1
|
Kucukoglu K, Faydali N, Bul D, Nadaroglu H, Sever B, Altıntop MD, Ozturk B, Guzel I. Synthesis, in silico and in vitro evaluation of new 3,5-disubstituted-1,2,4-oxadiazole derivatives as carbonic anhydrase inhibitors and cytotoxic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
2
|
Pitcher NP, Harjani JR, Zhao Y, Jin J, Knight DR, Li L, Putsathit P, Riley TV, Carter GP, Baell JB. Development of 1,2,4-Oxadiazole Antimicrobial Agents to Treat Enteric Pathogens within the Gastrointestinal Tract. ACS OMEGA 2022; 7:6737-6759. [PMID: 35252669 PMCID: PMC8892681 DOI: 10.1021/acsomega.1c06294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Colonization of the gastrointestinal (GI) tract with pathogenic bacteria is an important risk factor for the development of certain potentially severe and life-threatening healthcare-associated infections, yet efforts to develop effective decolonization agents have been largely unsuccessful thus far. Herein, we report modification of the 1,2,4-oxadiazole class of antimicrobial compounds with poorly permeable functional groups in order to target bacterial pathogens within the GI tract. We have identified that the quaternary ammonium functionality of analogue 26a results in complete impermeability in Caco-2 cell monolayers while retaining activity against GI pathogens Clostridioides difficile and multidrug-resistant (MDR) Enterococcus faecium. Low compound recovery levels after oral administration in rats were observed, which suggests that the analogues may be susceptible to degradation or metabolism within the gut, highlighting a key area for optimization in future efforts. This study demonstrates that modified analogues of the 1,2,4-oxadiazole class may be potential leads for further development of colon-targeted antimicrobial agents.
Collapse
Affiliation(s)
- Noel P. Pitcher
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jitendra R. Harjani
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yichao Zhao
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jianwen Jin
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel R. Knight
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Lucy Li
- Department
of Microbiology & Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Papanin Putsathit
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Thomas V. Riley
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Glen P. Carter
- Department
of Microbiology & Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan B. Baell
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 South
Puzhu Road, Nanjing 211816, People’s Republic of China
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian
Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Li L, Higgs C, Turner AM, Nong Y, Gorrie CL, Sherry NL, Dyet KH, Seemann T, Williamson DA, Stinear TP, Howden BP, Carter GP. Daptomycin Resistance Occurs Predominantly in vanA-Type Vancomycin-Resistant Enterococcus faecium in Australasia and Is Associated With Heterogeneous and Novel Mutations. Front Microbiol 2021; 12:749935. [PMID: 34745054 PMCID: PMC8564391 DOI: 10.3389/fmicb.2021.749935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Healthcare associated infections caused by vancomycin-resistant Enterococcus faecium (VREfm) have a major impact on health outcomes. VREfm is difficult to treat because of intrinsic and acquired resistance to many clinically used antimicrobials, with daptomycin being one of the few last line therapeutic options for treating multidrug-resistant VREfm. The emergence of daptomycin-resistant VREfm is therefore of serious clinical concern. Despite this, the impact that daptomycin-resistant VREfm have on patient health outcomes is not clearly defined and knowledge on the mechanisms and genetic signatures linked with daptomycin resistance in VREfm remains incomplete. To address these knowledge gaps, phenotypic daptomycin susceptibility testing was undertaken on 324 E. faecium isolates from Australia and New Zealand. Approximately 15% of study isolates were phenotypically resistant to daptomycin. Whole genome sequencing revealed a strong association between vanA-VREfm and daptomycin resistance, with 95% of daptomycin-resistant study isolates harbouring vanA. Genomic analyses showed that daptomycin-resistant VREfm isolates were polyclonal and carried several previously characterised mutations in the liaR and liaS genes as well as several novel mutations within the rpoB, rpoC, and dltC genes. Overall, 70% of daptomycin-resistant study isolates were found to carry mutations within the liaR, rpoB, rpoC, or dltC genes. Finally, in a mouse model of VREfm bacteraemia, infection with the locally dominant daptomycin-resistant clone led to reduced daptomycin treatment efficacy in comparison to daptomycin-susceptible E. faecium. These findings have important implications for ongoing VREfm surveillance activities and the treatment of VREfm infections.
Collapse
Affiliation(s)
- Lucy Li
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Charlie Higgs
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Adrianna M Turner
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Yi Nong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Claire L Gorrie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Norelle L Sherry
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Kristin H Dyet
- The Institute of Environmental Science and Research, Porirua, New Zealand
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Glen P Carter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
5
|
Tarasenko MV, Presnukhina SI, Baikov SV, Shetnev AA. Synthesis and Evaluation of Antibacterial Activity of 1,2,4-Oxadiazole-Containing Biphenylcarboxylic Acids. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Biernacki K, Daśko M, Ciupak O, Kubiński K, Rachon J, Demkowicz S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals (Basel) 2020; 13:ph13060111. [PMID: 32485996 PMCID: PMC7345688 DOI: 10.3390/ph13060111] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Five-membered 1,2,4-oxadiazole heterocyclic ring has received considerable attentionbecause of its unique bioisosteric properties and an unusually wide spectrum of biological activities.Thus, it is a perfect framework for the novel drug development. After a century since the1,2,4-oxadiazole have been discovered, the uncommon potential attracted medicinal chemists'attention, leading to the discovery of a few presently accessible drugs containing 1,2,4-oxadiazoleunit. It is worth noting that the interest in a 1,2,4-oxadiazoles' biological application has been doubledin the last fifteen years. Herein, after a concise historical introduction, we present a comprehensiveoverview of the recent achievements in the synthesis of 1,2,4-oxadiazole-based compounds and themajor advances in their biological applications in the period of the last five years as well as briefremarks on prospects for further development.
Collapse
Affiliation(s)
- Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Konrad Kubiński
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland;
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
- Correspondence:
| |
Collapse
|
7
|
Ansari M, Shokrzadeh M, Karima S, Rajaei S, Fallah M, Ghassemi-Barghi N, Ghasemian M, Emami S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur J Med Chem 2020; 185:111784. [DOI: 10.1016/j.ejmech.2019.111784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
|
8
|
Ghanaat J, Khalilzadeh MA, Zareyee D, Shokouhimehr M, Varma RS. Cell cycle inhibition, apoptosis, and molecular docking studies of the novel anticancer bioactive 1,2,4-triazole derivatives. Struct Chem 2019. [DOI: 10.1007/s11224-019-01453-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Mahmoudi Y, Badali H, Hashemi SM, Ansari M, Fakhim H, Fallah M, Shokrzadeh M, Emami S. New potent antifungal triazole alcohols containing N-benzylpiperazine carbodithioate moiety: Synthesis, in vitro evaluation and in silico study. Bioorg Chem 2019; 90:103060. [PMID: 31229796 DOI: 10.1016/j.bioorg.2019.103060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/26/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
A number of 1H-1,2,4-triazole alcohols containing N-(halobenzyl)piperazine carbodithioate moiety have been designed and synthesized as potent antifungal agents. In vitro bioassays against different Candida species including C. albicans, C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis revealed that the N-(4-chlorobenzyl) derivative (6b) with MIC values of 0.063-0.5 µg/mL had the best profile of activity, being 4-32 times more potent than fluconazole. Docking simulation studies confirmed the better fitting of compound 6b in the active site of lanosterol 14α-demethylase (CYP51) enzyme, the main target of azole antifungals. Particularly, the potential of compound 6b against fluconazole-resistant isolates along with its minimal toxicity against human erythrocytes and HepG2 cells make this prototype compound as a good lead for discovery of potent and safe antifungal agents.
Collapse
Affiliation(s)
- Yaser Mahmoudi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Badali
- Department of Medical Mycology/Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Ansari
- Pharmaceutical Sciences Research Center, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Fakhim
- Department of Medical Parasitology & Mycology/Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
10
|
Shetnev A, Baykov S, Kalinin S, Belova A, Sharoyko V, Rozhkov A, Zelenkov L, Tarasenko M, Sadykov E, Korsakov M, Krasavin M. 1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer. Int J Mol Sci 2019; 20:ijms20071699. [PMID: 30959765 PMCID: PMC6480344 DOI: 10.3390/ijms20071699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Replacement of amide moiety with the 1,2,4-oxadiazole core in the scaffold of recently reported efflux pump inhibitors afforded a novel series of oxadiazole/2-imidazoline hybrids. The latter compounds exhibited promising antibacterial activity on both Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonasfluorescens) strains. Furthermore, selected compounds markedly inhibited the growth of certain drug-resistant bacteria. Additionally, the study revealed the antiproliferative activity of several antibacterial frontrunners against pancreas ductal adenocarcinoma (PANC-1) cell line, as well as their type-selective monoamine oxidase (MAO) inhibitory profile.
Collapse
Affiliation(s)
- Anton Shetnev
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russia.
| | - Sergey Baykov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Alexandra Belova
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russia.
| | - Vladimir Sharoyko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Anton Rozhkov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Lev Zelenkov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Marina Tarasenko
- Yaroslavl State Technical University, 88 Moscowsky Pr, Yaroslavl 150023, Russia.
| | - Evgeny Sadykov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Science, 1 Favorsky Str, Irkutsk 664033, Russian.
| | - Mikhail Korsakov
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russia.
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| |
Collapse
|
11
|
Sausa RC, Batyrev IG, Pesce-Rodriguez RA, Byrd EFC. Density Functional Theory and Experimental Studies of the Molecular, Vibrational, and Crystal Structure of Bis-Oxadiazole-Bis-Methylene Dinitrate (BODN). J Phys Chem A 2018; 122:9043-9053. [DOI: 10.1021/acs.jpca.8b08767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rosario C. Sausa
- US Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, Maryland 21005, United States
| | - Iskander G. Batyrev
- US Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, Maryland 21005, United States
| | - Rose A. Pesce-Rodriguez
- US Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, Maryland 21005, United States
| | - Edward F. C. Byrd
- US Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|