1
|
Kao CY, Kuo PY, Lin CC, Cheng YY, Wang MC, Chen YC, Lin WH. Molecular characterization of colistin-resistant Klebsiella pneumoniae isolates and their conjugative mcr-carrying plasmids. J Infect Public Health 2024; 17:102588. [PMID: 39566127 DOI: 10.1016/j.jiph.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/02/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND This study aimed to characterize colistin-resistant K. pneumoniae (CoRKp) strains isolated from patients with urinary tract infections and bacteremia between 1999 and 2022 at a tertiary teaching hospital in Taiwan. METHODS A total of 1966 K. pneumoniae isolates were collected, among which 21 strains were identified as CoRKp. The antimicrobial susceptibility of these CoRKp strains to 19 antibiotics was assessed. The genome characteristics of 21 CoRKp strains were determined by Nanopore-Illumina hybrid whole genome sequencing. Additionally, conjugation assays were conducted to determine the transferability of plasmids carrying mcr genes to K. pneumoniae ATCC BAA-1706 and E. coli C600. The larvae infection model was used to analyze the differences in virulence between transconjugants and recipient strains. RESULTS Among the 21 CoRKp, 12 were multidrug-resistant, and four were extensively drug-resistant. The distribution of sequence types (STs) and K types among the CoRKp strains was quite diverse, and ST307 (5 strains) and K64 (3 strains) dominated in CoRKp. The insertion elements IS903B and ISVsa5, were found to inactivate mgrB of 1 and 2 CoRKp isolates, respectively. Moreover, 1, 4, 6, and 1 missense mutations of PhoQ, PmrA, PmrB, and MgrB, were identified in 21 CoRKp. Only two isolates SC-KP169 and SC-KP585 carried mcr-1 and mcr-8, respectively. The plasmid pSC-KP169-1 could be transferred inter- and intra-genus and contributed to the virulence of K. pneumoniae to larvae. In contrast, the plasmid pSC-KP585-1 could be transferred to E. coli but could not affect its virulence to larvae. CONCLUSIONS We identified 21 CoRKp from 1966 isolates and found a conjugative plasmid carrying mcr-1 gene that contributed to the virulence of K. pneumoniae to larvae.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chieh Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Yu Cheng
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Chen
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Lin JC, Kristopher Siu LK, Chang FY, Wang CH. Mutations in the pmrB gene constitute the major mechanism underlying chromosomally encoded colistin resistance in clinical Escherichia coli. J Glob Antimicrob Resist 2024; 38:275-280. [PMID: 38996871 DOI: 10.1016/j.jgar.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
OBJECTIVES The mechanisms underlying chromosomally encoded colistin resistance in Escherichia coli remain insufficiently investigated. In this study, we investigated the contribution of various pmrB mutations from E. coli clinical isolates to colistin resistance. METHODS The resistance mechanisms in eight mcr-negative colistin-resistant E. coli isolates obtained from a nationwide surveillance program in Taiwan using recombinant DNA techniques and complementary experiments were investigated. The minimal inhibitory concentrations (MICs) of colistin in the recombinant strains were compared with those in the parental strains. The expression levels of pmrA and pmrK (which are part of the pmrCAB and pmrHFIJKLM operons associated with colistin resistance) were measured using reverse transcription-quantitative real-time polymerase chain reaction. RESULTS In the complementation experiments, various mutated pmrB alleles from the eight mcr-negative colistin-resistant E. coli strains were introduced into an ATCC25922 mutant with a PmrB deletion, which resulted in colistin resistance. The MIC levels of colistin in the most complemented strains were comparable to those of the parental colistin-resistant strains. Increased expression levels of pmrA and pmrK were consistently detected in most complemented strains. The impact for colistin resistance was confirmed for various novel amino acid substitutions, P94L, G19E, L194P, L98R and R27L in PmrB from the parental clinical strains. The detected amino acid substitutions are distributed in the different functional domains of PmrB. CONCLUSIONS Colistin resistance mediated by amino acid substitutions in PmrB is a major chromosomally encoded mechanism in E. coli of clinical origin.
Collapse
Affiliation(s)
- Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal, Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Leung-Kei Kristopher Siu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal, Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal, Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Weis AM, Matthews OJ, Mulvey MA, Round JL. Draft genome of a human-derived pks+ E. coli that caused spontaneous disseminated infection in a mouse. Microbiol Resour Announc 2024; 13:e0038724. [PMID: 38832767 PMCID: PMC11256781 DOI: 10.1128/mra.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
We present the draft genome of a novel human-derived Escherichia coli strain isolated from a healthy control human microbiota that, when put into a mouse, spontaneously disseminated from the gut to the kidneys.
Collapse
Affiliation(s)
- Allison M. Weis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - O’Connor J. Matthews
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A. Mulvey
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Groover KE, Randall JR, Davies BW. Development of a Selective and Stable Antimicrobial Peptide. ACS Infect Dis 2024; 10:2151-2160. [PMID: 38712889 PMCID: PMC11185160 DOI: 10.1021/acsinfecdis.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
Antimicrobial peptides (AMPs) are presented as potential scaffolds for antibiotic development due to their desirable qualities including broad-spectrum activity, rapid action, and general lack of susceptibility to current resistance mechanisms. However, they often lose antibacterial activity under physiological conditions and/or display mammalian cell toxicity, which limits their potential use. Identification of AMPs that overcome these barriers will help develop rules for how this antibacterial class can be developed to treat infection. Here we describe the development of our novel synthetic AMP, from discovery through in vivo application. Our evolved AMP, DTr18-dab, has broad-spectrum antibacterial activity and is nonhemolytic. It is active against planktonic bacteria and biofilm, is unaffected by colistin resistance, and importantly is active in both human serum and a Galleria mellonella infection model. Several modifications, including the incorporation of noncanonical amino acids, were used to arrive at this robust sequence. We observed that the impact on antibacterial activity with noncanonical amino acids was dependent on assay conditions and therefore not entirely predictable. Overall, our results demonstrate how a relatively weak lead can be developed into a robust AMP with qualities important for potential therapeutic translation.
Collapse
Affiliation(s)
- Kyra E. Groover
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Justin R. Randall
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Bryan W. Davies
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
- John
Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Wang CH, Siu LK, Chang FY, Tsai YK, Huang LY, Lin JC. Influence of PhoPQ and PmrAB two component system alternations on colistin resistance from non-mcr colistin resistant clinical E. Coli strains. BMC Microbiol 2024; 24:109. [PMID: 38565985 PMCID: PMC10986093 DOI: 10.1186/s12866-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The current understanding of acquired chromosomal colistin resistance mechanisms in Enterobacterales primarily involves the disruption of the upstream PmrAB and PhoPQ two-component system (TCS) control caused by mutations in the regulatory genes. Interestingly, previous studies have yielded conflicting results regarding the interaction of regulatory genes related to colistin resistance in Escherichia coli, specifically those surrounding PhoPQ and PmrAB TCS. RESULTS In our study, we focused on two clinical non-mcr colistin-resistant strains of E. coli, TSAREC02 and TSAREC03, to gain a better understanding of their resistance mechanisms. Upon analysis, we discovered that TSAREC02 had a deletion (Δ27-45) in MgrB, as well as substitutions (G206R, Y222H) in PmrB. On the other hand, TSAREC03 exhibited a long deletion (Δ84-224) in PhoP, along with substitutions (M1I, L14P, P178S, T235N) in PmrB. We employed recombinant DNA techniques to explore the interaction between the PhoPQ and PmrAB two-component systems (TCSs) and examine the impact of the mutated phoPQ and pmrB genes on the minimum inhibitory concentrations (MICs) of colistin. We observed significant changes in the expression of the pmrD gene, which encodes a connector protein regulated by the PhoPQ TCS, in the TSAREC02 wild-type (WT)-mgrB replacement mutant and the TSAREC03 WT-phoP replacement mutant, compared to their respective parental strains. However, the expressions of pmrB/pmrA, which reflect PmrAB TCS activity, and the colistin MICs remained unchanged. In contrast, the colistin MICs and pmrB/pmrA expression levels were significantly reduced in the pmrB deletion mutants from both TSAREC02 and TSAREC03, compared to their parental strains. Moreover, we were able to restore colistin resistance and the expressions of pmrB/pmrA by transforming a plasmid containing the parental mutated pmrB back into the TSAREC02 and TSAREC03 mutants, respectively. CONCLUSION While additional data from clinical E. coli isolates are necessary to validate whether our findings could be broadly applied to the E. coli population, our study illuminates distinct regulatory pathway interactions involving colistin resistance in E. coli compared to other species of Enterobacterales. The added information provided by our study contribute to a deeper understanding of the complex pathway interactions within Enterobacterales.
Collapse
Affiliation(s)
- Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - L Kristopher Siu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan
| | - Yu-Kuo Tsai
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Yueh Huang
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
6
|
Barretto LAF, Van PKT, Fowler CC. Conserved patterns of sequence diversification provide insight into the evolution of two-component systems in Enterobacteriaceae. Microb Genom 2024; 10:001215. [PMID: 38502064 PMCID: PMC11004495 DOI: 10.1099/mgen.0.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism used by bacteria to sense and respond to their environments. Many of the same TCSs are used by biologically diverse organisms with different regulatory needs, suggesting that the functions of TCS must evolve. To explore this topic, we analysed the amino acid sequence divergence patterns of a large set of broadly conserved TCS across different branches of Enterobacteriaceae, a family of Gram-negative bacteria that includes biomedically important genera such as Salmonella, Escherichia, Klebsiella and others. Our analysis revealed trends in how TCS sequences change across different proteins or functional domains of the TCS, and across different lineages. Based on these trends, we identified individual TCS that exhibit atypical evolutionary patterns. We observed that the relative extent to which the sequence of a given TCS varies across different lineages is generally well conserved, unveiling a hierarchy of TCS sequence conservation with EnvZ/OmpR as the most conserved TCS. We provide evidence that, for the most divergent of the TCS analysed, PmrA/PmrB, different alleles were horizontally acquired by different branches of this family, and that different PmrA/PmrB sequence variants have highly divergent signal-sensing domains. Collectively, this study sheds light on how TCS evolve, and serves as a compendium for how the sequences of the TCS in this family have diverged over the course of evolution.
Collapse
Affiliation(s)
- Luke A. F. Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Patryc-Khang T. Van
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| |
Collapse
|
7
|
Avgere E, Zafeiridis C, Procter KA, Beloukas A, Giakkoupi P. Molecular Characterization of Escherichia coli Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse. Antibiotics (Basel) 2023; 12:1625. [PMID: 37998827 PMCID: PMC10669062 DOI: 10.3390/antibiotics12111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
The first prospective surveillance of ESBL and colistin-resistant Escherichia coli recovered from sick pigs from a slaughterhouse in Central Greece aimed to investigate the spread of relevant genetic elements. In February 2021, 25 E. coli isolates were subjected to antimicrobial susceptibility testing using disk diffusion and broth microdilution techniques. PCR screening was conducted to identify ESBLs and mcr genes. Additional assays, encompassing mating-out procedures, molecular typing utilizing Pulsed-Field Gel Electrophoresis, multilocus sequence typing analysis, and plasmid typing, were also conducted. A 40% prevalence of ESBLs and an 80% prevalence of MCR-1 were identified, with a co-occurrence rate of 32%. The predominant ESBL identified was CTX-M-3, followed by SHV-12. Resistance to colistin, chloramphenicol, cotrimoxazol, and ciprofloxacin was detected in twenty (80%), fifteen (60%), twelve (48%), and four (16%) isolates, respectively. All blaCTX-M-3 harboring plasmids were conjugative, belonging to the incompatibility group IncI1, and approximately 50 kb in size. Those carrying blaSHV-12 were also conjugative, classified into incompatibility group IncI2, and approximately 70 kb in size. The mcr-1 genes were predominantly located on conjugative plasmids associated with the IncX4 incompatibility group. Molecular typing of the ten concurrent ESBL and MCR-1 producers revealed seven multilocus sequence types. The heterogeneous population of E. coli isolates carrying resistant genes on constant plasmids implies that the dissemination of resistance genes is likely facilitated by horizontal plasmid transfer.
Collapse
Affiliation(s)
- Ermioni Avgere
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (E.A.); (K.A.P.); (A.B.)
| | - Christos Zafeiridis
- Public Health Policy Department, University of West Attica, 11521 Athens, Greece;
- Ministry of Rural Development and Food of Greece (General Directorate of Veterinary Services), Seconded National Expert to the European Commission (Directorate General of Health and Food Safety-Unit G4, Official Controls-Northern Ireland Liaison Team), Belfast BT96DR, UK
| | - Kassandra A. Procter
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (E.A.); (K.A.P.); (A.B.)
- National AIDS Reference Centre of Southern Greece, Department of Public Health Policy, University of West Attica, 11521 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (E.A.); (K.A.P.); (A.B.)
- National AIDS Reference Centre of Southern Greece, Department of Public Health Policy, University of West Attica, 11521 Athens, Greece
| | - Panagiota Giakkoupi
- Public Health Policy Department, University of West Attica, 11521 Athens, Greece;
- Laboratory for the Surveillance of Infectious Diseases-LSID, Department of Public Health Policy, University of West Attica, 11521 Athens, Greece
| |
Collapse
|
8
|
Shahzad S, Willcox MDP, Rayamajhee B. A Review of Resistance to Polymyxins and Evolving Mobile Colistin Resistance Gene ( mcr) among Pathogens of Clinical Significance. Antibiotics (Basel) 2023; 12:1597. [PMID: 37998799 PMCID: PMC10668746 DOI: 10.3390/antibiotics12111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
The global rise in antibiotic resistance in bacteria poses a major challenge in treating infectious diseases. Polymyxins (e.g., polymyxin B and colistin) are last-resort antibiotics against resistant Gram-negative bacteria, but the effectiveness of polymyxins is decreasing due to widespread resistance among clinical isolates. The aim of this literature review was to decipher the evolving mechanisms of resistance to polymyxins among pathogens of clinical significance. We deciphered the molecular determinants of polymyxin resistance, including distinct intrinsic molecular pathways of resistance as well as evolutionary characteristics of mobile colistin resistance. Among clinical isolates, Acinetobacter stains represent a diversified evolution of resistance, with distinct molecular mechanisms of intrinsic resistance including naxD, lpxACD, and stkR gene deletion. On the other hand, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa are usually resistant via the PhoP-PhoQ and PmrA-PmrB pathways. Molecular evolutionary analysis of mcr genes was undertaken to show relative relatedness across the ten main lineages. Understanding the molecular determinants of resistance to polymyxins may help develop suitable and effective methods for detecting polymyxin resistance determinants and the development of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Shakeel Shahzad
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | | |
Collapse
|
9
|
Abban MK, Ayerakwa EA, Mosi L, Isawumi A. The burden of hospital acquired infections and antimicrobial resistance. Heliyon 2023; 9:e20561. [PMID: 37818001 PMCID: PMC10560788 DOI: 10.1016/j.heliyon.2023.e20561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
The burden of Hospital care-associated infections (HCAIs) is becoming a global concern. This is compounded by the emergence of virulent and high-risk bacterial strains such as "ESKAPE" pathogens - (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species), especially within Intensive care units (ICUs) that house high-risk and immunocompromised patients. In this review, we discuss the contributions of AMR pathogens to the increasing burden of HCAIs and provide insights into AMR mechanisms, with a particular focus on last-resort antibiotics like polymyxins. We extensively discuss how structural modifications of surface-membrane lipopolysaccharides and cationic interactions influence and inform AMR, and subsequent severity of HCAIs. We highlight some bacterial phenotypic survival mechanisms against polymyxins. Lastly, we discuss the emergence of plasmid-mediated resistance as a phenomenon making mitigation of AMR difficult, especially within the ICUs. This review provides a balanced perspective on the burden of HCAIs, associated pathogens, implication of AMR and factors influencing emerging AMR mechanisms.
Collapse
Affiliation(s)
- Molly Kukua Abban
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Eunice Ampadubea Ayerakwa
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Abiola Isawumi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
10
|
Lian ZJ, Phan MD, Hancock SJ, Nhu NTK, Paterson DL, Schembri MA. Genetic basis of I-complex plasmid stability and conjugation. PLoS Genet 2023; 19:e1010773. [PMID: 37347771 PMCID: PMC10286972 DOI: 10.1371/journal.pgen.1010773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023] Open
Abstract
Plasmids are major drivers of increasing antibiotic resistance, necessitating an urgent need to understand their biology. Here we describe a detailed dissection of the molecular components controlling the genetics of I-complex plasmids, a group of antibiotic resistance plasmids found frequently in pathogenic Escherichia coli and other Enterobacteriaceae that cause significant human disease. We show these plasmids cluster into four distinct subgroups, with the prototype IncI1 plasmid R64 subgroup displaying low nucleotide sequence conservation to other I-complex plasmids. Using pMS7163B, an I-complex plasmid distantly related to R64, we performed a high-resolution transposon-based genetic screen and defined genes involved in replication, stability, and conjugative transfer. We identified the replicon and a partitioning system as essential for replication/stability. Genes required for conjugation included the type IV secretion system, relaxosome, and several uncharacterised genes located in the pMS7163B leading transfer region that exhibited an upstream strand-specific transposon insertion bias. The overexpression of these genes severely impacted host cell growth or reduced fitness during mixed competitive growth, demonstrating that their expression must be controlled to avoid deleterious impacts. These genes were present in >80% of all I-complex plasmids and broadly conserved across multiple plasmid incompatibility groups, implicating an important role in plasmid dissemination.
Collapse
Affiliation(s)
- Zheng Jie Lian
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Steven J. Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - David L. Paterson
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Mmatli M, Mbelle NM, Osei Sekyere J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Front Cell Infect Microbiol 2022; 12:941358. [PMID: 36093193 PMCID: PMC9462459 DOI: 10.3389/fcimb.2022.941358] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mobile colistin resistance (mcr) genes modify Lipid A molecules of the lipopolysaccharide, changing the overall charge of the outer membrane. Results and discussion Ten mcr genes have been described to date within eleven Enterobacteriaceae species, with Escherichia coli, Klebsiella pneumoniae, and Salmonella species being the most predominant. They are present worldwide in 72 countries, with animal specimens currently having the highest incidence, due to the use of colistin in poultry for promoting growth and treating intestinal infections. The wide dissemination of mcr from food animals to meat, manure, the environment, and wastewater samples has increased the risk of transmission to humans via foodborne and vector-borne routes. The stability and spread of mcr genes were mediated by mobile genetic elements such as the IncHI2 conjugative plasmid, which is associated with multiple mcr genes and other antibiotic resistance genes. The cost of acquiring mcr is reduced by compensatory adaptation mechanisms. MCR proteins are well conserved structurally and via enzymatic action. Thus, therapeutics found effective against MCR-1 should be tested against the remaining MCR proteins. Conclusion The dissemination of mcr genes into the clinical setting, is threatening public health by limiting therapeutics options available. Combination therapies are a promising option for managing and treating colistin-resistant Enterobacteriaceae infections whilst reducing the toxic effects of colistin.
Collapse
Affiliation(s)
- Masego Mmatli
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
- Department of Dermatology, School of Medicine, University of Pretoria, Pretoria, South Africa
- *Correspondence: John Osei Sekyere, ;
| |
Collapse
|
13
|
Firoozeh F, Zibaei M, Badmasti F, Khaledi A. Virulence factors, antimicrobial resistance and the relationship between these characteristics in uropathogenic Escherichia coli. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Investigations into the membrane activity of arenicin antimicrobial peptide AA139. Biochim Biophys Acta Gen Subj 2022; 1866:130156. [PMID: 35523364 DOI: 10.1016/j.bbagen.2022.130156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
Arenicin-3 is an amphipathic β-hairpin antimicrobial peptide that is produced by the lugworm Arenicola marina. In this study, we have investigated the mechanism of action of arenicin-3 and an optimized synthetic analogue, AA139, by studying their effects on lipid bilayer model membranes and Escherichia coli bacterial cells. The results show that simple amino acid changes can lead to subtle variations in their interaction with membranes and therefore alter their pre-clinical potency, selectivity and toxicity. While the mechanism of action of arenicin-3 is primarily dependent on universal membrane permeabilization, our data suggest that the analogue AA139 relies on more specific binding and insertion properties to elicit its improved antibacterial activity and lower toxicity, as exemplified by greater selectivity between lipid composition when inserting into model membranes i.e. the N-terminus of AA139 seems to insert deeper into lipid bilayers than arenicin-3 does, with a clear distinction between zwitterionic and negatively charged lipid bilayer vesicles, and AA139 demonstrates a cytoplasmic permeabilization dose response profile that is consistent with its greater antibacterial potency against E. coli cells compared to arenicin-3.
Collapse
|
15
|
Hao J, Zeng Z, Xiao X, Ding Y, Deng J, Wei Y, Liu J. Genomic and Phenotypic Characterization of a Colistin-Resistant Escherichia coli Isolate Co-Harboring blaNDM-5, blaOXA-1, and blaCTX-M-55 Isolated from Urine. Infect Drug Resist 2022; 15:1329-1343. [PMID: 35378893 PMCID: PMC8976530 DOI: 10.2147/idr.s355010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
Background Materials and Methods Results Conclusion
Collapse
Affiliation(s)
- Jingchen Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Xue Xiao
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Yinhuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Jiamin Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Yueshuai Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
- Correspondence: Jinbo Liu, Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China, Tel/Fax +86 830 3165730, Email
| |
Collapse
|
16
|
Lin Y, Zhang Y, Liu S, Ye D, Chen L, Huang N, Zeng W, Liao W, Zhan Y, Zhou T, Cao J. Quercetin Rejuvenates Sensitization of Colistin-Resistant Escherichia coli and Klebsiella Pneumoniae Clinical Isolates to Colistin. Front Chem 2021; 9:795150. [PMID: 34900948 PMCID: PMC8656154 DOI: 10.3389/fchem.2021.795150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Colistin is being considered as "the last ditch" treatment in many infections caused by Gram-negative stains. However, colistin is becoming increasingly invalid in treating patients who are infected with colistin-resistant Escherichia coli (E. coli) and Klebsiella Pneumoniae (K. pneumoniae). To cope with the continuous emergence of colistin resistance, the development of new drugs and therapies is highly imminent. Herein, in this work, we surprisingly found that the combination of quercetin with colistin could efficiently and synergistically eradicate the colistin-resistant E. coli and K. pneumoniae, as confirmed by the synergy checkboard and time-kill assay. Mechanismly, the treatment of quercetin combined with colistin could significantly downregulate the expression of mcr-1 and mgrB that are responsible for colistin-resistance, synergistically enhancing the bacterial cell membrane damage efficacy of colistin. The colistin/quercetin combination was notably efficient in eradicating the colistin-resistant E. coli and K. pneumoniae both in vitro and in vivo. Therefore, our results may provide an efficient alternative pathway against colistin-resistant E. coli and K. pneumoniae infections.
Collapse
Affiliation(s)
- Yishuai Lin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shixing Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dandan Ye
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqiong Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Na Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Wenli Liao
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhou Zhan
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Wang X, Loh B, Altamirano FG, Yu Y, Hua X, Leptihn S. Colistin- phage combinations decrease antibiotic resistance in A. baumannii via changes in envelope architecture. Emerg Microbes Infect 2021; 10:2205-2219. [PMID: 34736365 PMCID: PMC8648044 DOI: 10.1080/22221751.2021.2002671] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Multidrug-resistant bacterial infections are becoming increasingly common, with only few last-resort antibiotics such as colistin available for clinical therapy. An alternative therapeutic strategy gaining momentum is phage therapy, which has the advantage of not being affected by bacterial resistance to antibiotics. However, a major challenge in phage therapy is the rapid emergence of phage-resistant bacteria. In this work, our main aim was to understand the mechanisms of phage-resistance used by the top priority pathogen Acinetobacter baumannii. We isolated the novel phage Phab24, capable of infecting colistin-sensitive and -resistant strains of A. baumannii. After co-incubating Phab24 with its hosts, we obtained phage-resistant mutants which were characterized on both genotypic and phenotypic levels. Using whole genome sequencing, we identified phage-resistant strains that displayed mutations in genes that alter the architecture of the bacterial envelope at two levels: the capsule and the outer membrane. Using an adsorption assay, we confirmed that phage Phab24 uses the bacterial capsule as its primary receptor, with the outer membrane possibly serving as the secondary receptor. Interestingly, the phage-resistant isolates were less virulent compared to the parental strains in a Galleria mellonella infection model. Most importantly, we observed that phage-resistant bacteria that evolved in the absence of antibiotics exhibited an increased sensitivity to colistin, even though the antibiotic resistance mechanism per se remained unaltered. This increase in antibiotic sensitivity is a direct consequence of the phage-resistance mechanism, and could potentially be exploited in the clinical setting.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, China.,Medical school, Lishui University, Lishui, China
| | | | - Fernando Gordillo Altamirano
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.,Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, China.,Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China .,University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics (Basel) 2021; 10:antibiotics10091041. [PMID: 34572623 PMCID: PMC8466100 DOI: 10.3390/antibiotics10091041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
An antibiotic susceptibility monitoring programme was conducted from 2004 to 2010, resulting in a collection of 143 Escherichia coli cultured from bovine faecal samples (diarrhoea) and milk-aliquots (mastitis). The isolates were subjected to whole-genome sequencing and were distributed in phylogroups A, B1, B2, C, D, E, and G with no correlation for particular genotypes with pathotypes. In fact, the population structure showed that the strains belonging to the different phylogroups matched broadly to ST complexes; however, the isolates are randomly associated with the diseases, highlighting the necessity to investigate the virulence factors more accurately in order to identify the mechanisms by which they cause disease. The antimicrobial resistance was assessed phenotypically, confirming the genomic prediction on three isolates that were resistant to colistin, although one isolate was positive for the presence of the gene mcr-1 but susceptible to colistin. To further characterise the genomic context, the four strains were sequenced by using a single-molecule long read approach. Genetic analyses indicated that these four isolates harboured complex and diverse plasmids encoding not only antibiotic resistant genes (including mcr-1 and bla) but also virulence genes (siderophore, ColV, T4SS). A detailed description of the plasmids of these four E. coli strains, which are linked to bovine mastitis and diarrhoea, is presented for the first time along with the characterisation of the predicted antibiotic resistance genes. The study highlighted the diversity of incompatibility types encoding complex antibiotic resistance elements such as Tn6330, ISEcp1, Tn6029, and IS5075. The mcr-1 resistance determinant was identified in IncHI2 plasmids pCFS3273-1 and pCFS3292-1, thus providing some of the earliest examples of mcr-1 reported in Europe, and these sequences may be a representative of the early mcr-1 plasmidome characterisation in the EU/EEA.
Collapse
|
19
|
Huang C, Shi Q, Zhang S, Wu H, Xiao Y. Acquisition of the mcr-1 Gene Lowers the Target Mutation to Impede the Evolution of a High-Level Colistin-Resistant Mutant in Escherichia coli. Infect Drug Resist 2021; 14:3041-3051. [PMID: 34408448 PMCID: PMC8364431 DOI: 10.2147/idr.s324303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The spread of the plasmid-mediated colistin resistance gene mcr-1 poses a significant public health threat. Little information is available on the development of high-level colistin-resistant mutants (HLCRMs) in MCR-1-producing Escherichia coli (MCRPEC). The present study was designed to evaluate the impact of chromosomal modifications in pmrAB, phoPQ, and mgrB combined with mcr-1 on colistin resistance in E. coli. Methods Five MCRPEC and three non-MCRPEC (E. coli ATCC25922 and two plasmid-curing) strains were used. The HLCRMs were selected through multi-stepwise colistin exposure. Moreover, two E. coli C600-pMCRs were constructed and used for selection of HLCRMs. Further analysis included mutation rates and DNA sequencing. Transcripts of pmrABC, phoP, mgrB, and mcr-1 were quantified by real-time quantitative PCR. Results All tested HLCRMs were successfully isolated from their parental strains. Non-MCRPEC strains had higher minimum inhibitory concentrations (MICs) and mutation rates than MCRPEC strains. Nineteen amino acid substitutions were identified: seven in PmrA, six in PmrB, one in PhoP, three in PhoQ, and two in MgrB. Most were detected in non-MCRPEC strains. Sorting Intolerant From Tolerant predicted that four substitutions, PmrA Gly15Arg, Gly53Arg, PmrB Pro94Gln, and PhoP Asp86Gly, affected protein function. Two HLCRM isolates did not show amino acid substitutions in contrast to their parental MCRPEC isolates. No further mutations were detected in the second- and third-step mutants. Further transcriptional analysis showed that the up-regulation of pmrCAB expression was greater in the mutant of E. coli C600 than in E. coli C600-pMCR. Conclusion Acquisition of the mcr-1 gene had a negative impact on the development of HLCRMs in E. coli, but was associated with low-level colistin resistance. Thus, colistin-based combination regimens may be effective against infections with MCR-1-producing isolates.
Collapse
Affiliation(s)
- Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China.,State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingyi Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hongcheng Wu
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
20
|
Phan MD, Bottomley AL, Peters KM, Harry EJ, Schembri MA. Uncovering novel susceptibility targets to enhance the efficacy of third-generation cephalosporins against ESBL-producing uropathogenic Escherichia coli. J Antimicrob Chemother 2021; 75:1415-1423. [PMID: 32073605 DOI: 10.1093/jac/dkaa023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) are a major cause of urinary tract infection (UTI), one of the most common infectious diseases in humans. UPEC are increasingly associated with resistance to multiple antibiotics. This includes resistance to third-generation cephalosporins, a common class of antibiotics frequently used to treat UTI. METHODS We employed a high-throughput genome-wide screen using saturated transposon mutagenesis and transposon directed insertion-site sequencing (TraDIS) together with phenotypic resistance assessment to identify key genes required for survival of the MDR UPEC ST131 strain EC958 in the presence of the third-generation cephalosporin cefotaxime. RESULTS We showed that blaCMY-23 is the major ESBL gene in EC958 responsible for mediating resistance to cefotaxime. Our screen also revealed that mutation of genes involved in cell division and the twin-arginine translocation pathway sensitized EC958 to cefotaxime. The role of these cell-division and protein-secretion genes in cefotaxime resistance was confirmed through the construction of mutants and phenotypic testing. Mutation of these genes also sensitized EC958 to other cephalosporins. CONCLUSIONS This work provides an exemplar for the application of TraDIS to define molecular mechanisms of resistance to antibiotics. The identification of mutants that sensitize UPEC to cefotaxime, despite the presence of a cephalosporinase, provides a framework for the development of new approaches to treat infections caused by MDR pathogens.
Collapse
Affiliation(s)
- Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy L Bottomley
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Harry
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
De Oliveira DMP, Bohlmann L, Conroy T, Jen FEC, Everest-Dass A, Hansford KA, Bolisetti R, El-Deeb IM, Forde BM, Phan MD, Lacey JA, Tan A, Rivera-Hernandez T, Brouwer S, Keller N, Kidd TJ, Cork AJ, Bauer MJ, Cook GM, Davies MR, Beatson SA, Paterson DL, McEwan AG, Li J, Schembri MA, Blaskovich MAT, Jennings MP, McDevitt CA, von Itzstein M, Walker MJ. Repurposing a neurodegenerative disease drug to treat Gram-negative antibiotic-resistant bacterial sepsis. Sci Transl Med 2021; 12:12/570/eabb3791. [PMID: 33208501 DOI: 10.1126/scitranslmed.abb3791] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum β-lactamase (ESBL)-producing bacteria is a critical threat to human health, and alternative treatment strategies are urgently required. We investigated the ability of the hydroxyquinoline analog ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 resensitized Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less toxic next-generation polymyxin derivative FADDI-287, in vitro. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin-resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + polymyxin (colistin or FADDI-287) for the treatment of Gram-negative sepsis in immunocompetent mice. In comparison to polymyxin alone, the combination of PBT2 + polymyxin improved survival and reduced bacterial dissemination to the lungs and spleen of infected mice. These data present a treatment modality to break antibiotic resistance in high-priority polymyxin-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Lisa Bohlmann
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Trent Conroy
- Institute for Glycomics, Griffith University, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Queensland 4222, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Queensland 4222, Australia
| | - Karl A Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Raghu Bolisetti
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Queensland 4222, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia.,Centre for Clinical Research and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4029, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Jake A Lacey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria 3000, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria 3000, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia.,Consejo Nacional de Ciencia y Tecnología-Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Stephan Brouwer
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Nadia Keller
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Amanda J Cork
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Michelle J Bauer
- Centre for Clinical Research and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4029, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Mark R Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria 3000, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - David L Paterson
- Centre for Clinical Research and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4029, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Queensland 4222, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria 3000, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Queensland 4222, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
22
|
Critical Role of 3'-Downstream Region of pmrB in Polymyxin Resistance in Escherichia coli BL21(DE3). Microorganisms 2021; 9:microorganisms9030655. [PMID: 33809968 PMCID: PMC8004244 DOI: 10.3390/microorganisms9030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/05/2022] Open
Abstract
Polymyxins, such as colistin and polymyxin B, are the drugs used as a last resort to treat multidrug-resistant Gram-negative bacterial infections in humans. Increasing colistin resistance has posed a serious threat to human health, warranting in-depth mechanistic research. In this study, using a functional cloning approach, we examined the molecular basis of colistin resistance in Escherichia coli BL21(DE3). Five transformants with inserts ranging from 3.8 to 10.7 kb displayed significantly increased colistin resistance, three of which containing pmrB locus and two containing pmrD locus. Stepwise subcloning indicated that both the pmrB with a single G361A mutation and at least a 103 bp downstream region of pmrB are essential for conferring colistin resistance. Analysis of the mRNA level and stability showed that the length of the downstream region drastically affected the pmrB mRNA level but not its half-life. Lipid A analysis, by mass spectrometry, revealed that the constructs containing pmrB with a longer downstream region (103 or 126 bp) have charge-altering l-4-aminoarabinose (Ara4N) and phosphoethanolamine (pEtN) modifications in lipid A, which were not observed in both vector control and the construct containing pmrB with an 86 bp downstream region. Together, the findings from this study indicate that the 3′-downstream region of pmrB is critical for the PmrB-mediated lipid A modifications and colistin resistance in E. coli BL21(DE3), suggesting a novel regulatory mechanism of PmrB-mediated colistin resistance in E. coli.
Collapse
|
23
|
Effects of Regulatory Network Organization and Environment on PmrD Connector Activity and Polymyxin Resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 2021; 65:AAC.00889-20. [PMID: 33361295 DOI: 10.1128/aac.00889-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Polymyxins are a class of cyclic peptides with antimicrobial activity against Gram-negative bacteria. In Enterobacteriaceae, the PhoQ/PhoP and PmrB/PmrA two-component systems regulate many genes that confer resistance to both polymyxins and host antimicrobial peptides. The activities of these two-component systems are modulated by additional proteins that are conserved across Enterobacteriaceae, such as MgrB, a negative regulator of PhoQ, and PmrD, a "connector" protein that activates PmrB/PmrA in response to PhoQ/PhoP stimulation. Despite the conservation of many protein components of the PhoQ/PhoP-PmrD-PmrB/PmrA network, the specific molecular interactions and regulatory mechanisms vary across different genera. Here, we explore the role of PmrD in modulating this signaling network in Klebsiella pneumoniae and Escherichia coli We show that in K. pneumoniae, PmrD is not required for polymyxin resistance arising from mutation of mgrB-the most common cause of spontaneous polymyxin resistance in this bacterium-suggesting that direct activation of polymyxin resistance genes by PhoQ/PhoP plays a critical role in this resistance pathway. However, for conditions of low pH or intermediate iron concentrations, both of which stimulate PmrB/PmrA, we find that PmrD does contribute to resistance. We further show that in E. coli, PmrD functions as a connector between PhoQ/PhoP and PmrB/PmrA, in contrast with previous reports. In this case, activity also depends on PmrB/PmrA stimulation, or on very high activation of PhoQ/PhoP. Our results indicate that the importance of the PmrD connector in modulating the polymyxin resistance network depends on both the network organization and on the environmental conditions associated with PmrB stimulation.
Collapse
|
24
|
Morales-León F, Opazo-Capurro A, Caro C, Lincopan N, Cardenas-Arias A, Esposito F, Illesca V, Rioseco ML, Domínguez-Yévenes M, Lima CA, Bello-Toledo H, González-Rocha G. Hypervirulent and hypermucoviscous extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Klebsiella variicola in Chile. Virulence 2020; 12:35-44. [PMID: 33372844 PMCID: PMC7781644 DOI: 10.1080/21505594.2020.1859274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Convergence of virulence and antibiotic-resistance has been reported in Klebsiella pneumoniae, but not in Klebsiella variicola. We, hereby, report the detection and genomic characterization of hypervirulent and hypermucoviscous K. pneumoniae and K.variicola recovered in Chile from health-care associated infections, which displayed resistance to broad-spectrum cephalosporins. One hundred forty-six K. pneumoniae complex isolates were screened by hypermucoviscosity by the “string test.” Two hypermucoid isolates, one hypermucoviscous K. pneumoniae (hmKp) and one K. variicola (hmKv), were further investigated by whole-genome sequencing. In vivo virulence was analyzed by the Galleria mellonella killing assay. In silico analysis of hmKp UCO-494 and hmKv UCO-495 revealed the presence of multiple antibiotic-resistance genes, such as blaCTX-M-1, blaDHA-1 and blaLEN-25 among others clinically relevant resistance determinants, including mutations in a two-component regulatory system related to colistin resistance. These genetic features confer a multidrug-resistant (MDR) phenotype in both strains. Moreover, virulome in silico analysis confirmed the presence of the aerobactin gene iutA, in addition to yersiniabactin and/or colicin V encoding genes, which are normally associated to high virulence in humans. Furthermore, both isolates were able to kill G. mellonella and displayed higher virulence in comparison with the control strain. In summary, the convergence of virulence and the MDR-phenotype in K. pneumoniae complex members is reported for the first time in Chile, denoting a clinical problem that deserves special attention and continuous surveillance in South America.
Collapse
Affiliation(s)
- F Morales-León
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile.,Departamento de Farmacia, Universidad de Concepción, Concepción , Chile
| | - A Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile
| | - C Caro
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Departamento de Farmacia, Universidad de Concepción, Concepción , Chile
| | - N Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo , São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo , São Paulo, Brazil
| | - A Cardenas-Arias
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo , São Paulo, Brazil
| | - F Esposito
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo , São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo , São Paulo, Brazil
| | - V Illesca
- Unidad de Microbiología, Hospital Dr. Hernan Henriquez Aravena , Temuco, Chile
| | - M L Rioseco
- Laboratorio de Microbiologia, Hospital de Puerto Montt , Puerto Montt, Chile
| | - M Domínguez-Yévenes
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile
| | - C A Lima
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile
| | - H Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción , Concepción, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance , Chile
| |
Collapse
|
25
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|
26
|
Liao W, Lin J, Jia H, Zhou C, Zhang Y, Lin Y, Ye J, Cao J, Zhou T. Resistance and Heteroresistance to Colistin in Escherichia coli Isolates from Wenzhou, China. Infect Drug Resist 2020; 13:3551-3561. [PMID: 33116674 PMCID: PMC7553605 DOI: 10.2147/idr.s273784] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Colistin is being administered as last-line therapy for patients that have failed to respond to other available antibiotics that are active against Escherichia coli. The underlying mechanisms of colistin resistance and heteroresistance remain largely uncharacterized. The present study investigated the mechanisms of resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China. Materials and Methods Colistin resistance was detected by the broth microdilution method (BMD). Colistin heteroresistance was determined by population analysis profiles (PAPs). The polymerase chain reaction (PCR) was conducted to detect mcr-1, mcr-2, mcr-3, pmrA, pmrB, phoP, phoQ and mgrB, and quantitative real-time PCR (qRT-PCR) was used to determine the expression levels of mcr-1, pmrC, pmrA and pmrB. Lipid A characterization was conducted by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Results 0.69% (2/291) of Escherichia coli strains were resistant to colistin, whereas the heteroresistance rate reached 1.37% (4/291). mcr-1, the mobile colistin-resistance gene, was present in the two resistant isolates. The substitutions in PmrB were detected in the two heteroresistant isolates. The transcripts levels of the pmrCAB operon were upregulated in two of the heteroresistant isolates. carbonylcyanide m-chlorophenylhydrazone (CCCP) was able to reverse colistin resistance of all isolates tested and exhibited a significantly higher effect on colistin-heteroresistant isolates. MALDI-TOF MS indicated that the additional phosphoethanolamine (PEtn) moieties in lipid A profiles were present both in colistin-resistant and heteroresistant isolates. Conclusion The present study was the first to investigate the differential mechanisms between colistin resistance and heteroresistance. The development of colistin heteroresistance should be addressed in future clinical surveillance.
Collapse
Affiliation(s)
- Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Huaiyu Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
27
|
A Novel Deletion Mutation in pmrB Contributes to Concurrent Colistin Resistance in Carbapenem-Resistant Escherichia coli Sequence Type 405 of Clinical Origin. Antimicrob Agents Chemother 2020; 64:AAC.00220-20. [PMID: 32284375 DOI: 10.1128/aac.00220-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/04/2020] [Indexed: 11/20/2022] Open
Abstract
We report the first clinical Escherichia coli strain EC3000 with concomitant chromosomal colistin and carbapenem resistance. A novel in-frame deletion, Δ6-11 (RPISLR), in pmrB that contributes to colistin resistance was verified using recombinant DNA techniques. Although being less fit than the wild-type (WT) strain or EC3000 revertant (chromosomal replacement of WT pmrB in EC3000), a portion of serially passaged EC3000 strains preserving colistin resistance without selective pressure raises the concern for further spread.
Collapse
|
28
|
Huang J, Li C, Song J, Velkov T, Wang L, Zhu Y, Li J. Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol 2020; 15:445-459. [PMID: 32250173 DOI: 10.2217/fmb-2019-0322] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence.
Collapse
Affiliation(s)
- Jiayuan Huang
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Jiangning Song
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Zhu
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
29
|
Vounba P, Rhouma M, Arsenault J, Bada Alambédji R, Fravalo P, Fairbrother JM. Prevalence of colistin resistance and mcr-1/mcr-2 genes in extended-spectrum β-lactamase/AmpC-producing Escherichia coli isolated from chickens in Canada, Senegal and Vietnam. J Glob Antimicrob Resist 2019; 19:222-227. [DOI: 10.1016/j.jgar.2019.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/07/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023] Open
|
30
|
Huang J, Dai X, Ge L, Shafiq M, Shah JM, Sun J, Yi S, Wang L. Sequence Duplication Within pmrB Gene Contribute to High-Level Colistin Resistance in Avian Pathogenic Escherichia coli. Microb Drug Resist 2019; 26:1442-1451. [PMID: 31770069 DOI: 10.1089/mdr.2019.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beyond the emergence of plasmid-encoded mechanisms, mutation within the pmrAB genes remains one of the primary colistin resistance mechanisms in Escherichia coli. However, the mechanisms of high-level colistin resistance (HLCR) have not been elucidated. In this study, we evaluated the HLCR mechanisms in five colistin-susceptible Avian pathogenic Escherichia coli (APEC) isolates after colistin exposure. Three PmrB substitutions (G19R, L167P, V88E) and two PmrB sequence duplication (PmrB-sd) mutations (68-77dup and 94-156dup) were detected. Chromosomal replacement and deletion mutagenesis revealed the two PmrB-sd mutations contribute to, but are not fully responsible for, HLCR in APEC strains. Quantitative reverse transcription/polymerase chain reaction (qRT-PCR) revealed that the PmrB-sd induction mutants showed an increased pmrAB transcript level and the PmrB-sd reversion mutants exhibited a reduction of pmrAB expression. All five induction mutants exhibited decreased minimum inhibitory concentrations to florfenicol and tetracycline. In addition, four mutants (G19R, L167P, V88E, and 94-156dup) and two mutants (68-77dup and 94-156dup) also displayed increased sensitivity to ceftiofur and gentamicin, respectively. Zeta potential measurement of the induction mutants showed that there was less negative charge on the cell surface compared with its parental strains in the absence of colistin. The induction mutants also showed an increase of lag time and decrease of fitness. In summary, the identification of novel PmrB-sd mutations contributing to HLCR is helpful to broaden the knowledge of colistin resistance. Attention should be paid to the use of colistin for the treatment of infections caused by APEC strains.
Collapse
Affiliation(s)
- Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingyang Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lin Ge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Shafiq
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jan Mohammad Shah
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junjie Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sida Yi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Abstract
Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli. Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCEEscherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.
Collapse
|
32
|
Li Z, Cao Y, Yi L, Liu JH, Yang Q. Emergent Polymyxin Resistance: End of an Era? Open Forum Infect Dis 2019; 6:5550895. [PMID: 31420655 PMCID: PMC6767968 DOI: 10.1093/ofid/ofz368] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 12/03/2022] Open
Abstract
Until recently, the polymyxin antibiotics were used sparingly due to dose limiting toxicities. However, the lack of therapeutic alternatives for infections caused by highly resistant Gram-negative bacteria has led to the increased use of the polymyxins. Unfortunately, the world has witnessed increased rates of polymyxin resistance in the last decade, which is likely in part due to its irrational use in human and veterinary medicine. The spread of polymyxin resistance has been aided by the dissemination of the transferable polymyxin-resistance gene, mcr, in humans and the environment. The mortality of colistin-resistant bacteria (CoRB) infections varies in different reports. However, poor clinical outcome was associated with prior colistin treatment, illness severity, complications, and multidrug resistance. Detection of polymyxin resistance in the clinic is possible through multiple robust and practical tests, including broth microdilution susceptibility testing, chromogenic agar testing, and molecular biology assays. There are multiple risk factors that increase a person’s risk for infection with a polymyxin-resistant bacteria, including age, prior colistin treatment, hospitalization, and ventilator support. For patients that are determined to be infected by polymyxin-resistant bacteria, various antibiotic treatment options currently exist. The rising trend of polymyxin resistance threatens patient care and warrants effective control.
Collapse
Affiliation(s)
- Zekun Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuping Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lingxian Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
33
|
Luo Q, Niu T, Wang Y, Yin J, Wan F, Yao M, Lu H, Xiao Y, Li L. In vitro reduction of colistin susceptibility and comparative genomics reveals multiple differences between MCR-positive and MCR-negative colistin-resistant Escherichia coli. Infect Drug Resist 2019; 12:1665-1674. [PMID: 31354315 PMCID: PMC6580138 DOI: 10.2147/idr.s210245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
Objectives: Although resistance to colistin is increasingly reported from clinical settings, the genetic mechanisms that lead to colistin resistance in Escherichia coli have not been fully characterized. Here, we assess the evolution of colistin resistance in clinical isolates of mobilized colistin resistance (MCR)-negative and MCR-positive Escherichia coli. Methods: Spontaneously mutated colistin-resistant progeny were evolved using a step-wise reduction of colistin susceptibility. Resistance phenotypes were confirmed by minimum inhibitory concentration (MIC) determination, and the probable resistance mechanisms were investigated using PCR and reverse transcription-quantitative PCR. Mutated genes of the laboratory-evolved mutants were identified by whole-genome sequencing and comparative genomics. Fitness costs and serum resistance of the mutants were also compared to the corresponding wild types. Results: MCR-negative isolates displayed higher increases in MICs than did MCR-positive isolates following colistin exposure. Upregulation of pmrAB and associated genes was evident among MCR-negative isolates but not MCR-positive isolates. Comparative genomic analysis of mutants and their corresponding wild-types (WTs) revealed numerous mutations in genes encoding membrane transporters and two-component systems. Additionally, MCR-negative mutants exhibited higher fitness costs than MCR-positive mutants compared with their corresponding WTs but displayed similar serum resistance. Conclusion: Our findings reveal multiple differences between MCR-positive and MCR-negative E. coli strains following colistin exposure, which provide reference values for clinical medication.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases , Hangzhou, The First Affiliated Hospital, College of Medicine, Zhejiang University, People's Republic of China
| | - Tianshui Niu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases , Hangzhou, The First Affiliated Hospital, College of Medicine, Zhejiang University, People's Republic of China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases , Hangzhou, The First Affiliated Hospital, College of Medicine, Zhejiang University, People's Republic of China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Fen Wan
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases , Hangzhou, The First Affiliated Hospital, College of Medicine, Zhejiang University, People's Republic of China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases , Hangzhou, The First Affiliated Hospital, College of Medicine, Zhejiang University, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases , Hangzhou, The First Affiliated Hospital, College of Medicine, Zhejiang University, People's Republic of China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases , Hangzhou, The First Affiliated Hospital, College of Medicine, Zhejiang University, People's Republic of China
| |
Collapse
|
34
|
Manageiro V, Clemente L, Romão R, Silva C, Vieira L, Ferreira E, Caniça M. IncX4 Plasmid Carrying the New mcr-1.9 Gene Variant in a CTX-M-8-Producing Escherichia coli Isolate Recovered From Swine. Front Microbiol 2019; 10:367. [PMID: 30923516 PMCID: PMC6426780 DOI: 10.3389/fmicb.2019.00367] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/12/2019] [Indexed: 11/22/2022] Open
Abstract
We studied a commensal colistin-resistant Escherichia coli isolated from a swine cecum sample collected at a slaughter, in Portugal. Antimicrobial susceptibility phenotype of E. coli LV23529 showed resistance to colistin at a minimum inhibitory concentration of 4 mg/L. Whole genome of E. coli LV23529 was sequenced using a MiSeq system and the assembled contigs were analyzed for the presence of antibiotic resistance and plasmid replicon types using bioinformatics tools. We report a novel mcr-1 gene variant (mcr-1.9), carried by an IncX4 plasmid, where one-point mutation at nucleotide T1238C leads to Val413Ala substitution. The mcr-1.9 genetic context was characterized by an IS26 element upstream of the mcr-pap2 element and by the absence of ISApl1. Bioinformatic analysis also revealed genes conferring resistance to β-lactams, sulphamethoxazole, trimethoprim, chloramphenicol and colistin, corresponding to the phenotype noticed. Moreover, we highlight the presence of mcr-1.9 plus blaCTX-M-8, a blaESBL gene rarely detected in Europe in isolates of animal origin; these two genes were located on different plasmids with 33,303 and 89,458 bp, respectively. MCR-1.9-harboring plasmid showed high identity to other X4-type mcr-1-harboring plasmids characterized worldwide, which strongly suggests that the presence of PMCR-encoding genes in food-producing animals, such as MCR-1.9, represent a potential threat to humans, as it is located in mobile genetic elements that have the potential to spread horizontally.
Collapse
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
| | - Lurdes Clemente
- Bacteriology and Mycology Laboratory, INIAV - National Institute of Agrarian and Veterinary Research, Oeiras, Portugal
| | - Raquel Romão
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Catarina Silva
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Bourrel AS, Poirel L, Royer G, Darty M, Vuillemin X, Kieffer N, Clermont O, Denamur E, Nordmann P, Decousser JW, LAFAURIE M, BERCOT B, WALEWSKI V, LESCAT M, CARBONNELLE E, OUSSER F, IDRI N, RICARD JD, LANDRAUD L, LE DORZE M, JACQUIER H, CAMBAU E, LEPEULE R, GOMART C. Colistin resistance in Parisian inpatient faecal Escherichia coli as the result of two distinct evolutionary pathways. J Antimicrob Chemother 2019; 74:1521-1530. [DOI: 10.1093/jac/dkz090] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anne Sophie Bourrel
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Laurent Poirel
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Guilhem Royer
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Mélanie Darty
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Xavier Vuillemin
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Nicolas Kieffer
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Olivier Clermont
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
| | - Erick Denamur
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Patrice Nordmann
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Jean-Winoc Decousser
- Laboratoire de Bactériologie et d’Hygiène Hospitalière, CHU Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
- IAME, UMR1137 INSERM, Université Paris Diderot, Université Paris Nord, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, Yin WF, Chan KG, Chromek M, Brauner A, Chapman MR, Beatson SA, Schembri MA. Discovery of New Genes Involved in Curli Production by a Uropathogenic Escherichia coli Strain from the Highly Virulent O45:K1:H7 Lineage. mBio 2018; 9:e01462-18. [PMID: 30131362 PMCID: PMC6106082 DOI: 10.1128/mbio.01462-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Milan Chromek
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pediatrics, CLINTEC, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
37
|
Abstract
The plasmid-located colistin resistance gene mcr-1 confers low-level resistance to colistin, a last-line antibiotic against multidrug-resistant Gram-negative bacteria. Current CLSI-EUCAST recommendations require the use of a broth microdilution (BMD) method with cation-adjusted Mueller-Hinton (CA-MH) medium for colistin susceptibility testing, but approximately 15% of all MCR-1 producers are classified as sensitive in that broth. Here we report on an improved calcium-enhanced Mueller-Hinton (CE-MH) medium that permits simple and reliable determination of mcr-1-containing Enterobacteriaceae Colistin susceptibility testing was performed for 50 mcr-1-containing Escherichia coli and Klebsiella pneumoniae isolates, 7 intrinsically polymyxin-resistant species, K. pneumoniae and E. coli isolates with acquired resistance to polymyxins due to mgrB and pmrB mutations, respectively, and 32 mcr-1-negative, colistin-susceptible isolates of Acinetobacter baumannii, Citrobacter freundii, Enterobacter cloacae, E. coli, K. pneumoniae, and Salmonella enterica serovar Typhimurium. A comparison of the colistin MICs determined in CA-MH medium and those obtained in CE-MH medium was performed using both the BMD and strip-based susceptibility test formats. We validated the data using an isogenic IncX4 plasmid lacking mcr-1 Use of the CE-MH broth provides clear separation between resistant and susceptible isolates in both BMD and gradient diffusion assays; this is true for both mcr-1-containing Enterobacteriaceae isolates and those exhibiting either intrinsic or acquired colistin resistance. CE-MH medium is simple to prepare and overcomes current problems associated with BMD and strip-based colistin susceptibility testing, and use of the medium is easy to implement in routine diagnostic laboratories, even in resource-poor settings.
Collapse
|
38
|
Zhou K, Luo Q, Wang Q, Huang C, Lu H, Rossen JWA, Xiao Y, Li L. Silent transmission of an IS1294b-deactivated mcr-1 gene with inducible colistin resistance. Int J Antimicrob Agents 2018; 51:822-828. [PMID: 29339296 DOI: 10.1016/j.ijantimicag.2018.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Global dissemination of the mobile colistin resistance mcr-1 is of particular concern as colistin is one of the last-resort antibiotics for the treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria. In this study, an inactive form of mcr-1 in a fluoroquinolone-resistant and colistin-susceptible uropathogenic Escherichia coli isolate (ECO3347) was characterised. The mcr-1 gene was deactivated by insertion of a 1.7-kb IS1294b element flanked by two tetramers (GTTC) and located on a 62-kb pHNSHP45-like plasmid (p3347-mcr-1). Single-step and multistep selections were used to induce colistin resistance in vitro in ECO3347. ECO3347 acquired colistin resistance (MIC = 16-32 mg/L) only after a serial passage selection with increasing concentrations of colistin (2-8 mg/L). Deactivated mcr-1 was re-activated by loss of IS1294b without any remnants in most colistin-resistant mutants. In addition, a novel amino acid variant (Leu105Pro) in the CheY homologous receiver domain of PmrA was detected in one colistin-resistant mutant. Plasmid p3347-mcr-1+ carrying the re-activated mcr-1 gene is transferrable to E. coli J53 recipient with a high conjugation rate (ca. 10-1 cells per recipient cell). Transconjugants showed an identical growth status to J53, suggesting lack of a fitness cost after acquiring p3347-mcr-1+. These results highlight that the disrupted mcr-1 gene has the potential for wide silent dissemination with the help of pHNSHP45-like epidemic plasmids. Inducible colistin resistance may likely compromise the success of clinical treatment and infection control. Continuous monitoring of mcr-1 is imperative for understanding and tackling its dissemination in different forms.
Collapse
Affiliation(s)
- Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| | - Qin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| | - Chen Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
39
|
Detection of Colistin-Resistant MCR-1-Positive Escherichia coli by Use of Assays Based on Inhibition by EDTA and Zeta Potential. J Clin Microbiol 2017; 55:3454-3465. [PMID: 28978685 DOI: 10.1128/jcm.00835-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/28/2017] [Indexed: 01/05/2023] Open
Abstract
The emergence and rapid dissemination of colistin-resistant Escherichia coli carrying the plasmid-mediated mcr-1 gene have created an urgent need to develop specific screening methods. In this study, we evaluated four assays based on the inhibition of MCR-1 activity by EDTA: (i) a combined-disk test (CDT) comparing the inhibition zones of colistin and colistin (10 μg) plus EDTA (100 mM); (ii) reduction of colistin MIC (CMR) in the presence of EDTA (80 μg/ml); (iii) a modified rapid polymyxin Nordmann/Poirel test (MPNP); and (iv) alteration of zeta potential (RZP = ZP+EDTA/ZP-EDTA). We obtained encouraging results for the detection of MCR-1 in E. coli isolates recovered from human, food, and animal samples, using the following assay parameters: ≥3 mm difference in the inhibition zones between colistin disks without and with EDTA; ≥4-fold colistin MIC decrease in the presence of EDTA; RZP of ≥2.5; and the absence of metabolic activity and proliferation, indicated by unchanged color of phenol red in the presence of colistin-EDTA, in the MPNP test. In this regard, the CDT, CMR, RZP, and MPNP assays exhibited sensitivities of 96.7, 96.7, 95.1, and 96.7% and specificities of 89.6, 83.3, 100, and 100%, respectively, for detecting MCR-1-positive E. coli Our results demonstrate that inhibition by EDTA and zeta potential assays may provide simple and inexpensive methods for the presumptive detection of MCR-1-producing E. coli isolates in human and veterinary diagnostic laboratories.
Collapse
|