1
|
Soraci L, Cherubini A, Paoletti L, Filippelli G, Luciani F, Laganà P, Gambuzza ME, Filicetti E, Corsonello A, Lattanzio F. Safety and Tolerability of Antimicrobial Agents in the Older Patient. Drugs Aging 2023; 40:499-526. [PMID: 36976501 PMCID: PMC10043546 DOI: 10.1007/s40266-023-01019-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Older patients are at high risk of infections, which often present atypically and are associated with high morbidity and mortality. Antimicrobial treatment in older individuals with infectious diseases represents a clinical challenge, causing an increasing burden on worldwide healthcare systems; immunosenescence and the coexistence of multiple comorbidities determine complex polypharmacy regimens with an increase in drug-drug interactions and spread of multidrug-resistance infections. Aging-induced pharmacokinetic and pharmacodynamic changes can additionally increase the risk of inappropriate drug dosing, with underexposure that is associated with antimicrobial resistance and overexposure that may lead to adverse effects and poor adherence because of low tolerability. These issues need to be considered when starting antimicrobial prescriptions. National and international efforts have been made towards the implementation of antimicrobial stewardship (AMS) interventions to help clinicians improve the appropriateness and safety of antimicrobial prescriptions in both acute and long-term care settings. AMS programs were shown to decrease consumption of antimicrobials and to improve safety in hospitalized patients and older nursing home residents. With the abundance of antimicrobial prescriptions and the recent emergence of multidrug resistant pathogens, an in-depth review of antimicrobial prescriptions in geriatric clinical practice is needed. This review will discuss the special considerations for older individuals needing antimicrobials, including risk factors that shape risk profiles in geriatric populations as well as an evidence-based description of antimicrobial-induced adverse events in this patient population. It will highlight agents of concern for this age group and discuss interventions to mitigate the effects of inappropriate antimicrobial prescribing.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, IRCCS INRCA, 87100, Cosenza, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| | - Luca Paoletti
- Geriatria, Accettazione geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| | | | - Filippo Luciani
- Infectious Diseases Unit of Annunziata Hospital, Cosenza, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | | | | | | | | |
Collapse
|
2
|
Wang Y, Xiong Y, Wang Z, Zheng J, Xu G, Deng Q, Wen Z, Yu Z. Comparison of solithromycin with erythromycin in Enterococcus faecalis and Enterococcus faecium from China: antibacterial activity, clonality, resistance mechanism, and inhibition of biofilm formation. J Antibiot (Tokyo) 2020; 74:143-151. [PMID: 33077828 DOI: 10.1038/s41429-020-00374-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
Solithromycin (SOL), a fourth-generation macrolide and ketolide, has been reported to have robust antibacterial activity against a wide spectrum of Gram-positive bacteria. However, the impact of SOL on planktonic growth and biofilm formation of clinical enterococcus isolates remains unclear. In this study, 276 Enterococcus faecalis isolates and 122 Enterococcus faecium were retrospectively collected from a tertiary hospital from China. SOL against clinical isolates of enterococci from China were evaluated the antimicrobial activity in comparison with erythromycin, and explore its relationship with the clonality, virulence genes and resistance mechanism of these isolates. Our data showed that the MICs of SOL against clinical E. faecalis and E. faecium isolates from China were ≤4 and ≤8 mg l-1, respectively. ST16 and ST179 were regarded as the risk factor to SOL resistance in E. faecalis. SOL could inhibit but not eradicate the biofilm formation of E. faecalis. The bactericidal effects of SOL against E. faecalis and E. faecium were demonstrated to be similar to linezolid and vancomycin using time-kill assays. In conclusion, SOL showed significantly enhanced antibacterial activity against clinical isolates of E. faecalis and E. faecium from China in comparison to erythromycin. Furthermore, SOL could inhibit the biofilm formation of E. faecalis and have the similar bactericidal ability as linezolid and vancomycin against both E. faecalis and E. faecium.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Zhanwen Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Guangjian Xu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Zewen Wen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China.
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China.
| |
Collapse
|
3
|
Kawamoto Y, Morinaga Y, Kaku N, Uno N, Kosai K, Sakamoto K, Hasegawa H, Yanagihara K. A novel macrolide, solithromycin suppresses mucin overexpression induced by Pseudomonas aeruginosa LPS in airway epithelial cells. J Infect Chemother 2020; 26:1008-1010. [PMID: 32651065 DOI: 10.1016/j.jiac.2020.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/28/2022]
Abstract
Some macrolides such as 14- and 15-membered macrolides have immunomodulatory effects such as suppression of mucin overproduction. Because a novel macrolide, solithromycin, was developed, we examined whether it suppresses the overexpression of mucin in vitro. A human airway epithelial cell line NCI-H292 was stimulated by Pseudomonas aeruginosa lipopolysaccharides to induce the overproduction of a major mucin, MUC5AC. Treatment with 10 μg/mL of solithromycin significantly inhibited LPS-induced MUC5AC in both mRNA and protein levels as well as a 15-membered macrolide, azithromycin. These findings support that solithromycin has a potential immunomodulatory effect.
Collapse
Affiliation(s)
- Yasuhide Kawamoto
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Kei Sakamoto
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Katunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
4
|
Fernandes P, Pereira D, Watkins PB, Bertrand D. Differentiating the Pharmacodynamics and Toxicology of Macrolide and Ketolide Antibiotics. J Med Chem 2019; 63:6462-6473. [PMID: 31644280 DOI: 10.1021/acs.jmedchem.9b01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This is a review of the macrolide and ketolide field focusing on differentiating the pharmacodynamics and especially the toxicology of the macrolides and ketolides. We emphasize the diversity in pharmacodynamics and toxicity of the macrolides and ketolides, resulting from even small structural changes, which makes it important to consider the various different compounds separately, not necessarily as a class. The ketolide, telithromycin, was developed because of rising bacterial macrolide resistance but was withdrawn postapproval after visual disturbances, syncope, myasthenia gravis, and hepatotoxicity were noted. These diverse adverse effects could be attributed to inhibition of nicotinic acetylcholine receptors. Solithromycin, a later generation ketolide, was effective in treating bacterial pneumonia, but it was not approved by the U.S. Food and Drug Administration owing, in part, to its structural similarity to telithromycin. This Miniperspective describes that structurally similar macrolides/ketolides have clearly mechanistically distinct effects. Understanding these effects could help in developing and securing regulatory approval of a new macrolide/ketolide that is active against macrolide-resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | - David Pereira
- Ponce De Leon Health, Fernandina Beach, Florida 32034, United States
| | - Paul B Watkins
- Schools of Pharmacy, Medicine and Public Health, Institute for Drug Safety Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Daniel Bertrand
- HiQScreen SÃrl, 6, Route de Compois, Vesenaz, 1222 Geneva, Switzerland
| |
Collapse
|
5
|
Liu Y, Zhang Y, Zhao W, Liu X, Hu F, Dong B. Pharmacotherapy of Lower Respiratory Tract Infections in Elderly-Focused on Antibiotics. Front Pharmacol 2019; 10:1237. [PMID: 31736751 PMCID: PMC6836807 DOI: 10.3389/fphar.2019.01237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Lower respiratory tract infections (LRTIs) refer to the inflammation of the trachea, bronchi, bronchioles, and lung tissue. Old people have an increased risk of developing LRTIs compared to young adults. The prevalence of LRTIs in the elderly population is not only related to underlying diseases and aging itself, but also to a variety of clinical issues, such as history of hospitalization, previous antibacterial therapy, mechanical ventilation, antibiotic resistance. These factors mentioned above have led to an increase in the prevalence and mortality of LRTIs in the elderly, and new medical strategies targeting LRTIs in this population are urgently needed. After a systematic review of the current randomized controlled trials and related studies, we recommend novel pharmacotherapies that demonstrate advantages for the management of LRTIs in people over the age of 65. We also briefly reviewed current medications for respiratory communicable diseases in the elderly. Various sources of information were used to ensure all relevant studies were included. We searched Pubmed, MEDLINE (OvidSP), EMBASE (OvidSP), and ClinicalTrials.gov. Strengths and limitations of these drugs were evaluated based on whether they have novelty of mechanism, favorable pharmacokinetic/pharmacodynamic profiles, avoidance of interactions and intolerance, simplicity of dosing, and their ability to cope with challenges which was mainly evaluated by the primary and secondary endpoints. The purpose of this review is to recommend the most promising antibiotics for treatment of LRTIs in the elderly (both in hospital and in the outpatient setting) based on the existing results of clinical studies with the novel antibiotics, and to briefly review current medications for respiratory communicable diseases in the elderly, aiming to a better management of LRTIs in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Yan Zhang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Wanyu Zhao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Xiaolei Liu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Fengjuan Hu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Antibiotics in the Pipeline for Treatment of Infections due to Gram-Negative Organisms. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2019. [DOI: 10.1007/s40506-019-00187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Bondeelle L, Bergeron A, Wolff M. Place des nouveaux antibiotiques dans le traitement de la pneumonie aiguë communautaire de l’adulte. Rev Mal Respir 2019; 36:104-117. [DOI: 10.1016/j.rmr.2018.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
|
8
|
Metabolism, Excretion, and Mass Balance of Solithromycin in Humans. Antimicrob Agents Chemother 2018; 62:AAC.01474-17. [PMID: 29507061 DOI: 10.1128/aac.01474-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022] Open
Abstract
Solithromycin, a novel macrolide and the first fluoroketolide, is being developed as a therapy for community-acquired bacterial pneumonia, with a distinct mechanism that provides activity against macrolide-resistant bacteria. The pharmacokinetics, metabolism, and excretion of solithromycin were studied in healthy male subjects after oral administration of a single 800-mg (∼100-μCi) dose of [14C]solithromycin. Solithromycin was well tolerated, and absorption from the solution occurred with a median time to peak concentration of 4.0 h. Solithromycin and the total radioactivity had similar profiles with no long-lived metabolites. The whole-blood total radioactivity was approximately 75% of the plasma total radioactivity. Recovery was essentially complete (mean, 90.6%), with 76.5% and 14.1% of the dose recovered in feces and urine, respectively. Unchanged solithromycin (CEM-101) was the predominant circulating radioactive component in plasma (77% of the total radioactivity area under the concentration-time curve [AUC]), with two minor plasma metabolites, CEM-214 and CEM-122 (N-acetyl-CEM-101), each accounting for approximately 5% of the total radioactivity. Urinary excretion was predominantly like that of the parent. Solithromycin was primarily eliminated in the feces after extensive metabolism via a complex metabolic pathway with CEM-262 as the major constituent (27.36% of the administered dose). Overall oxidative pathways, presumably carried out mostly by CYP3A4, represented the majority of the metabolism, with N-acetylation present to a lesser extent. No disproportionate human metabolites were observed.
Collapse
|
9
|
Abstract
Solithromycin, a ketolide/macrolide antibiotic, has recently been reported to be free of the expected QT-prolonging effect of macrolides. It appears that its keto substitution provides a structural basis for this observation, as the other two tested ketolides also have minimal QT effect.Among non-cardiovascular therapies, antimicrobials probably carry the greatest potential to cause cardiac arrhythmias. This is a result of their propensity to bind to the delayed rectifier potassium channel, IKr, inducing QT prolongation and risk of torsades de pointes ventricular tachycardia, their frequent interference with the metabolism of other QT prolongers and their susceptibility to metabolic inhibition by numerous commonly used drugs.Unfortunately, there is evidence that medical practitioners do not take account of the QT/arrhythmia risk of antimicrobials in their prescribing practices. Education on this topic is sorely needed. When a macrolide is indicated, a ketolide should be considered in patients with a QT risk.
Collapse
|
10
|
Donald BJ, Surani S, Deol HS, Mbadugha UJ, Udeani G. Spotlight on solithromycin in the treatment of community-acquired bacterial pneumonia: design, development, and potential place in therapy. Drug Des Devel Ther 2017; 11:3559-3566. [PMID: 29263651 PMCID: PMC5732564 DOI: 10.2147/dddt.s119545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Community-acquired bacterial pneumonia (CABP) is a leading cause of death worldwide. However, antibacterial agents used to treat common pathogens in CABP are marked by adverse drug events and increasing antimicrobial resistance. Solithromycin is a new ketolide antibiotic, based on the macrolide antibiotic structure, being studied for use in CABP. It has efficacy in vitro against the common causative pathogens in CABP including Streptococcus pneumoniae, Haemophilus influenzae, and atypical pathogens. In Phase II and Phase III clinical trials, it has been demonstrated efficacious as a single agent for treatment of CABP with an apparently milder adverse event profile than alternative agents.
Collapse
Affiliation(s)
- Bryan J Donald
- Department of Pharmacy, Corpus Christi Medical Center, Corpus Christi, TX.,Department of Clinical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA
| | - Salim Surani
- Department of Pulmonology/Critical Care, Corpus Christi Medical Center, Corpus Christi, TX.,Department of Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX.,Department of Medicine, College of Osteopathic Medicine, University of North Texas Health Science Center, Denton, TX
| | - Harmeet S Deol
- Department of Pharmacy, Corpus Christi Medical Center, Corpus Christi, TX.,Department of Pharmacy Services, Yale New Haven Hospital, New Haven, CT
| | - Uche J Mbadugha
- Department of Pharmacy, Corpus Christi Medical Center, Corpus Christi, TX
| | - George Udeani
- Department of Pharmacy, Corpus Christi Medical Center, Corpus Christi, TX.,Pharmacy Practice, College of Pharmacy, Texas A&M University Health Science Center, Kingsville, TX, USA
| |
Collapse
|
11
|
Buege MJ, Brown JE, Aitken SL. Solithromycin: A novel ketolide antibiotic. Am J Health Syst Pharm 2017; 74:875-887. [DOI: 10.2146/ajhp160934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Michael J. Buege
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jack E. Brown
- Department of Pharmacy, University of Rochester Medical Center, Rochester, NY
- Wegmans School of Pharmacy at St. John Fisher College, Rochester, NY
| | - Samuel L. Aitken
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX
- Center for Antimicrobial Resistance and Microbial Genomics, UTHealth McGovern Medical School, Houston, TX
| |
Collapse
|