liters). The observed area under the concentration-time curve from time zero to infinity (AUC0-∞) ranged from 338.1 to 867.3 mg · h/liter, with the lowest exposures being in subjects who received 500 mg. AUC0-∞ values were similar among obese subjects who received 1,000 mg. A two-compartment population PK model best described the plasma concentration-time profile of telavancin when adjusted body weight (ABW) was included as a predictive covariate. Fixed doses of 750 mg and 1,000 mg had similar target attainment probabilities for efficacy as doses of 10 mg/kg of body weight based on ABW and TBW, respectively. However, the probability of achieving a target area under the concentration-time curve from time zero to 24 h of ≥763 mg · h/liter in association with acute kidney injury was highest (19.7%) with TBW-simulated dosing and lowest (0.4%) at the 750-mg dose. These results suggest that a fixed dose of 750 mg is a safe and effective alternative to telavancin doses based on TBW or ABW for the treatment of obese patients with normal renal function and Staphylococcus aureus infections. (This study has been registered at ClinicalTrials.gov under identifier NCT02753855.).
Collapse
|